1
|
RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv 2017; 1:1699-1711. [PMID: 29296817 DOI: 10.1182/bloodadvances.2017005710] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/20/2017] [Indexed: 11/20/2022] Open
Abstract
RUNX1 is an essential master transcription factor in hematopoietic development and plays important roles in immune functions. Although the gene regulatory mechanism of RUNX1 has been characterized extensively, the epigenetic role of RUNX1 remains unclear. Here, we demonstrate that RUNX1 contributes DNA demethylation in a binding site-directed manner in human hematopoietic cells. Overexpression analysis of RUNX1 showed the RUNX1-binding site-directed DNA demethylation. The RUNX1-mediated DNA demethylation was also observed in DNA replication-arrested cells, suggesting an involvement of active demethylation mechanism. Coimmunoprecipitation in hematopoietic cells showed physical interactions between RUNX1 and DNA demethylation machinery enzymes TET2, TET3, TDG, and GADD45. Further chromatin immunoprecipitation sequencing revealed colocalization of RUNX1 and TET2 in the same genomic regions, indicating recruitment of DNA demethylation machinery by RUNX1. Finally, methylome analysis revealed significant overrepresentation of RUNX1-binding sites at demethylated regions during hematopoietic development. Collectively, the present data provide evidence that RUNX1 contributes site specificity of DNA demethylation by recruitment of TET and other demethylation-related enzymes to its binding sites in hematopoietic cells.
Collapse
|
2
|
Chen G, Masuda A, Konishi H, Ohkawara B, Ito M, Kinoshita M, Kiyama H, Matsuura T, Ohno K. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Sci Rep 2016; 6:25317. [PMID: 27126921 PMCID: PMC4850456 DOI: 10.1038/srep25317] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/15/2016] [Indexed: 12/11/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by abnormal expansion of CTG repeats in the 3′ untranslated region of the DMPK gene. Expanded CTG repeats are transcribed into RNA and make an aggregate with a splicing regulator, MBNL1, in the nucleus, which is called the nuclear foci. The nuclear foci sequestrates and downregulates availability of MBNL1. Symptomatic treatments are available for DM1, but no rational therapy is available. In this study, we found that a nonsteroidal anti-inflammatory drug (NSAID), phenylbutazone (PBZ), upregulated the expression of MBNL1 in C2C12 myoblasts as well as in the HSALR mouse model for DM1. In the DM1 mice model, PBZ ameliorated aberrant splicing of Clcn1, Nfix, and Rpn2. PBZ increased expression of skeletal muscle chloride channel, decreased abnormal central nuclei of muscle fibers, and improved wheel-running activity in HSALR mice. We found that the effect of PBZ was conferred by two distinct mechanisms. First, PBZ suppressed methylation of an enhancer region in Mbnl1 intron 1, and enhanced transcription of Mbnl1 mRNA. Second, PBZ attenuated binding of MBNL1 to abnormally expanded CUG repeats in cellulo and in vitro. Our studies suggest that PBZ is a potent therapeutic agent for DM1 that upregulates availability of MBNL1.
Collapse
Affiliation(s)
- Guiying Chen
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Konishi
- Division of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanobu Kinoshita
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiroshi Kiyama
- Division of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tohru Matsuura
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Neurology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Guan L, van der Heijden GW, Bortvin A, Greenberg MM. Intracellular detection of cytosine incorporation in genomic DNA by using 5-ethynyl-2'-deoxycytidine. Chembiochem 2011; 12:2184-90. [PMID: 21805552 DOI: 10.1002/cbic.201100353] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Indexed: 12/31/2022]
Abstract
5-Ethynyl-2'-deoxycytidine triphosphate (EdCTP) was synthesized as a probe to be used in conjunction with fluorescent labeling to facilitate the analysis of the in vivo dynamics of DNA-centered processes (DNA replication, repair and cytosine demethylation). Kinetic analysis showed that EdCTP is accepted as a substrate by Klenow exo(-) and DNA polymerase β. Incorporation of 5-ethynyl-2'-deoxycytidine (EdC) into DNA by these enzymes is, at most, modestly less efficient than native dC. EdC-containing DNA was visualized by using a click reaction with a fluorescent azide, following polymerase incorporation and T4 DNA ligase mediated ligation. Subsequent experiments in mouse male germ cells and zygotes demonstrated that EdC is a specific and reliable reporter of DNA replication, in vivo.
Collapse
Affiliation(s)
- Lirui Guan
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
4
|
Imamura T. Epigenetic setting for long-term expression of estrogen receptor α and androgen receptor in cells. Horm Behav 2011; 59:345-52. [PMID: 20619266 DOI: 10.1016/j.yhbeh.2010.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 12/15/2022]
Abstract
Epigenetic regulation of the nuclear estrogen and androgen receptors, ER and AR, constitutes the molecular basis for the long-lasting effects of sex steroids on gene expression in cells. The effects prevail at hundreds of gene loci in the proximity of estrogen- and androgen-responsive elements and many more such loci through intra- and even inter-chromosomal level regulation. Such a memory system should be active in a flexible manner during the early development of vertebrates, and later replaced to establish more stable marks on genomic DNA. In mammals, DNA methylation is utilized as a very stable mark for silencing of the ERα and AR isoform expression during cancer cell and normal brain development. The factors affecting the DNA methylation of the ERα and AR genes in cells include estrogen and androgen. Since testosterone induces brain masculinization through its aromatization to estradiol in a narrow time window of the perinatal stage in rodents, the autoregulation of estrogen receptors, especially the predominant form of ERα, at the level of DNA methylation to set up the "cell memory" affecting the sexually differentiated status of brain function has been attracting increasing attention. The alternative usage of the androgen-AR system for brain masculinization and estrogenic regulation of AR expression in some species imply that the DNA methylation pattern of the AR gene can be established by closely related but different systems for sex steroid-induced phenomena, including brain masculinization.
Collapse
Affiliation(s)
- Takuya Imamura
- Laboratory for Biodiversity, Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
5
|
Yue X, Fu J, Xue X, Gao H, Liu D, Zong Z, Wang W, Li H, Yuan Z. Detection of p16 promoter methylation in premature rats with chronic lung disease induced by hyperoxia. Pediatr Int 2010; 52:520-6. [PMID: 20113419 DOI: 10.1111/j.1442-200x.2010.03089.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of the present study was to investigate p16 promoter methylation in premature rats with chronic lung disease (CLD) induced by hyperoxia. METHODS Eighty Wistar rats were randomized into the hyperoxia group (fraction of inspired oxygen [FiO(2)] = 900 mL/L) or the control group (FiO(2) = 210 mL/L), 40 for each group. Semi-nested methylation-specific polymerase chain reaction (sn-MSP) was applied to detect p16 promoter hypermethylation in lung tissues. Additionally, p16 mRNA and protein expression was detected on reverse transcription-polymerase chain reaction (RT-PCR), western blot and the strept actividin-biotin complex method. RESULTS Extended exposure to hyperoxia led to increased methylation, and the methylation level reached a peak in the period of maximum pulmonary fibrosis in the hyperoxia group, while the methylation did not occur in the control group. The methylation rates on semi-nested PCR (sn-PCR) and nested-MSP were, respectively, 52.5% and 42.5% in the hyperoxia group. There was no statistically significant difference between the two methods. The p16 mRNA and protein expression was significantly higher in those with p16 promoter hypermethylation than those without. CONCLUSION Exposure to hyperoxia may induce p16 promoter hypermethylation in lung tissues in premature rats, and methylation risk increases as exposure extends. p16 promoter methylation induced by hyperoxia may be one of the mechanisms for low p16 mRNA and protein expression.
Collapse
Affiliation(s)
- Xiaohong Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rettino A, Rafanelli F, Genovese G, Goracci M, Cifarelli RA, Cittadini A, Sgambato A. Identification of Sp1 and GC-boxes as transcriptional regulators of mouse Dag1 gene promoter. Am J Physiol Cell Physiol 2009; 297:C1113-23. [PMID: 19657058 DOI: 10.1152/ajpcell.00189.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dystroglycan is a widely expressed adhesion complex that anchors cells to the basement membrane and is involved in embryonic development and differentiation. Dystroglycan expression is frequently reduced in human dystrophies and malignancies, and its molecular functions are not completely understood. Several posttranslational mechanisms have been identified that regulate dystroglycan expression and/or function, while little is known about how expression of the corresponding Dag1 gene is regulated. This study aimed to clone the Dag1 gene promoter and to characterize its regulatory elements. Analysis of the mouse Dag1 gene 5'-flanking region revealed a TATA and CAAT box-lacking promoter including a GC-rich region. Transfection studies with serially deleted promoter constructs allowed us to identify a minimal promoter region containing three Specificity protein 1 (Sp1) sites and an E-box. Sp1 binding was confirmed by chromatin immunoprecipitation assay, and Sp1 downregulation reduced dystroglycan expression in muscle cells. Treatment with 5-aza-2'-deoxycytidine and/or the histone deacetylase inhibitor trichostatin A increased Dag1 mRNA expression levels in myoblasts, and methylation decreased promoter activity in vitro. Furthermore, Dag1 gene promoter methylation was reduced while its expression increased during differentiation of C(2)C(12) myoblast cells in myotubes. In conclusion, for the first time we have characterized the activity of the mouse Dag1 gene promoter, confirming a complex regulation by Sp1 transcription factor, DNA methylation, and histone acetylation, which might be relevant for a better understanding of the physiopathology of the dystroglycan complex.
Collapse
Affiliation(s)
- Alessandro Rettino
- Centro di Ricerche Oncologiche Giovanni XXIII, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Apoptotic processes and DNA cytosine methylation in mouse embryos arrested at the 2-cell stage. ZYGOTE 2009; 17:269-79. [DOI: 10.1017/s0967199409005413] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe present study evaluates the role of apoptotic cell death and DNA methylation reprogramming in early developmental failures occurring in embryos at the 2-cell stage. Mouse 2-cell embryos were culturedin vitroand treated with chemicals that cause developmental arrest and apoptosis (α-amanitin, actinomycin D, TNF-α). After 24 h, 48 h and 72 h culture, embryos were analysed using cell-death assays (annexin V staining, TUNEL labelling and immunodetection of active caspase-3) and genome methylation assay (immunodetection of 5-methylcytosine). The ability of embryos at the 2-cell stage to undergo apoptotic processes was very low. In arrested embryos, the presence of all evaluated features of apoptosis was recorded only after 72 h culture and their incidence was sporadical. Interestingly, the most frequently observed apoptotic sign was nuclear condensation and the timing of its appearance preceded even the phosphatidylserine flip. Both normally developing and arrested embryos displayed reduction in DNA cytosine methylation. In arrested embryos, this process was independent of cellular cleavage, was more pronounced and finished in almost complete demethylation of the embryonic genome. The timing of the demethylation overlapped with the onset of major apoptotic events. Although observed apoptotic cells showed either demethylated or methylated DNA cytosine in their nuclei, at blastocyst stage the demethylated status appeared more frequently in them.
Collapse
|
8
|
Brunner AL, Johnson DS, Kim SW, Valouev A, Reddy TE, Neff NF, Anton E, Medina C, Nguyen L, Chiao E, Oyolu CB, Schroth GP, Absher DM, Baker JC, Myers RM. Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 2009; 19:1044-56. [PMID: 19273619 DOI: 10.1101/gr.088773.108] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To investigate the role of DNA methylation during human development, we developed Methyl-seq, a method that assays DNA methylation at more than 90,000 regions throughout the genome. Performing Methyl-seq on human embryonic stem cells (hESCs), their derivatives, and human tissues allowed us to identify several trends during hESC and in vivo liver differentiation. First, differentiation results in DNA methylation changes at a minimal number of assayed regions, both in vitro and in vivo (2%-11%). Second, in vitro hESC differentiation is characterized by both de novo methylation and demethylation, whereas in vivo fetal liver development is characterized predominantly by demethylation. Third, hESC differentiation is uniquely characterized by methylation changes specifically at H3K27me3-occupied regions, bivalent domains, and low density CpG promoters (LCPs), suggesting that these regions are more likely to be involved in transcriptional regulation during hESC differentiation. Although both H3K27me3-occupied domains and LCPs are also regions of high variability in DNA methylation state during human liver development, these regions become highly unmethylated, which is a distinct trend from that observed in hESCs. Taken together, our results indicate that hESC differentiation has a unique DNA methylation signature that may not be indicative of in vivo differentiation.
Collapse
Affiliation(s)
- Alayne L Brunner
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Figliola R, Busanello A, Vaccarello G, Maione R. Regulation of p57KIP2 during Muscle Differentiation: Role of Egr1, Sp1 and DNA Hypomethylation. J Mol Biol 2008; 380:265-77. [DOI: 10.1016/j.jmb.2008.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/29/2008] [Accepted: 05/02/2008] [Indexed: 11/15/2022]
|
10
|
Takagi H, Tajima S, Asano A. Overexpression of DNA Methyltransferase in Myoblast Cells Accelerates Myotube Formation. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0282e.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Sakamoto H, Kogo Y, Ohgane J, Hattori N, Yagi S, Tanaka S, Shiota K. Sequential changes in genome-wide DNA methylation status during adipocyte differentiation. Biochem Biophys Res Commun 2007; 366:360-6. [PMID: 18062916 DOI: 10.1016/j.bbrc.2007.11.137] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
DNA methylation is an epigenetic mark on the mammalian genome. There are numerous tissue-dependent and differentially methylated regions (T-DMRs) in the unique sequences distributed throughout the genome. To determine the epigenetic changes during adipocyte differentiation, we investigated the sequential changes in DNA methylation status of 3T3-L1 cells at the growing, confluent, postconfluent and mature adipocyte cell stages. Treatment of 3T3-L1 cells with 5-aza-2'-deoxycytidine inhibited differentiation in a stage-dependent manner, supporting the idea that formation of accurate DNA methylation profile, consisting of methylated and unmethylated T-DMRs, may be involved in differentiation. Analysis by methylation-sensitive quantitative real-time PCR of the 65 known T-DMRs which contain NotI sites detected 8 methylations that changed during differentiation, and the changes in the patterns of these methylations were diverse, confirming that the differentiation process involves epigenetic alteration at the T-DMRs. Intriguingly, the dynamics of the methylation change vary depending on the T-DMRs and differentiation stages. Restriction landmark genomic scanning detected 32 novel T-DMRs, demonstrating that differentiation of 3T3-L1 cells involves genome-wide epigenetic changes by temporal methylation/demethylation, in addition to maintenance of a static methylated/demethylated state, and both depend on differentiation stage.
Collapse
Affiliation(s)
- Hideki Sakamoto
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences/Veterinary Medical Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Latham T, Gilbert N, Ramsahoye B. DNA methylation in mouse embryonic stem cells and development. Cell Tissue Res 2007; 331:31-55. [PMID: 18060563 DOI: 10.1007/s00441-007-0537-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.
Collapse
Affiliation(s)
- Tom Latham
- Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
13
|
Abstract
RNA interference (RNAi) is an evolutionarily conserved mechanism that uses short antisense RNAs that are generated by 'dicing' dsRNA precursors to target corresponding mRNAs for cleavage. However, recent developments have revealed that there is also extensive involvement of RNAi-related processes in regulation at the genome level. dsRNA and proteins of the RNAi machinery can direct epigenetic alterations to homologous DNA sequences to induce transcriptional gene silencing or, in extreme cases, DNA elimination. Furthermore, in some organisms RNAi silences unpaired DNA regions during meiosis. These mechanisms facilitate the directed silencing of specific genomic regions.
Collapse
Affiliation(s)
- Marjori A Matzke
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, UZA2, Pharmazie Zentrum, Althanstrasse 14/2D-541, A-1090 Vienna, Austria.
| | | |
Collapse
|
14
|
Imamura T, Yamamoto S, Ohgane J, Hattori N, Tanaka S, Shiota K. Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 2004; 322:593-600. [PMID: 15325271 DOI: 10.1016/j.bbrc.2004.07.159] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 10/26/2022]
Abstract
The formation of DNA methylation patterns is one of the epigenetic events that underlie mammalian development. The Sphk1 CpG island is a target for tissue-dependent DNA methylation as well as a template for generating multiple subtypes. The number of mammalian non-coding RNA genes is rapidly expanding. In this study, we found endogenous antisense transcripts, Khps1 subtypes with different sizes (600-20,000nt). A subtype, Khps1a, was a 1290-bp, non-coding, 5'-capped and 3'-polyadenylated RNA that originated from the CpG island and overlapped with a tissue-dependent differentially methylated region (T-DMR) of Sphk1. Intriguingly, overexpression of two fragments of Khps1 caused demethylation of CG sites in the T-DMR. Furthermore, this RNA-directed demethylation was associated with DNA methylation at three CC(A/T)GG sites in the T-DMR. The link between the RNA-directed CG demethylation and non-CG methylation provides a novel mechanism of epigenetic regulation and potential tool for epigenetic manipulation of mammalian cells.
Collapse
Affiliation(s)
- Takuya Imamura
- Laboratory of Cellular Biochemistry, Veterinary Medical Science/Animal Resource Science, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Vairapandi M. Characterization of DNA demethylation in normal and cancerous cell lines and the regulatory role of cell cycle proteins in human DNA demethylase activity. J Cell Biochem 2004; 91:572-83. [PMID: 14755686 DOI: 10.1002/jcb.10749] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methylation/demethylation constitutes a major consequence in all biological processes involving transcription, differentiation, development, DNA repair, recombination, and chromosome organization. Our earlier studies established that demethylation of CpG rich sequence by human DNA demethylase activity (5-methylcytosine-DNA glycosylase (5MeC-DNA glycosylase)) resembles "base excision DNA repair activity" and creates single-strand breaks on DNA that is associated with proliferating cell nuclear antigen (PCNA). Here in this report, we have identified differential DNA demethylation targets (hemi-methylated vs. fully-methylated) in normal cell lines and cancerous cell lines, and a shortened G(0)/G(1) resting time in cancerous cell lines than the normal cell lines. We have identified that in normal HFL1 fibroblast cell line, DNA demethylase activity targets hemi-methylated CpG specific sites on DNA. This normal cell line DNA demethylase activity associates with PCNA immune complex that is inhibited by CDKI proteins p21(waf1)/Gadd45alpha and Gadd45beta. While in cancerous LnCap and BT20 cell lines DNA demethylase activity targets fully-methylated CpG specific sites on DNA. This cancer cell line DNA demethylase activity is not associated with PCNA immune complex and is not inhibited by CDKI proteins p21(waf1)/Gadd45alpha and Gadd45beta. We have also identified that the fully-methylated CpG specific DNA demethylase activity from cancerous cell lines to associate with p300/CBP protein. These significant observations of variable targets of DNA demethylation and alternate partner proteins for DNA demethylase activity in cancerous cell lines are discussed in terms of double-strand DNA breaks versus single-strand DNA breaks and their role in the exit of G(1)/G(2) cell cycle stages. Also, the inability of cell cycle regulatory proteins like PCNA, p21(waf1), and Gadd45 to control DNA demethylase activity in cancerous cell lines is discussed in terms of accelerated G(1)/G(2) cell cycle stage exit to facilitate unregulated cellular proliferation, loss of control of chromosomal organization, and the development of oncogenesis in cancerous cell lines.
Collapse
Affiliation(s)
- Mariappan Vairapandi
- The Fels Institute for Cancer Research and Molecular Biology, School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
16
|
Patkin EL. Epigenetic mechanisms for primary differentiation in mammalian embryos. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:81-129. [PMID: 12049211 DOI: 10.1016/s0074-7696(02)16004-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review examines main developments related to the interface between primary mammalian cell differentiation and various aspects of chromosomal structure changes, such as heterochromatin dynamics, DNA methylation, mitotic recombination, and inter- and intrachromosomal differentiation. In particular, X chromosome difference, imprinting, chromosomal banding, methylation pattern, single-strand DNA breaks, sister chromatid exchanges (SCEs), and sister chromatid asymmetry are considered. A hypothesis is put forward which implies the existence of an epigenetic asymmetry versus mirror symmetry of sister chromatids for any DNA sequences. Such epigenetic asymmetry appears as a result of asymmetry of sister chromatid organization and of SCE and is a necessary (not sufficient) condition for creating cell diversity. The sister chromatid asymmetry arises as a result of consecutive rounds of active and passive demethylation which leads after chromatin assembly events to chromatid difference. Single-strand DNA breaks that emerge during demethylation trigger reparation machinery, provend as sister chromatid exchanges, which are not epigenetically neutral in this case. Taken together, chromatid asymmetry and SCE lead to cell diversity regarding their future fate. Such cells are considered pluripotent stem cells which after interplay between a set of chromosomal domains and certain substances localized within the cytoplasmic compartments (and possibly cell interactions) can cause sister cells to express different gene chains. A model is suggested that may be useful for stem cell technology and studies of carcinogenesis.
Collapse
Affiliation(s)
- Eugene L Patkin
- Department of Molecular Genetics, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St Petersburg
| |
Collapse
|
17
|
Walter RB, Li HY, Intano GW, Kazianis S, Walter CA. Absence of global genomic cytosine methylation pattern erasure during medaka (Oryzias latipes) early embryo development. Comp Biochem Physiol B Biochem Mol Biol 2002; 133:597-607. [PMID: 12470822 DOI: 10.1016/s1096-4959(02)00144-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two techniques were used to analyze global genomic 5-methyl cytosine methylation at CCGG sites of medaka embryo DNA. DNA was labeled by incorporation of microinjected radiolabeled deoxynucleotide into one-cell embryos. After Hpa II or Msp I digestion the radiolabeled DNA was fractionated in agarose gels and the distribution of label quantified throughout each sample lane to detect differences in fragment distribution. Alternately isolated DNA was digested with Hpa II or Msp I and the resulting generated termini end-labeled. The end-labeled digestion products were then analyzed for fragment distribution after gel fractionation. These techniques proved to be extremely sensitive, allowing comparison of genomic DNA methylation values from as few as 640 fish cells. The data suggest that in medaka embryos the vast majority (>90%) of genomic DNA is methylated at CCGG sites. Furthermore, these data support the conclusion that the extent of methylation at these sites does not change or changes very little during embryogenesis (from 16 cells to the hatchling). These data argue against active demethylation, or loss of methylation patterns by dilution, during the developmental stages between the one cell zygote and gastrulation. From a comparative viewpoint, these data may indicate that mammals and fishes methylate and demethylate their genomes in very different manners during development.
Collapse
Affiliation(s)
- Ronald B Walter
- Department of Chemistry and Biochemistry, Southwest Texas State University, 419 Centennial Hall, 601 University Drive, San Marcos, TX 78666-4616, USA.
| | | | | | | | | |
Collapse
|
18
|
Jost JP, Thiry S, Siegmann M. Estradiol receptor potentiates, in vitro, the activity of 5-methylcytosine DNA glycosylase. FEBS Lett 2002; 527:63-6. [PMID: 12220634 DOI: 10.1016/s0014-5793(02)03166-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
At a concentration of 5 x 10(-9) M of hemi-methylated DNA (one order of magnitude below the K(m)), MCF-7 (a human breast carcinoma cell line) nuclear extracts potentiate the activity of 5-methylcytosine DNA glycosylase (5-MCDG, alias G/T mismatch DNA glycosylase). Depending on the ratio between MCF-7 nuclear extracts and 5-MCDG, there is an up to 10-fold increase in 5-MCDG activity. The potentiation of 5-MCDG by MCF-7 nuclear extracts requires an estradiol response element adjacent to the hemi-methylated site. Depletion of the estradiol receptor from MCF-7 nuclear extracts with specific antibodies abolishes the potentiation of 5-MCDG activity. The estradiol receptor present in MCF-7 nuclear extracts can be precipitated with antibodies directed against 5-MCDG. Reciprocally, antibodies directed against the estradiol receptor precipitate 5-MCDG. The results indicate the formation of a complex between the estradiol receptor and 5-MCDG.
Collapse
Affiliation(s)
- Jean-Pierre Jost
- Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | | | |
Collapse
|
19
|
Zhu B, Benjamin D, Zheng Y, Angliker H, Thiry S, Siegmann M, Jost JP. Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proc Natl Acad Sci U S A 2001; 98:5031-6. [PMID: 11296268 PMCID: PMC33158 DOI: 10.1073/pnas.091097298] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have shown that the DNA demethylation complex isolated from chicken embryos has a G(.)T mismatch DNA glycosylase that also possesses 5-methylcytosine DNA glycosylase (5-MCDG) activity. Herein we show that human embryonic kidney cells stably transfected with 5-MCDG cDNA linked to a cytomegalovirus promoter overexpress 5-MCDG. A 15- to 20-fold overexpression of 5-MCDG results in the specific demethylation of a stably integrated ecdysone-retinoic acid responsive enhancer-promoter linked to a beta-galactosidase reporter gene. Demethylation occurs in the absence of the ligand ponasterone A (an analogue of ecdysone). The state of methylation of the transgene was investigated by Southern blot analysis and by the bisulfite genomic sequencing reaction. Demethylation occurs downstream of the hormone response elements. No genome-wide demethylation was observed. The expression of an inactive mutant of 5-MCDG or the empty vector does not elicit any demethylation of the promoter-enhancer of the reporter gene. An increase in 5-MCDG activity does not influence the activity of DNA methyltransferase(s) when tested in vitro with a hemimethylated substrate. There is no change in the transgene copy number during selection of the clones with antibiotics. Immunoprecipitation combined with Western blot analysis showed that an antibody directed against 5-MCDG precipitates a complex containing the retinoid X receptor alpha. The association between retinoid receptor and 5-MCDG is not ligand dependent. These results suggest that a complex of the hormone receptor with 5-MCDG may target demethylation of the transgene in this system.
Collapse
Affiliation(s)
- B Zhu
- Friedrich Miescher-Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Schwarz S, Bourgeois C, Soussaline F, Homsy C, Podestà A, Jost JP. A CpG-rich RNA and an RNA helicase tightly associated with the DNA demethylation complex are present mainly in dividing chick embryo cells. Eur J Cell Biol 2000; 79:488-94. [PMID: 10961448 DOI: 10.1078/0171-9335-00070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the developing chicken embryo, active DNA demethylation requires both RNA and proteins (Nucleic Acids Res. 25, 2375-2380, 1997; ibid. 25, 4545-4550, 1997, FEBS Lett. 449, 251-254, 1999a). In vitro assays indicate that in the 5- and 12-day-old embryos the highest specific activity of 5-methylcytosine DNA glycosylase is found in the brain, the eyes and the skin. In situ hybridization with antisense CpG-rich RNA tightly associated to the DNA demethylation complex shows a restricted expression pattern only in proliferating tissues such as the neuroepithelia of the brain in 5-day-old embryos. The RNA is absent in differentiated tissues like the skeletal and heart muscle, liver and the crystallin-producing cells in the lens. The CpG-rich RNA is transcribed in a developmental stage-specific rather than in a cell-specific manner. In contrast transcripts of DNA methyltransferase are found in dividing and quiescent cells. In situ hybridization with a probe of a RNA helicase which is also associated with the DNA demethylation complex shows a very similar localization in mitotically active tissues as the CpG-rich RNA. The content of 5-methylcytosine in individual cells was determined with a specific monoclonal antibody and cytometric analysis on tissue sections. The results indicate that proliferating cells have on the average 15% more methylated cytosines than non-dividing cells. This represents roughly 3x10(6) more methylation sites per haploid genome.
Collapse
Affiliation(s)
- S Schwarz
- Friedrich-Miescher-Institut, Basel/Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Zhu B, Zheng Y, Hess D, Angliker H, Schwarz S, Siegmann M, Thiry S, Jost JP. 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T mismatch DNA glycosylase associated with the chicken embryo DNA demethylation complex. Proc Natl Acad Sci U S A 2000; 97:5135-9. [PMID: 10779566 PMCID: PMC25794 DOI: 10.1073/pnas.100107597] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1999] [Accepted: 03/10/2000] [Indexed: 11/18/2022] Open
Abstract
We previously have shown that DNA demethylation by chicken embryo 5-methylcytosine DNA glycosylase (5-MCDG) needs both RNA and proteins. One of these proteins is a RNA helicase. Further peptides were sequenced, and three of them are identical to the mammalian G/T mismatch DNA glycosylase. A 3,233-bp cDNA coding for the chicken homologue of human G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (408 aa) shows 80% identity with the human G/T mismatch DNA glycosylase, and both the C and N-terminal parts have about 50% identity. As for the highly purified chicken embryo DNA demethylation complex the recombinant protein expressed in Escherichia coli has both G/T mismatch and 5-MCDG activities. The recombinant protein has the same substrate specificity as the chicken embryo 5-MCDG where hemimethylated DNA is a better substrate than symmetrically methylated CpGs. The activity ratio of G/T mismatch and 5-MCDG is about 30:1 for the recombinant protein expressed in E. coli and 3:1 for the purified enzyme from chicken embryos. The incubation of a recombinant CpG-rich RNA isolated from the purified DNA demethylation complex with the recombinant enzyme strongly inhibits G/T mismatch glycosylase while slightly stimulating the activity of 5-MCDG. Deletion mutations indicate that G/T mismatch and 5-MCDG activities share the same areas of the N- and C-terminal parts of the protein. In reconstitution experiments RNA helicase in the presence of recombinant RNA and ATP potentiates the activity of 5-MCDG.
Collapse
Affiliation(s)
- B Zhu
- Friedrich Miescher-Institut, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Albanesi T, Polani S, Cozzi R, Perticone P. DNA strand methylation and sister chromatid exchanges in mammalian cells in vitro. Mutat Res 1999; 429:239-48. [PMID: 10526208 DOI: 10.1016/s0027-5107(99)00112-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Among other targets, DNA demethylating agents are known to affect the sister chromatid exchange (SCE) frequency in mammalian cells in vitro. The SCE increase appears to be maintained for many (10-16) cell cycles after the end of the pulse in a given cell population, unlike SCEs induced by DNA damaging agents. Yet, epigenetic changes (such as demethylation) would not be expected to affect SCE at all. In the present report we challenge the working hypothesis of a relation between SCEs and demethylation by comparing SCE induction during different rounds of replication when the parental strands were normally methylated or demethylated. Azacytidine (AZA), ethionine (ETH), mitomycin-C (MMC), UV-irradiation (UV) and hydrogen peroxide (H(2)O(2)) were tested for SCE induction in a Chinese hamster ovary cell line after a single pulse, one or two cell cycles before fixation. Whereas MMC, UV and H(2)O(2) induce SCE in both protocols, AZA and ETH show an effect on SCEs only if administered two cycles before fixation. Because two cell cycles are needed in order to achieve demethylation of the parental DNA strand, the data reported here support our working hypothesis that demethylation in the parental DNA strand, at the level of the replication fork (i.e., the region where SCEs are formed), is responsible for an increase in mistaken ligations of processed damage, eventually yielding an increase in SCEs.
Collapse
Affiliation(s)
- T Albanesi
- Centro di Genetica Evoluzionistica del CNR, c/o Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, 00185, Rome, Italy
| | | | | | | |
Collapse
|
23
|
Jost JP, Schwarz S, Hess D, Angliker H, Fuller-Pace FV, Stahl H, Thiry S, Siegmann M. A chicken embryo protein related to the mammalian DEAD box protein p68 is tightly associated with the highly purified protein-RNA complex of 5-MeC-DNA glycosylase. Nucleic Acids Res 1999; 27:3245-52. [PMID: 10454630 PMCID: PMC148556 DOI: 10.1093/nar/27.16.3245] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have shown previously that DNA demethylation by chick embryo 5-methylcytosine (5-MeC)-DNA glycosylase needs both protein and RNA. Amino acid sequences of nine peptides derived from a highly purified 5-MeC-DNA glycosylase complex were identified by Nanoelectrospray ionisation mass spectrometry to be identical to the mammalian nuclear DEAD box protein p68 RNA helicase. Antibodies directed against human p68 helicase cross-reacted with the purified 5-MeC-DNA glycosylase complex and immunoprecipitated the glycosylase activity. A 2690 bp cDNA coding for the chicken homologue of mammalian p68 was isolated and sequenced. Its derived amino acid sequence is almost identical to the human p68 DEAD box protein up to amino acid position 473 (from a total of 595). This sequence contains all the essential conserved motifs from the DEAD box proteins which are the ATPase, RNA unwinding and RNA binding motifs. The rest of the 122 amino acids in the C-terminal region rather diverge from the human p68 RNA helicase sequence. The recombinant chicken DEAD box protein expressed in Escherichia coli cross-reacts with the same p68 antibodies as the purified chicken embryo 5-MeC-DNA glycosylase complex. The recombinant protein has an RNA-dependent ATPase and an ATP-dependent helicase activity. However, in the presence or absence of RNA the recombinant protein had no 5-MeC-DNA glycosylase activity. In situ hybridisation of 5 day-old chicken embryos with antisense probes of the chicken DEAD box protein shows a high abundance of its transcripts in differentiating embryonic tissues.
Collapse
Affiliation(s)
- J P Jost
- Friedrich Miescher-Institute, PO Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Deng J, Szyf M. Downregulation of DNA (cytosine-5-)methyltransferase is a late event in NGF-induced PC12 cell differentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:23-31. [PMID: 10407183 DOI: 10.1016/s0169-328x(99)00147-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA methylation patterns are a critical component of the epigenetic machinery that controls the expression of genetic programs in vertebrates. DNA methyltransferase gene (dnmt1) encodes the enzyme catalyzing the methylation of DNA during replication. We tested the hypothesis that the expression of dnmt1 is regulated with the developmental state of neuronal cells. We show that DNA methyltransferase (Dnmt1) activity is sharply reduced 4 days after induction of differentiation of PC12 cells with NGF. Similarly, the adult brain expresses reduced levels of Dnmt1 activity. We propose that the level of Dnmt1 is downregulated to adjust the activity of the DNA methyltransferase to a different role in mature post-mitotic neurons. Both the abundance of dnmt1 mRNA as well as the Dnmt1 polypeptide are downregulated. Downregulation of dnmt1 parallels other indicators of withdrawal from the cell cycle such as induction of p21, and downregulation of the S phase maker PCNA (proliferating cell nuclear antigen). The temporal pattern of downregulation of dnmt1 in nerve growth factor (NGF)-induced PC12 cells is different from myotube differentiation where downregulation of DNA methyltransferase and demethylation is an early event and was proposed to play a causal role in differentiation. We propose that NGF differentiation of PC12 cells represents a different paradigm of involvement of DNA methylation in terminal differentiation.
Collapse
Affiliation(s)
- J Deng
- Department of Pharmacology and Therapeutics, McGill University, 3655 Drummond Street, Montreal, PQ, Canada
| | | |
Collapse
|
25
|
Jost JP, Siegmann M, Thiry S, Jost YC, Benjamin D, Schwarz S. A re-investigation of the ribonuclease sensitivity of a DNA demethylation reaction in chicken embryo and G8 mouse myoblasts. FEBS Lett 1999; 449:251-4. [PMID: 10338142 DOI: 10.1016/s0014-5793(99)00454-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently published results (Nucleic Acids Res. 26, 5573-5580, 1998) suggest that the ribonuclease sensitivity of the DNA demethylation reaction may be an experimental artifact due to the possible tight binding of the nucleases to the methylated DNA substrate. Using an improved protocol we show for two different systems that demethylation of hemimethylated DNA is indeed sensitive to micrococcal nuclease, requires RNA and is not an experimental artifact. The purified 5-MeC-DNA glycosylase from chicken embryos and G8 mouse myoblasts was first incubated for 5 min at 37 degrees C with micrococcal nuclease in the presence of Ca2+ in the absence of the DNA substrate. Upon blocking the nuclease activity by the addition of 25 mM EGTA, the DNA demethylation reaction was initiated by adding the labeled hemimethylated DNA substrate to the reaction mixture. Under these conditions the DNA demethylation reaction was abolished. In parallel controls, where the purified 5-MeC-DNA glycosylase was pre-incubated at 37 degrees C with the nuclease, Ca2+ and EGTA or with the nuclease and EGTA, RNA was not degraded and no inhibition of the demethylation reaction was obtained. As has already been shown for chicken embryos, the loss of 5-MeC-DNA glycosylase activity from G8 myoblasts following nuclease treatment can also be restored by the addition of synthetic RNA complementary to the methylated strand of the substrate DNA. No reactivation of 5-MeC-DNA glycosylase is obtained by complementation with a random RNA sequence, the RNA sequence complementary to the non-methylated strand or DNA, thus ruling out a non-specific competition of the RNA for the binding of the nuclease to the labeled DNA substrate.
Collapse
Affiliation(s)
- J P Jost
- Friedrich-Miescher-Institut, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
26
|
Kimura H, Takeda T, Tanaka S, Ogawa T, Shiota K. Expression of rat DNA (cytosine-5) methyltransferase (DNA MTase) in rodent trophoblast giant cells: molecular cloning and characterization of rat DNA MTase. Biochem Biophys Res Commun 1998; 253:495-501. [PMID: 9878564 DOI: 10.1006/bbrc.1998.9802] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylation of genomic DNA is involved in the basic methanism of gene inactivation, chromatin organization, X chromosome inactivation and genomic imprinting. A pattern of DNA methylation is maintained in mitotic cells by DNA (cytosine-5) methytransferase (DNA MTase). The DNA MTase has been shown to be also expressed in postmitotic cells such as neurons. In the present report, as an approch to analyzing mechanisms underlying regulation of DNA MTase expression, we first isolated rat DNA MTase cDNA. The isolated cDNA encoded a protein of 1,622 amino acid residues showing 88.3% and 64.2% of homology with mouse and human DNA MTase, respectively. Northern blot analysis showed that DNA MTase mRNA was highly expressed in placenta during mid- to late- pregnancy. We then analyzed the expression of DNA MTase in Rcho-1 cells, a rat choriocarcinoma-derived cell line, which cease cell division but keep replicating genomic DNA when differentiated in vitro. We found that the expression of DNA MTase protein was decreased in terminally differentiated Rcho-1 cells whereas DNA MTase mRNA was consistently expressed. This result suggested posttranscriptional regulation of DNA MTase activity in Rcho-1 cells. The Rcho-1 cells would be a valuable model for studying the regulation of gene expression and function of DNA MTase in postmitotic, differentiated cells.
Collapse
Affiliation(s)
- H Kimura
- Animal Resource Science/Veterinary Medical Science, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Abstract
The regulation of eukaryotic gene expression is a complicated process involving the interaction of a large number of transacting factors with specific cis-regulatory elements. DNA methylation plays a role in this scheme by acting in cis to modulate protein-DNA interactions. Several lines of evidence indicate that methylation serves to silence transcription, mainly through indirect mechanisms involving the assembly of repressive nucleoprotein complexes. DNA demethylation is mostly an active enzymatic process, controlled by cis regulatory elements which provide binding sites for trans demethylation factors. In the immune system DNA methylation plays multiple roles, such as regulating both gene expression and gene rearrangement
Collapse
Affiliation(s)
- Y Bergman
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
28
|
Ludwig DL, Chen F, Peterson SR, Nussenzweig A, Li GC, Chen DJ. Ku80 gene expression is Sp1-dependent and sensitive to CpG methylation within a novel cis element. Gene 1997; 199:181-94. [PMID: 9358055 DOI: 10.1016/s0378-1119(97)00366-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Ku70/80 complex, known as Ku, constitutes the DNA end binding component of the DNA-dependent protein kinase (DNA-PK). We have characterized the promoter region of the mouse and human Ku80 genes to delineate transcriptional elements necessary for basal gene expression and proliferation-dependent regulation. Consensus Sp1 recognition elements were identified in both promoters, and were determined to be essential for basal expression. We further identified a near-perfect palindrome of 21 base pairs located immediately 5' to one Sp1 element. This sequence was present once within the mouse Ku80 promoter and seven times, in a head-to-tail tandem array, within the human Ku80 promoter. This sequence possessed homology with a methylation-sensitive promoter element, Enh2, present in the LTR of mouse intractisternal A-particles. Promoter deletion studies and expression analysis of in-vitro methylated reporter gene constructs provided strong evidence that, in vivo, this repeat sequence regulates Ku80 gene expression in cis, through a mechanism involving CpG methylation. Evidence is also presented, suggesting that Ku is directly involved in this regulatory process.
Collapse
Affiliation(s)
- D L Ludwig
- Life Sciences Division, Los Alamos National Laboratory, NM 87545, USA
| | | | | | | | | | | |
Collapse
|
29
|
Frémont M, Siegmann M, Gaulis S, Matthies R, Hess D, Jost JP. Demethylation of DNA by purified chick embryo 5-methylcytosine-DNA glycosylase requires both protein and RNA. Nucleic Acids Res 1997; 25:2375-80. [PMID: 9171088 PMCID: PMC146753 DOI: 10.1093/nar/25.12.2375] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have previously purified and characterized a 5-methylcytosine (5-MeC)-DNA glycosylase from 12 day old chick embryos [Jost,J.P. et al. (1995) J. Biol. Chem. 270, 9734-9739]. The activity of the purified enzyme is abolished upon treatment with proteinase K and ribonuclease A. RNA copurifies with 5-MeC-DNA glycosylase activity throughout all chromatographic steps and preparative gel electrophoresis. RNA with a length of approximately 300-500 nucleotides was isolated from the gel purified enzyme. Upon extensive treatment with proteinase K, the gel eluted and labeled RNA did not show any significant change in molecular mass. The purified RNA incubated alone or in the presence of Mg2+and deoxyribonucleotide phosphates had no 5-MeC-DNA glycosylase or demethylating activities. However, activity of 5-MeC-DNA glycosylase could be restored when the purified RNA was incubated with the inactive protein, free of RNA.
Collapse
Affiliation(s)
- M Frémont
- Friedrich Miescher Institute, PO Box 2543, CH-4002 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cancer is often viewed as a genetic process in which the developing cancer cell acquires successive mutational lesions that each provide the cell with a growth or survival advantage. The focus on genetic alterations in cancer research has perhaps led to an underestimation of the contribution by epigenetics. Epigenetic events are heritable alterations in gene function that are mediated by factors other than changes in primary DNA sequence; 5-methylcytosine DNA methylation is a good example. This article reviews current insights into the contribution of DNA methylation to mutational and epigenetic mechanisms of oncogenesis.
Collapse
Affiliation(s)
- P W Laird
- University of Southern California School of Medicine, Dept of Surgery, Los Angeles, USA.
| |
Collapse
|
31
|
Jost JP, Bruhat A. The formation of DNA methylation patterns and the silencing of genes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:217-48. [PMID: 9175435 DOI: 10.1016/s0079-6603(08)60282-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J P Jost
- Friedrich Miescher Institute, Basel, Switzerland
| | | |
Collapse
|
32
|
Abstract
The past few years have seen a wider acceptance of a role for DNA methylation in cancer. This can be attributed to three developments. First, the documentation of the over-representation of mutations at CpG dinucleotides has convincingly implicated DNA methylation in the generation of oncogenic point mutations. The second important advance has been the demonstration of epigenetic silencing of tumor suppressor genes by DNA methylation. The third development has been the utilization of experimental methods to manipulate DNA methylation levels. These studies demonstrate that DNA methylation changes in cancer cells are not mere by-products of malignant transformation, but can play an instrumental role in the cancer process. It seems clear that DNA methylation plays a variety of roles in different cancer types and probably at different stages of oncogenesis. DNA methylation is intricately involved in a wide diversity of cellular processes. Likewise, it appears to exert its influence on the cancer process through a diverse array of mechanisms. It is our task not only to identify these mechanisms, but to determine their relative importance for each stage and type of cancer. Our hope then will be to translate that knowledge into clinical applications.
Collapse
Affiliation(s)
- P W Laird
- Department of Surgery, University of Southern California, School of Medicine/Norris Comprehensive Cancer Center, Los Angeles 90033, USA.
| | | |
Collapse
|
33
|
Abstract
The modification of DNA by cytosine methylation is crucial for normal development. DNA methylation patterns are distinctive between tissues and are maintained with high fidelity during cell division. DNA methylation probably exerts its effects through alterations in chromatin structure, with a resultant effect on genetic transcription. 5-methylcytosine is also prone to spontaneous hydrolytic deamination to thymine. Whilst most G:T mismatches so produced are repaired, failure of mismatch repair leads to established mutation. Indeed, mutations that are the result of 5-methylcytosine transitions account for a disproportionate number of genetic mutations described in malignant and non-malignant disease. There is also evidence for substantial deregulation of DNA methylation in malignancy. Whether this deregulation is crucial for the transformation process, or simply an epiphenomenon associated with it, is still not established.
Collapse
Affiliation(s)
- B H Ramsahoye
- Department of Haematology, University of Wales College of Medicine, Health Park, Cardiff, UK
| | | | | |
Collapse
|
34
|
Liu Y, Sun L, Jost JP. In differentiating mouse myoblasts DNA methyltransferase is posttranscriptionally and posttranslationally regulated. Nucleic Acids Res 1996; 24:2718-22. [PMID: 8759002 PMCID: PMC145988 DOI: 10.1093/nar/24.14.2718] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Upon the onset of mouse myoblast differentiation there is a rapid drop in DNA methyltransferase activity followed by a genome wide demethylation [Jost and Jost (1994) J. Biol. Chem. 269, 10040-10043]. Here we show by using specific antibodies directed against DNA methyltransferase that upon differentiation there was a rapid drop in nuclear DNA methyltransferase whilst the internal control histone H1 remained constant. The loss of nuclear methyltransferase was not due to a translocation of the enzyme from the nucleus to the cytoplasm where there was an increase in creatine phosphokinase protein. In vitro run on experiments carried out with growing and differentiating myoblast nuclei showed no difference in the rate of DNA methyltransferase mRNA synthesis. As measured by Northern blot hybridization the relative half life of DNA methyltransferase mRNA in growing and differentiating cells in the presence of Actinomycin D was 5 h and 1 h 30 min respectively, whereas in the same cells the half life of histone H4 mRNA was in both cases 80 min. As measured by a combination of pulse chase experiments with labeled leucine and immunoprecipitation, the relative half-life of DNA methyltransferase in growing and differentiating cells was approximately 18 h and 4 h 30 min respectively.
Collapse
Affiliation(s)
- Y Liu
- Friedrich Miescher Institut, Basel, Switzerland
| | | | | |
Collapse
|
35
|
Chu G, Mayne L. Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy: do the genes explain the diseases? Trends Genet 1996; 12:187-92. [PMID: 8984734 DOI: 10.1016/0168-9525(96)10021-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy are three distinct human syndromes associated with sensitivity to ultraviolet radiation. We review evidence that these syndromes overlap with each other and arise from mutations in genes involved in nucleotide-excision repair and RNA transcription. Attempts have been made to explain the syndromes in terms of defects in repair and transcription. These two biochemical pathways do not easily account for all the features of the syndromes. Therefore, we propose a third pathway, in which the syndromes are due, in part, to defects in a demethylation mechanism involving the excision of methylated cytosine. Perturbation of demethylation could affect the developmentally regulated expression of some genes.
Collapse
Affiliation(s)
- G Chu
- Department of Medicine, Stanford University Medical Center, CA 94305, USA.
| | | |
Collapse
|
36
|
Oderwald H, Hughes MJ, Jost JP. Non-histone protein 1 (NHP1) is a member of the Ku protein family which is upregulated in differentiating mouse myoblasts and human promyelocytes. FEBS Lett 1996; 382:313-8. [PMID: 8605992 DOI: 10.1016/0014-5793(96)00189-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously purified and characterized a ubiquitous non-histone protein (NHP1) which has a high affinity (Kd 10(-11) M) for different avian vitellogenin gene sequences containing CpGs (Hughes et al. (1989) Biochemistry 28, 9137-9142; Hughes and Jost (1989) Nucleic Acids Res. 17, 8511-8520). Here we show by microsequencing that the peptides derived from the purified p75 and p85 subunits of NHP1 from HeLa cells have between 64 and 100% identity with the human Ku autoantigen. During the differentiation of human HL-60 promyelocytes there is an increase in the amount of p85 subunit protein whereas the level of the p75 subunit is unchanged. In differentiating mouse G8 myoblasts there is, however, an upregulation of both the p75 and p85 subunits and of the p85 mRNA. An inhibition of mouse myoblast differentiation by either cAMP, 3-aminobenzamide or sodium butyrate abolishes the upregulation of the p85 subunit. In G8 myoblasts chemical, or physical stress by UV light or X-rays does not upregulate the level of the p85 subunit. The possible involvement of NHP1 in the active demethylation of bifilarly methylated DNA will be discussed.
Collapse
Affiliation(s)
- H Oderwald
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | |
Collapse
|
37
|
Abstract
DNA methylation is now recognized as an important mechanism regulating different functions of the genome; gene expression, replication, and cancer. Different factors control the formation and maintenance of DNA methylation patterns. The level of activity of DNA methyltransferase (MeTase) is one factor. Recent data suggest that some oncogenic pathways can induce DNA MeTase expression, that DNA MeTase activity is elevated in cancer, and that inhibition of DNA MeTase can reverse the transformed state. What are the pharmacological consequences of our current understanding of DNA methylation patterns formation? This review will discuss the possibility that DNA MeTase inhibitors can serve as important pharmacological and therapeutic tools in cancer and other genetic diseases.
Collapse
Affiliation(s)
- M Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
38
|
Takagi H, Tajima S, Asano A. Overexpression of DNA methyltransferase in myoblast cells accelerates myotube formation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:282-91. [PMID: 7635139 DOI: 10.1111/j.1432-1033.1995.tb20698.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We overexpressed mouse DNA methyltransferase in murine C2C12 myoblast cells and tested the isolated clones for their ability to differentiate. Significant numbers of the clones showed distinct myotubes 24 h after the isolated transformants had been induced to differentiate, whereas the parent C2C12 cells did not form myotubes at this time point. Transfection of the vacant vector or the plasmid containing the reverse-oriented DNA methyltransferase cDNA did not provide significant numbers of transformants with the accelerated differentiation phenotype, suggesting that the effect is caused by the expression of DNA methyltransferase. The expressions of skeletal muscle myosin and creatine kinase in clones that showed the accelerated differentiation-phenotype were also induced about 24 h earlier and at higher levels relative to the parent C2C12 or the control cells, indicating that the entire process of myogenesis had been accelerated. All the methyltransferase-transfected clones, regardless of their phenotypes, demonstrated about threefold higher DNA methyltransferase activity and higher methylation levels than those of the clones transfected with vector alone or the reverse-oriented plasmid. At the early stage of transfection of the sense-oriented plasmid, high de novo methylation activities were detected. We consider it likely that this high de novo methylation activity is the reason for the high methylation levels and the accelerated myotube formation of the clones transfected with the sense-oriented plasmid. In some transformants which showed the accelerated differentiation phenotype, MyoD1 was already fully expressed under the growth conditions while, in control cells, MyoD1 was expressed at low levels. This elevated level of MyoD1 transcription could account for the accelerated myotube formation observed in the transformants. The methylation state of the HpaII sites in exon 1 through exon 2 of the MyoD1 gene and the expression of the MyoD1 transcript are positively correlated.
Collapse
Affiliation(s)
- H Takagi
- Institute for Protein Research, Osaka University, Japan
| | | | | |
Collapse
|
39
|
Jost JP, Jost YC. Mechanism of active DNA demethylation during embryonic development and cellular differentiation in vertebrates. Gene X 1995; 157:265-6. [PMID: 7607505 DOI: 10.1016/0378-1119(95)00036-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Incubation of hemimethylated and labelled oligodeoxynucleotides with nuclear extracts from differentiating chicken embryos and mouse myoblasts resulted in the replacement of m5C by C. One of the enzymes involved is m5CpG endonuclease. It cleaves only m5CpG and not, m5CpT, m5CpA, m5CpC or m6ApT. The enzyme is not sequence specific and catalyses the reaction in the presence of high concentrations of EDTA or EGTA.
Collapse
Affiliation(s)
- J P Jost
- Friedrich Miescher Institut, Basel, Switzerland
| | | |
Collapse
|
40
|
Jost JP, Siegmann M, Sun L, Leung R. Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J Biol Chem 1995; 270:9734-9. [PMID: 7730351 DOI: 10.1074/jbc.270.17.9734] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have previously shown that in developing chicken embryos and differentiating mouse myoblasts, the demethylation of 5-metCpGs occurs through the replacement of 5-methylcytosine by cytosine (Jost, J. P. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 4685-4688; Jost, J. P. & Jost, Y.C. (1994) J. Biol. Chem. 269, 10040-10043). We have now purified over 30,000-fold a 5-methylcytosine-DNA glycosylase from 12-day-old chicken embryos. The enzyme copurifies with a mismatch-specific thymine-DNA glycosylase and an apyrimidic-endonuclease. The reaction product of the highly purified 5-methylcytosine-DNA glycosylase is 5-methylcytosine. The copurified apyrimidic-endonuclease activity cleaves 3' from the apyrimidic sugar. A 52.5-kDa peptide, isolated as a single band from preparative SDS-polyacrylamide gels, has both the 5-methylcytosine-DNA glycosylase and the mismatch-specific thymine-DNA glycosylase activities. 5-Methylcytosine-DNA glycosylase has an apparent pI of 5.5-7.5 and maximal activity between pH 6.5 and 7.5. The Km for hemimethylated oligonucleotide substrate is 8 x 10(-8) M with a Vmax of 4 x 10(-11) mol/h/micrograms proteins. 5-Methylcytosine-DNA glycosylase binds equally well to methylated and non-methylated DNA. The enzyme reacts six times faster with the hemimethylated DNA than with the same bifilarly methylated DNA sequence, and single-stranded methylated DNA is not a substrate. The action of the enzyme is distributive.
Collapse
Affiliation(s)
- J P Jost
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | |
Collapse
|