1
|
Calabrese AN, Watkinson TG, Henderson PJF, Radford SE, Ashcroft AE. Amphipols outperform dodecylmaltoside micelles in stabilizing membrane protein structure in the gas phase. Anal Chem 2014; 87:1118-26. [PMID: 25495802 PMCID: PMC4636139 DOI: 10.1021/ac5037022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Noncovalent mass spectrometry (MS) is emerging as an invaluable technique to probe the structure, interactions, and dynamics of membrane proteins (MPs). However, maintaining native-like MP conformations in the gas phase using detergent solubilized proteins is often challenging and may limit structural analysis. Amphipols, such as the well characterized A8-35, are alternative reagents able to maintain the solubility of MPs in detergent-free solution. In this work, the ability of A8-35 to retain the structural integrity of MPs for interrogation by electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) is compared systematically with the commonly used detergent dodecylmaltoside. MPs from the two major structural classes were selected for analysis, including two β-barrel outer MPs, PagP and OmpT (20.2 and 33.5 kDa, respectively), and two α-helical proteins, Mhp1 and GalP (54.6 and 51.7 kDa, respectively). Evaluation of the rotationally averaged collision cross sections of the observed ions revealed that the native structures of detergent solubilized MPs were not always retained in the gas phase, with both collapsed and unfolded species being detected. In contrast, ESI-IMS-MS analysis of the amphipol solubilized MPs studied resulted in charge state distributions consistent with less gas phase induced unfolding, and the presence of lowly charged ions which exhibit collision cross sections comparable with those calculated from high resolution structural data. The data demonstrate that A8-35 can be more effective than dodecylmaltoside at maintaining native MP structure and interactions in the gas phase, permitting noncovalent ESI-IMS-MS analysis of MPs from the two major structural classes, while gas phase dissociation from dodecylmaltoside micelles leads to significant gas phase unfolding, especially for the α-helical MPs studied.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Molecular and Cellular Biology and ‡School of Biomedical Sciences, Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
Kalverda AP, Gowdy J, Thompson GS, Homans SW, Henderson PJF, Patching SG. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol Membr Biol 2014; 31:131-40. [DOI: 10.3109/09687688.2014.911980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Abstract
Glucose transporters are required to bring glucose into cells, where it is an essential energy source and precursor in protein and lipid synthesis. These transporters are involved in important common diseases such as cancer and diabetes. Here, we report the crystal structure of the Staphylococcus epidermidis glucose/H(+) symporter in an inward-facing conformation at 3.2-Å resolution. The Staphylococcus epidermidis glucose/H(+) symporter is homologous to human glucose transporters, is very specific and has high avidity for glucose, and is inhibited by the human glucose transport inhibitors cytochalasin B, phloretin, and forskolin. On the basis of the crystal structure in conjunction with mutagenesis and functional studies, we propose a mechanism for glucose/H(+) symport and discuss the symport mechanism versus facilitated diffusion.
Collapse
|
4
|
|
5
|
PatchinG SG, Henderson PJF, Sharples DJ, Middleton DA. Probing the contacts of a low-affinity substrate with a membrane-embedded transport protein using1H-13C cross-polarisation magic-angle spinning solid-state NMR. Mol Membr Biol 2012; 30:129-37. [DOI: 10.3109/09687688.2012.743193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Robichaud T, Appleyard AN, Herbert RB, Henderson PJF, Carruthers A. Determinants of ligand binding affinity and cooperativity at the GLUT1 endofacial site. Biochemistry 2011; 50:3137-48. [PMID: 21384913 DOI: 10.1021/bi1020327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytochalasin B (CB) and forskolin (FSK) inhibit GLUT1-mediated sugar transport in red cells by binding at or close to the GLUT1 endofacial sugar binding site. Paradoxically, very low concentrations of each of these inhibitors produce a modest stimulation of sugar transport [ Cloherty, E. K., Levine, K. B., and Carruthers, A. ((2001)) The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry 40 ((51)) 15549-15561]. This result is consistent with the hypothesis that the glucose transporter contains multiple, interacting, endofacial binding sites for CB and FSK. The present study tests this hypothesis directly and, by screening a library of cytochalasin and forskolin analogues, asks what structural features of endofacial site ligands determine binding site affinity and cooperativity. Like CB, FSK competitively inhibits exchange 3-O-methylglucose transport (sugar uptake in cells containing intracellular sugar) but noncompetitively inhibits sugar uptake into cells lacking sugar at 4 °C. This refutes the hypothesis that FSK binds at GLUT1 endofacial and exofacial sugar binding sites. Some forskolin derivatives and cytochalasins inhibit equilibrium [(3)H]-CB binding to red cell membranes depleted of peripheral proteins at 4 °C. Others produce a moderate stimulation of [(3)H]-CB binding when introduced at low concentrations but inhibit binding as their concentration is increased. Yet other analogues modestly stimulate [(3)H]-CB binding at all inhibitor concentrations applied. These findings are explained by a carrier that presents at least two interacting endofacial binding sites for CB or FSK. We discuss this result within the context of models for GLUT1-mediated sugar transport and GLUT1 quaternary structure, and we evaluate the major determinants of ligand binding affinity and cooperativity.
Collapse
Affiliation(s)
- Trista Robichaud
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street Worcester, Massachusetts 01605, United States
| | | | | | | | | |
Collapse
|
7
|
Jones LN, Baldwin SA, Henderson PJF, Ashcroft AE. Defining topological features of membrane proteins by nanoelectrospray ionisation mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:276-284. [PMID: 20058234 DOI: 10.1002/rcm.4387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The D-galactose-H(+) symport protein, GalP, of Escherichia coli is the bacterial homologue of the human glucose transport protein, GLUT1. Here we demonstrate that mass spectrometry can be used to map modification by covalently bound reagents, and also to detect structural changes in the GalP protein that occur upon substrate binding. The small thiol-group-specific reagent N-ethylmaleimide (NEM) was used to modify the cysteine residues in GalP(His)(6) both alone and in the presence of D-glucose, a known substrate. Employing a mixture of proteolysis and thermal degradation methods, the three cysteine residues were found to undergo sequential reactions with NEM, with Cys374 being modified first, followed by Cys389 and finally Cys19, thus indicating their different accessibilities within the three-dimensional structure of the protein. Prior binding of the substrate D-glucose to the protein protected Cys19 and Cys374 against NEM modification, but not Cys389. Cys374 had been expected to be shielded by D-glucose binding while Cys389 had been expected to be unaffected, consistent with their proposed respective locations in the vicinity of, and distant from, the sugar binding site. However, the inaccessibility of Cys19 was unexpected and suggests a structural change in the protein promoted by D-glucose binding which changes the proximity of Cys19 with respect to the D-glucose-binding site.
Collapse
Affiliation(s)
- Lynsey N Jones
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | |
Collapse
|
8
|
Zheng H, Taraska J, Merz AJ, Gonen T. The prototypical H+/galactose symporter GalP assembles into functional trimers. J Mol Biol 2009; 396:593-601. [PMID: 20006622 DOI: 10.1016/j.jmb.2009.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 11/30/2009] [Accepted: 12/08/2009] [Indexed: 01/20/2023]
Abstract
Glucose is a primary source of energy for human cells. Glucose transporters form specialized membrane channels for the transport of sugars into and out of cells. Galactose permease (GalP) is the closest bacterial homolog of human facilitated glucose transporters. Here, we report the functional reconstitution and 2D crystallization of GalP. Single particle electron microscopy analysis of purified GalP shows that the protein assembles as an oligomer with three distinct densities. Reconstitution assays yield 2D GalP crystals that exhibit a hexagonal array having p3 symmetry. The projection structure of GalP at 18 A resolution shows that the protein is trimeric. Each monomer in the trimer forms its own channel, but an additional cavity (10 approximately 15 A in diameter) is apparent at the 3-fold axis of the oligomer. We show that the crystalline GalP is able to selectively bind substrate, suggesting that the trimeric form is biologically active.
Collapse
Affiliation(s)
- Hongjin Zheng
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
9
|
Appleyard AN, Herbert RB, Henderson PJ, Watts A, Spooner PJ. Selective NMR observation of inhibitor and sugar binding to the galactose-H(+) symport protein GalP, of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:55-64. [PMID: 11118517 DOI: 10.1016/s0304-4157(00)00017-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding of the transport inhibitor forskolin, synthetically labelled with (13)C, to the galactose-H(+) symport protein GalP, overexpressed in its native inner membranes from Escherichia coli, was studied using cross-polarization magic angle spinning (13)C NMR. (13)C-Labelled D-galactose and D-glucose were displaced from GalP with the singly labelled [7-OCO(13)CH(3)]forskolin and were not bound to any alternative site within the protein, demonstrating that any multiple sugar binding sites are not simultaneously accessible to these sugars and the inhibitor within GalP. The observation of singly (13)C-labelled forskolin was hampered by interference from natural abundance (13)C in the membranes and so the effectiveness of double-quantum filtration was assessed for the exclusive detection of (13)C spin pairs in sugar (D-[1,2-(13)C(2)]glucose) and inhibitor ([7-O(13)CO(13)CH(3)]forskolin) bound to the GalP protein. The solid state NMR methodology was not effective in creating double-quantum selection of ligand bound with membranes in the 'fluid' state (approx. 2 degrees C) but could be applied in a straightforward way to systems that were kept frozen. At -35 degrees C, double-quantum filtration detected unbound sugar that was incorporated into ice structure within the sample, and was not distinguished from protein-bound sugar. However, the method detected doubly labelled forskolin that is selectively bound only to the transport system under these conditions and provided very effective suppression of interference from natural abundance (13)C background. These results indicate that solid state NMR methods can be used to resolve selectively the interactions of more hydrophobic ligands in the binding sites of target proteins.
Collapse
Affiliation(s)
- A N Appleyard
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, UK
| | | | | | | | | |
Collapse
|
10
|
Abstract
2-O-Acetyl-D-glucose was synthesized in order to evaluate the influence of an acyl group on the binding with the glucose carrier protein (GluT); as its affinity neighbours that of glucose itself, the glucose-forskolin analogy appears to be coincidental and several explanations are proposed.
Collapse
Affiliation(s)
- M Abbadi
- Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité UMR CNRS 5616, Université de Grenoble, France
| | | |
Collapse
|
11
|
Walmsley AR, Barrett MP, Bringaud F, Gould GW. Sugar transporters from bacteria, parasites and mammals: structure-activity relationships. Trends Biochem Sci 1998; 23:476-81. [PMID: 9868370 DOI: 10.1016/s0968-0004(98)01326-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sugar transport across the plasma membrane is one of the most important transport processes. The cloning and expression of cDNAs from a superfamily of related sugar transporters that all adopt a 12-membrane-spanning-domain structure has opened new avenues of investigation, including presteady-state kinetic analysis. Structure-function analyses of mammalian and bacterial sugar transporters, and comparisons of these transporters with those of parasitic trypanosomatids, indicate that different environmental pressures have tailored the evolution of the various members of the sugar-transporter superfamily. Subtle distinctions in the function of these proteins can be related to particular amino acid residue substitutions.
Collapse
Affiliation(s)
- A R Walmsley
- Division of Infection and Immunity, University of Glasgow, UK
| | | | | | | |
Collapse
|
12
|
McDonald TP, Walmsley AR, Henderson PJ. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar. J Biol Chem 1997; 272:15189-99. [PMID: 9182541 DOI: 10.1074/jbc.272.24.15189] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The galactose-H+ symport protein (GalP) of Escherichia coli is very similar to the human glucose transport protein, GLUT1, and both contain a highly conserved Asn residue in predicted helix 11 that is different in a cytochalasin B-resistant member of this sugar transport family (XylE). The role of the Asn394 residue (which is predicted to be in putative trans-membrane alpha-helix 11) in the structure/activity relationship of the D-galactose-H+ symporter (GalP) was therefore assessed by measuring the interaction of sugar substrates and the inhibitory antibiotics, cytochalasin B, and forskolin with the wild-type and Asn394 --> Gln mutant proteins. Steady-state fluorescence quenching experiments show that the mutant protein binds cytochalasin B with a Kd 37-53-fold higher than the wild type. This low affinity binding was not detected with equilibrium binding or photolabeling experiments. In contrast, the mutant protein binds forskolin with a Kd similar to that of the wild type and is photolabeled by 3-125I-4-azido-phenethylamido-7-O-succinyl-desacetyl-forskolin. The mutant protein displays an increased amount of steady-state fluorescence quenching with the binding of forskolin, suggesting that the substitution of the Asn residue has altered the environment of a tryptophan, probably Trp395, in a conformationally active region of the protein. Time-resolved fluorescence measurements on the mutant protein provided association and dissociation rate constants (k2 and k-2), describing the initial interaction of cytochalasin B to the inward-facing binding site (Ti), that are decreased (9-fold) and increased (4.9-fold) compared with the wild type. This yielded a dissociation constant (K2) for cytochalasin B to the inward-facing binding site 44-fold higher than that of the wild type. The binding of forskolin gave values for k2 and k-2 3.9- and 3.6-fold lower, respectively, yielding a K2 value for Ti similar to that of the wild type. The low overall affinity (high Kd) of the mutant protein for cytochalasin B is due mainly to a disruption in binding to the Ti conformation. It is proposed that Asn394 forms either a direct binding interaction with cytochalasin B or is part of the immediate environment of the binding site and that Asn394 is in the immediate environment, but not part, of the forskolin binding site. The ability of the mutant protein to catalyze energized transport is only mildly impaired with 4.8- and 2.1-fold reduction in Vmax/Km values for D-galactose and D-glucose, respectively. In stark contrast, the overall Kd describing binding of D-galactose and D-glucose to the inward-facing conformation of the mutant and their subsequent translocation across the membrane is substantially increased (64-fold for D-galactose and 163.3-fold for D-glucose). These data indicate that Asn394 is associated with both the cytochalasin B and internal sugar binding sites. This conclusion is also supported by data showing that the sugar specificity of the mutant protein has been altered for D-xylose. This work powerfully illustrates how comparisons of the aligned amino acid sequences of homologous membrane proteins of unknown structure and characterization of their phenotypes can be used to map substrate and ligand binding sites.
Collapse
Affiliation(s)
- T P McDonald
- Department of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | |
Collapse
|
13
|
McDonald TP, Walmsley AR, Martin GE, Henderson PJ. The role of tryptophans 371 and 395 in the binding of antibiotics and the transport of sugars by the D-galactose-H+ symport protein (GalP) from Escherichia coli. J Biol Chem 1995; 270:30359-70. [PMID: 8530461 DOI: 10.1074/jbc.270.51.30359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The interactions between the D-galactose-H+ symporter (GalP) from Escherichia coli and the inhibitory antibiotics, cytochalasin B and forskolin, and the substrates, D-galactose and H+, have been investigated for the wild-type protein and the mutants Trp-371-->Phe and Trp-395-->Phe, so that the roles of these residues in the structure-activity relationship could be assessed. Neither mutation prevented photolabeling by either [4-3H]cytochalasin B or by 3-[125I]iodo-4-azidophenethyl-amido-7-O-succinyldesacetylforskolin ([125I]APS-forskolin). However, measurements of protein fluorescence show that both residues are in structural domains, the conformations of which are perturbed by the binding of cytochalasin B or forskolin. Moreover, both mutations cause a substantial decrease in the affinity of the inward-facing site of the GalP protein for cytochalasin B, 10- and 43-fold, respectively, but have little effect upon the affinity of this site for forskolin, 0.8- and 2.6-fold reductions, respectively. Both these mutations change the equilibrium between the putative outward- (T1) and inward-facing (T2) conformations, so that the inward-facing form is more favored. They also stabilize a different conformational state, "T3-antibiotic," in which the initial interactions between the protein and antibiotics are tightened. Overall, this has the effect of compensating for the reduction in affinity for cytochalasin B, so that the respective overall Kd values are 0.74- and 3.5-fold that of the wild type, while causing a slight increase, 1.5- and 3.2-fold, respectively, in affinity of the mutants for forskolin. The Trp-371-->Phe mutation causes a 15-fold reduction in the affinity of the inward-facing site for D-galactose, suggesting that this residue forms part of the sugar binding site. In contrast, the Trp-395-->Phe mutation has no effect upon the affinity of the inward-facing site for D-galactose. These effects may be related to the reduction in galactose-H+ symport activity only in the Trp-371-->Phe mutant, although it still effects active transport to the same extent as the Trp395-->Phe mutant. However, there is a 10-20-fold increase in the Km values for energized transport of D-galactose for both mutants.
Collapse
Affiliation(s)
- T P McDonald
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, United Kingdom
| | | | | | | |
Collapse
|