1
|
Mizuno T, Hirabayashi K, Miyazawa S, Kobayashi Y, Shoji K, Kobayashi M, Hanaoka F, Imamoto N, Torigoe H. The intrinsically disordered N-terminal region of mouse DNA polymerase alpha mediates its interaction with POT1a/b at telomeres. Genes Cells 2021; 26:360-380. [PMID: 33711210 DOI: 10.1111/gtc.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 01/12/2023]
Abstract
Mouse telomerase and the DNA polymerase alpha-primase complex elongate the leading and lagging strands of telomeres, respectively. To elucidate the molecular mechanism of lagging strand synthesis, we investigated the interaction between DNA polymerase alpha and two paralogs of the mouse POT1 telomere-binding protein (POT1a and POT1b). Yeast two-hybrid analysis and a glutathione S-transferase pull-down assay indicated that the C-terminal region of POT1a/b binds to the intrinsically disordered N-terminal region of p180, the catalytic subunit of mouse DNA polymerase alpha. Subcellular distribution analyses showed that although POT1a, POT1b, and TPP1 were localized to the cytoplasm, POT1a-TPP1 and POT1b-TPP1 coexpressed with TIN2 localized to the nucleus in a TIN2 dose-dependent manner. Coimmunoprecipitation and cell cycle synchronization experiments indicated that POT1b-TPP1-TIN2 was more strongly associated with p180 than POT1a-TPP1-TIN2, and this complex accumulated during the S phase. Fluorescence in situ hybridization and proximity ligation assays showed that POT1a and POT1b interacted with p180 and TIN2 on telomeric chromatin. Based on the present study and a previous study, we propose a model in which POT1a/b-TPP1-TIN2 translocates into the nucleus in a TIN2 dose-dependent manner to target the telomere, where POT1a/b interacts with DNA polymerase alpha for recruitment at the telomere for lagging strand synthesis.
Collapse
Affiliation(s)
| | - Kei Hirabayashi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Sae Miyazawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Yurika Kobayashi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kenta Shoji
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Masakazu Kobayashi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | | | - Naoko Imamoto
- Cellular Dynamics Laboratory, CPR, RIKEN, Wako, Japan
| | - Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
2
|
Eichinger CS, Mizuno T, Mizuno K, Miyake Y, Yanagi KI, Imamoto N, Hanaoka F. Aberrant DNA polymerase alpha is excluded from the nucleus by defective import and degradation in the nucleus. J Biol Chem 2009; 284:30604-14. [PMID: 19726690 DOI: 10.1074/jbc.m109.024760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase alpha is essential for the onset of eukaryotic DNA replication. Its correct folding and assembly within the nuclear replication pre-initiation complex is crucial for normal cell cycle progression and genome maintenance. Due to a single point mutation in the largest DNA polymerase alpha subunit, p180, the temperature-sensitive mouse cell line tsFT20 exhibits heat-labile DNA polymerase alpha activity and S phase arrest at restrictive temperature. In this study, we show that an aberrant form of endogenous p180 in tsFT20 cells (p180(tsFT20)) is strictly localized in the cytoplasm while its wild-type counterpart enters the nucleus. Time-lapse fluorescence microscopy with enhanced green fluorescent protein-tagged or photoactivatable green fluorescent protein-tagged p180(tsFT20) variants and inhibitor analysis revealed that the exclusion of aberrant p180(tsFT20) from the nucleus is due to two distinct mechanisms: first, the inability of newly synthesized (cytoplasmic) p180(tsFT20) to enter the nucleus and second, proteasome-dependent degradation of nuclear-localized protein. The nuclear import defect seems to result from an impaired association of aberrant de novo synthesized p180(tsFT20) with the second subunit of DNA polymerase alpha, p68. In accordance, we show that RNA interference of p68 results in a decrease of the overall p180 protein level and in a specific increase of cytoplasmic localized p180 in NIH3T3 cells. Taken together, our data suggest two mechanisms that prevent the nuclear expression of aberrant DNA polymerase alpha.
Collapse
Affiliation(s)
- Christian S Eichinger
- Cellular Physiology Laboratory, Advanced Science Institute, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Nakamura M, Nabetani A, Mizuno T, Hanaoka F, Ishikawa F. Alterations of DNA and chromatin structures at telomeres and genetic instability in mouse cells defective in DNA polymerase alpha. Mol Cell Biol 2006; 25:11073-88. [PMID: 16314528 PMCID: PMC1316980 DOI: 10.1128/mcb.25.24.11073-11088.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Telomere length is controlled by a homeostatic mechanism that involves telomerase, telomere-associated proteins, and conventional replication machinery. Specifically, the coordinated actions of the lagging strand synthesis and telomerase have been argued. Although DNA polymerase alpha, an enzyme important for the lagging strand synthesis, has been indicated to function in telomere metabolism in yeasts and ciliates, it has not been characterized in higher eukaryotes. Here, we investigated the impact of compromised polymerase alpha activity on telomeres, using tsFT20 mouse mutant cells harboring a temperature-sensitive polymerase alpha mutant allele. When polymerase alpha was temperature-inducibly inactivated, we observed sequential events that included an initial extension of the G-tail followed by a marked increase in the overall telomere length occurring in telomerase-independent and -dependent manners, respectively. These alterations of telomeric DNA were accompanied by alterations of telomeric chromatin structures as revealed by quantitative chromatin immunoprecipitation and immunofluorescence analyses of TRF1 and POT1. Unexpectedly, polymerase alpha inhibition resulted in a significantly high incidence of Robertsonian chromosome fusions without noticeable increases in other types of chromosomal aberrations. These results indicate that although DNA polymerase alpha is essential for genome-wide DNA replication, hypomorphic activity leads to a rather specific spectrum of chromosomal abnormality.
Collapse
Affiliation(s)
- Mirai Nakamura
- Laboratory of Cell Cycle Regulation, Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Japan
| | | | | | | | | |
Collapse
|
4
|
Mizuno T, Yamagishi K, Miyazawa H, Hanaoka F. Molecular architecture of the mouse DNA polymerase alpha-primase complex. Mol Cell Biol 1999; 19:7886-96. [PMID: 10523676 PMCID: PMC84873 DOI: 10.1128/mcb.19.11.7886] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA polymerase alpha-primase complex is the only enzyme that provides RNA-DNA primers for chromosomal DNA replication in eukaryotes. Mouse DNA polymerase alpha has been shown to consist of four subunits, p180, p68, p54, and p46. To characterize the domain structures and subunit requirements for the assembly of the complex, we constructed eukaryotic polycistronic cDNA expression plasmids expressing pairwise the four subunits of DNA polymerase alpha. In addition, the constructs contained an internal ribosome entry site derived from poliovirus. The constructs were transfected in different combinations with vectors expressing single subunits to allow the simultaneous expression of three or four of the subunits in cultured mammalian cells. We demonstrate that the carboxyl-terminal region of p180 (residues 1235 to 1465) is essential for its interaction with both p68 and p54-p46 by immunohistochemical analysis and coprecipitation studies with antibodies. Mutations in the putative zinc fingers present in the carboxyl terminus of p180 abolished the interaction with p68 completely, although the mutants were still capable of interacting with p54-p46. Furthermore, the amino-terminal region (residues 1 to 329) and the carboxyl-terminal region (residues 1280 to 1465) were revealed to be dispensable for DNA polymerase activity. Thus, we can divide the p180 subunit into three domains. The first is the amino-terminal domain (residues 1 to 329), which is dispensable for both polymerase activity and subunit assembly. The second is the minimal core domain (residues 330 to 1279), required for polymerase activity. The third is the carboxyl-terminal domain (residues 1280 to 1465), which is dispensable for polymerase activity but required for the interaction with the other three subunits. Taken together, these results allow us to propose the first structural model for the DNA polymerase alpha-primase complex in terms of subunit assembly, domain structure, and stepwise formation at the cellular level.
Collapse
Affiliation(s)
- T Mizuno
- The Institute of Physical Research (RIKEN), Wako, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
5
|
Mizuno T, Ito N, Yokoi M, Kobayashi A, Tamai K, Miyazawa H, Hanaoka F. The second-largest subunit of the mouse DNA polymerase alpha-primase complex facilitates both production and nuclear translocation of the catalytic subunit of DNA polymerase alpha. Mol Cell Biol 1998; 18:3552-62. [PMID: 9584195 PMCID: PMC108936 DOI: 10.1128/mcb.18.6.3552] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA polymerase alpha-primase is a replication enzyme necessary for DNA replication in all eukaryotes examined so far. Mouse DNA polymerase alpha is made up of four subunits, the largest of which is the catalytic subunit with a molecular mass of 180 kDa (p180). This subunit exists as a tight complex with the second-largest subunit (p68), whose physiological role has remained unclear up until now. We set out to characterize these subunits individually or in combination by using a cDNA expression system in cultured mammalian cells. Coexpression of p68 markedly increased the protein level of p180, with the result that ectopically generated DNA polymerase activity was dramatically increased. Immunofluorescence analysis showed that while either singly expressed p180 or p68 was localized in the cytoplasm, cotransfection of both subunits resulted in colocalization in the nucleus. We identified a putative nuclear localization signal for p180 (residues 1419 to 1437) and found that interaction with p68 is essential for p180 to translocate into the nucleus. These results indicate that association of p180 with p68 is important for both protein synthesis of p180 and translocation into the nucleus, implying that p68 plays a pivotal role in the newly synthesized DNA polymerase alpha complex.
Collapse
Affiliation(s)
- T Mizuno
- The Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The cell cycle is driven by the sequential activation of a family of cyclin-dependent kinases (cdk), which phosphorylate and activate proteins that execute events critical to cell cycle progression. In mammalian cells cdk2-cyclin A has a role in S phase. Many replication proteins are potential substrates for this cdk kinase, suggesting that initiation, elongation and checkpoint control of replication could all be regulated by cdk2. The association of PCNA, a replication protein, with cdk-cyclins during G-1 to S phase transition and with cdk-cyclin inhibitors, adds an interesting complexity to regulation of DNA replication.
Collapse
Affiliation(s)
- R Fotedar
- Institut de Biologie Structurale J.-P. Ebel, Grenoble, France
| | | |
Collapse
|
7
|
Mizuno T, Okamoto T, Yokoi M, Izumi M, Kobayashi A, Hachiya T, Tamai K, Inoue T, Hanaoka F. Identification of the nuclear localization signal of mouse DNA primase: nuclear transport of p46 subunit is facilitated by interaction with p54 subunit. J Cell Sci 1996; 109 ( Pt 11):2627-36. [PMID: 8937981 DOI: 10.1242/jcs.109.11.2627] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase alpha-primase is a replication enzyme necessary for DNA replication in all eukaryotes. Mouse DNA primase is composed of two subunits: a 46 kDa protein (p46), which is the catalytic subunit capable of RNA primer synthesis, and a 54 kDa protein (p54), whose physiological role is not clear. To understand the structure-function relationship of DNA primase, we set out to characterize these two subunits individually or in combination using a cDNA expression system in mammalian cultured cells, and determined the subcellular distribution of ectopically expressed DNA primase. The p54 expressed in COS-1 cells after transfection was predominantly localized in the nucleus, whereas p46 was retained in the cytoplasm as shown by indirect immunofluorescence analysis. Using several mutant proteins with deletions or substitutions as well as chimeric constructs, we identified the nuclear localization signal of p54 as RIRKKLR, encoded near the amino terminus (residues 6–12). Furthermore, co-expression of both p46 and p54 subunits markedly altered the subcellular distribution of p46; co-expressed p46 was transported into the nucleus as efficiently as p54. These results demonstrate that p54 has a nuclear localization signal and is able to be translocated into the nucleus independently of DNA polymerase alpha subunits. In contrast, p46 lacks a nuclear localization signal, and its nuclear translocation is facilitated by interaction with p54. We present here first evidence for a novel role of p54 in the nuclear translocation process, and a piggy-back binding transport mechanism of mouse DNA primase.
Collapse
Affiliation(s)
- T Mizuno
- Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|