1
|
Kavanaugh LG, Hinrichsen ME, Dunham CM, Conn GL. Regulation, structure, and activity of the Pseudomonas aeruginosa MexXY efflux system. Antimicrob Agents Chemother 2025; 69:e0182524. [PMID: 40192483 PMCID: PMC12057347 DOI: 10.1128/aac.01825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
The current crisis in bacterial antibiotic resistance can be attributed to the overuse (or misuse) of these essential medicines in healthcare and agriculture, coupled with the slowed progression of new drug development. In the versatile, opportunistic pathogen Pseudomonas aeruginosa, the Resistance-Nodulation-Division (RND) efflux pump MexXY plays critical roles in both cell physiology and the acquisition of multidrug resistance. The mexXY operon is not constitutively expressed, but this process is instead controlled by a complex network of multiple interconnected regulatory mechanisms. These include induction by several of the pump's ribosome-targeting antibiotic substrates and transcriptional repression and anti-repression processes that are themselves influenced by various cellular factors, processes, or stresses. Although extensive studies of the MexXY complex are currently lacking as compared to other RND efflux pumps such as Escherichia coli AcrAB-TolC, recent studies have provided valuable insights into the MexXY architecture and substrate profiles, including its contribution to clinical resistance. Furthermore, while MexXY primarily associates with the outer membrane protein OprM, emerging evidence suggests that this transporter-periplasmic adaptor pair may also partner with other outer membrane proteins, potentially to alter the efflux substrate profile and activity under specific environmental conditions. In this minireview, we summarize current understanding of MexXY regulation, structure, and substrate selectivity within the context of clinical resistance and as a framework for future efflux pump inhibitor development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Megan E. Hinrichsen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Li YC, Wang CH, Patra M, Chen YP, Yang WZ, Yuan H. Structural insights into human PNPase in health and disease. Nucleic Acids Res 2025; 53:gkaf119. [PMID: 39997218 PMCID: PMC11851098 DOI: 10.1093/nar/gkaf119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Human polynucleotide phosphorylase (hPNPase) is a 3'-to-5' exoribonuclease located in mitochondria, where it plays crucial roles in RNA degradation and RNA import. Mutations in hPNPase can impair these functions, leading to various mitochondrial dysfunctions and diseases. However, the mechanisms by which hPNPase switches between its roles as an RNA-degrading enzyme and an RNA carrier, as well as how disease-associated mutations may affect these distinct functions, remain unclear. In this study, we present cryo-electron microscopy structures of hPNPase, highlighting the flexibility of its S1 domains, which cap the ring-like RNA-degradation chamber and shift between two distinctive open and closed conformations. We further demonstrate by small-angle X-ray scattering and biochemical analyses that the disease-associated mutations P467S and G499R impair hPNPase's stem-loop RNA-binding and degradation activities by limiting the S1 domain's ability to transition from an open to closed state. Conversely, the D713Y mutation, located within the S1 domain, does not affect the RNA-binding affinity of hPNPase, but diminishes its interaction with Suv3 helicase for cooperative degradation of structured RNA. Collectively, these findings underscore the critical role of S1 domain mobility in capturing structured RNA for degradation and import, as well as its involvement in mitochondrial degradosome assembly. Our study thereby reveals the molecular mechanism of hPNPase in RNA binding and degradation, and the multiple molecular defects that could be induced by disease-linked mutations in hPNPase.
Collapse
Affiliation(s)
- Yi-Ching Li
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Malay Patra
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Yi-Ping Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Wei-Zen Yang
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
| | - Hanna S Yuan
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, ROC, Taiwan
- Graduate Institute of Biochemistry and Molecular Biology, National Taiwan University, Taipei, 10048, ROC, Taiwan
| |
Collapse
|
3
|
Cossey SM, Velicer GJ, Yu YTN. Ribonuclease D Processes a Small RNA Regulator of Multicellular Development in Myxobacteria. Genes (Basel) 2023; 14:genes14051061. [PMID: 37239421 DOI: 10.3390/genes14051061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
By targeting mRNA transcripts, non-coding small RNAs (sRNAs) regulate the expression of genes governing a wide range of bacterial functions. In the social myxobacterium Myxococcus xanthus, the sRNA Pxr serves as a gatekeeper of the regulatory pathway controlling the life-cycle transition from vegetative growth to multicellular fruiting body development. When nutrients are abundant, Pxr prevents the initiation of the developmental program, but Pxr-mediated inhibition is alleviated when cells starve. To identify genes essential for Pxr function, a developmentally defective strain in which Pxr-mediated blockage of development is constitutively active (strain "OC") was transposon-mutagenized to identify suppressor mutations that inactivate or bypass Pxr inhibition and thereby restore development. One of the four loci in which a transposon insertion restored development is rnd, encoding the Ribonuclease D protein (RNase D). RNase D is an exonuclease important for tRNA maturation. Here, we show that disruption of rnd abolishes the accumulation of Pxr-S, the product of Pxr processing from a longer precursor form (Pxr-L) and the active inhibitor of development. Additionally, the decrease in Pxr-S caused by rnd disruption was associated with increased accumulation primarily of a longer novel Pxr-specific transcript (Pxr-XL) rather than of Pxr-L. The introduction of a plasmid expressing rnd reverted cells back to OC-like phenotypes in development and Pxr accumulation, indicating that a lack of RNase D alone suppresses the developmental defect of OC. Moreover, an in vitro Pxr-processing assay demonstrated that RNase D processes Pxr-XL into Pxr-L; this implies that overall, Pxr sRNA maturation requires a sequential two-step processing. Collectively, our results indicate that a housekeeping ribonuclease plays a central role in a model form of microbial aggregative development. To our knowledge, this is the first evidence implicating RNase D in sRNA processing.
Collapse
Affiliation(s)
- Sarah M Cossey
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zurich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zurich, Switzerland
| | - Yuen-Tsu Nicco Yu
- Institute for Integrative Biology, Department of Environmental Systems Science, ETH Zürich, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
The absence of PNPase activity in Enterococcus faecalis results in alterations of the bacterial cell-wall but induces high proteolytic and adhesion activities. Gene 2022; 833:146610. [PMID: 35609794 DOI: 10.1016/j.gene.2022.146610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022]
Abstract
Enterococci are lactic acid bacteria (LAB) used as starters and probiotics, delineating their positive attributes. Nevertheless, enterococci can be culprit for thousands of infectious diseases, including urinary tract infections, bacteremia and endocarditis. Here, we aim to determine the impact of polynucleotide phosphorylase (PNPase) in the biology of Enterococcus faecalis 14; a human isolate from meconium. Thus, a mutant strain deficient in PNPase synthesis, named ΔpnpA mutant, was genetically obtained. After that, a transcriptomic study revealed a set of 244 genes differentially expressed in the ΔpnpA mutant compared with the wild-type strain, when exploiting RNAs extracted from these strains after 3 and 6 h of growth. Differentially expressed genes include those involved in cell wall synthesis, adhesion, biofilm formation, bacterial competence and conjugation, stress response, transport, DNA repair and many other functions related to the primary and secondary metabolism of the bacteria. Moreover, the ΔpnpA mutant showed an altered cell envelope ultrastructure compared with the WT strain, and is also distinguished by a strong adhesion capacity on eukaryotic cell as well as a high proteolytic activity. This study, which combines genetics, physiology and transcriptomics enabled us to show further biological functions that could be directly or indirectly controlled by the PNPase in E. faecalis 14.
Collapse
|
5
|
Hsu TY, Hsu LN, Chen SY, Juang BT. MUT-7 Provides Molecular Insight into the Werner Syndrome Exonuclease. Cells 2021; 10:cells10123457. [PMID: 34943966 PMCID: PMC8700014 DOI: 10.3390/cells10123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022] Open
Abstract
Werner syndrome (WS) is a rare recessive genetic disease characterized by premature aging. Individuals with this disorder develop normally during childhood, but their physiological conditions exacerbate the aging process in late adolescence. WS is caused by mutation of the human WS gene (WRN), which encodes two main domains, a 3′-5′ exonuclease and a 3′-5′ helicase. Caenorhabditis elegans expresses human WRN orthologs as two different proteins: MUT-7, which has a 3′-5′ exonuclease domain, and C. elegans WRN-1 (CeWRN-1), which has only helicase domains. These unique proteins dynamically regulate olfactory memory in C. elegans, providing insight into the molecular roles of WRN domains in humans. In this review, we specifically focus on characterizing the function of MUT-7 in small interfering RNA (siRNA) synthesis in the cytoplasm and the roles of siRNA in directing nuclear CeWRN-1 loading onto a heterochromatin complex to induce negative feedback regulation. Further studies on the different contributions of the 3′-5′ exonuclease and helicase domains in the molecular mechanism will provide clues to the accelerated aging processes in WS.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Cell and Tissue Biology, University of California, 513 Parnassus, San Francisco, CA 94143, USA
| | - Ling-Nung Hsu
- Occupational Safety and Health Office, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan;
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Spanka DT, Reuscher CM, Klug G. Impact of PNPase on the transcriptome of Rhodobacter sphaeroides and its cooperation with RNase III and RNase E. BMC Genomics 2021; 22:106. [PMID: 33549057 PMCID: PMC7866481 DOI: 10.1186/s12864-021-07409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polynucleotide phosphorylase (PNPase) is conserved among both Gram-positive and Gram-negative bacteria. As a core part of the Escherichia coli degradosome, PNPase is involved in maintaining proper RNA levels within the bacterial cell. It plays a major role in RNA homeostasis and decay by acting as a 3'-to-5' exoribonuclease. Furthermore, PNPase can catalyze the reverse reaction by elongating RNA molecules in 5'-to-3' end direction which has a destabilizing effect on the prolonged RNA molecule. RNA degradation is often initiated by an endonucleolytic cleavage, followed by exoribonucleolytic decay from the new 3' end. RESULTS The PNPase mutant from the facultative phototrophic Rhodobacter sphaeroides exhibits several phenotypical characteristics, including diminished adaption to low temperature, reduced resistance to organic peroxide induced stress and altered growth behavior. The transcriptome composition differs in the pnp mutant strain, resulting in a decreased abundance of most tRNAs and rRNAs. In addition, PNPase has a major influence on the half-lives of several regulatory sRNAs and can have both a stabilizing or a destabilizing effect. Moreover, we globally identified and compared differential RNA 3' ends in RNA NGS sequencing data obtained from PNPase, RNase E and RNase III mutants for the first time in a Gram-negative organism. The genome wide RNA 3' end analysis revealed that 885 3' ends are degraded by PNPase. A fair percentage of these RNA 3' ends was also identified at the same genomic position in RNase E or RNase III mutant strains. CONCLUSION The PNPase has a major influence on RNA processing and maturation and thus modulates the transcriptome of R. sphaeroides. This includes sRNAs, emphasizing the role of PNPase in cellular homeostasis and its importance in regulatory networks. The global 3' end analysis indicates a sequential RNA processing: 5.9% of all RNase E-dependent and 9.7% of all RNase III-dependent RNA 3' ends are subsequently degraded by PNPase. Moreover, we provide a modular pipeline which greatly facilitates the identification of RNA 5'/3' ends. It is publicly available on GitHub and is distributed under ICS license.
Collapse
Affiliation(s)
- Daniel-Timon Spanka
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany
| | - Carina Maria Reuscher
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, Justus Liebig University Giessen, IFZ, Giessen, Germany.
| |
Collapse
|
7
|
Pseudomonas aeruginosa Polynucleotide Phosphorylase Controls Tolerance to Aminoglycoside Antibiotics by Regulating the MexXY Multidrug Efflux Pump. Antimicrob Agents Chemother 2021; 65:AAC.01846-20. [PMID: 33257447 DOI: 10.1128/aac.01846-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that shows high intrinsic resistance to a variety of antibiotics. The MexX-MexY-OprM efflux pump plays an important role in bacterial resistance to aminoglycoside antibiotics. Polynucleotide phosphorylase (PNPase) is a highly conserved exonuclease that plays important roles in RNA processing and the bacterial response to environmental stresses. Previously, we demonstrated that PNPase controls the tolerance to fluoroquinolone antibiotics by influencing the production of pyocin in P. aeruginosa In this study, we found that mutation of the PNPase-encoding gene (pnp) in P. aeruginosa increases bacterial tolerance to aminoglycoside antibiotics. We further demonstrate that the upregulation of the mexXY genes is responsible for the increased tolerance of the pnp mutant. Furthermore, our experimental results revealed that PNPase controls the translation of the armZ mRNA through its 5' untranslated region (UTR). ArmZ had previously been shown to positively regulate the expression of mexXY Therefore, our results revealed a novel role of PNPase in the regulation of armZ and subsequently the MexXY efflux pump.
Collapse
|
8
|
Mohanty BK, Agrawal A, Kushner SR. Generation of pre-tRNAs from polycistronic operons is the essential function of RNase P in Escherichia coli. Nucleic Acids Res 2020; 48:2564-2578. [PMID: 31993626 PMCID: PMC7049720 DOI: 10.1093/nar/gkz1188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/05/2019] [Accepted: 01/27/2020] [Indexed: 11/14/2022] Open
Abstract
Ribonuclease P (RNase P) is essential for the 5′-end maturation of tRNAs in all kingdoms of life. In Escherichia coli, temperature sensitive mutations in either its protein (rnpA49) and or RNA (rnpB709) subunits lead to inviability at nonpermissive temperatures. Using the rnpA49 temperature sensitive allele, which encodes a partially defective RNase P at the permissive temperature, we show here for the first time that the processing of RNase P-dependent polycistronic tRNA operons to release pre-tRNAs is the essential function of the enzyme, since the majority of 5′-immature tRNAs can be aminoacylated unless their 5′-extensions ≥8 nt. Surprisingly, the failure of 5′-end maturation elicits increased polyadenylation of some pre-tRNAs by poly(A) polymerase I (PAP I), which exacerbates inviability. The absence of PAP I led to improved aminoacylation of 5′-immature tRNAs. Our data suggest a more dynamic role for PAP I in maintaining functional tRNA levels in the cell.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Ankit Agrawal
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- To whom correspondence should be addressed. Tel: +706 542 1440; Fax: +706 542 1439;
| |
Collapse
|
9
|
Czech A. Deep sequencing of tRNA's 3'-termini sheds light on CCA-tail integrity and maturation. RNA (NEW YORK, N.Y.) 2020; 26:199-208. [PMID: 31719125 PMCID: PMC6961547 DOI: 10.1261/rna.072330.119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The 3'-termini of tRNA are the point of amino acid linkage and thus crucial for their function in delivering amino acids to the ribosome and other enzymes. Therefore, to provide tRNA functionality, cells have to ensure the integrity of the 3'-terminal CCA-tail, which is generated during maturation by the 3'-trailer processing machinery and maintained by the CCA-adding enzyme. We developed a new tRNA sequencing method that is specifically tailored to assess the 3'-termini of E. coli tRNA. Intriguingly, we found a significant fraction of tRNAs with damaged CCA-tails under exponential growth conditions and, surprisingly, this fraction decreased upon transition into stationary phase. Interestingly, tRNAs bearing guanine as a discriminator base are generally unaffected by CCA-tail damage. In addition, we showed tRNA species-specific 3'-trailer processing patterns and reproduced in vitro findings on preferences of the maturation enzyme RNase T in vivo.
Collapse
Affiliation(s)
- Andreas Czech
- Institute of Biochemistry and Molecular Biology, Chemistry Department, University of Hamburg, 20146 Hamburg, Germany
| |
Collapse
|
10
|
Cameron TA, Matz LM, Sinha D, De Lay NR. Polynucleotide phosphorylase promotes the stability and function of Hfq-binding sRNAs by degrading target mRNA-derived fragments. Nucleic Acids Res 2019; 47:8821-8837. [PMID: 31329973 PMCID: PMC7145675 DOI: 10.1093/nar/gkz616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023] Open
Abstract
In many Gram-negative and some Gram-positive bacteria, small regulatory RNAs (sRNAs) that bind the RNA chaperone Hfq have a pivotal role in modulating virulence, stress responses, metabolism and biofilm formation. These sRNAs recognize transcripts through base-pairing, and sRNA–mRNA annealing consequently alters the translation and/or stability of transcripts leading to changes in gene expression. We have previously found that the highly conserved 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) has an indispensable role in paradoxically stabilizing Hfq-bound sRNAs and promoting their function in gene regulation in Escherichia coli. Here, we report that PNPase contributes to the degradation of specific short mRNA fragments, the majority of which bind Hfq and are derived from targets of sRNAs. Specifically, we found that these mRNA-derived fragments accumulate in the absence of PNPase or its exoribonuclease activity and interact with PNPase. Additionally, we show that mutations in hfq or in the seed pairing region of some sRNAs eliminated the requirement of PNPase for their stability. Altogether, our results are consistent with a model that PNPase degrades mRNA-derived fragments that could otherwise deplete cells of Hfq-binding sRNAs through pairing-mediated decay.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Lisa M Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dhriti Sinha
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Nicholas R De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
11
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
12
|
Cameron TA, Matz LM, De Lay NR. Polynucleotide phosphorylase: Not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genet 2018; 14:e1007654. [PMID: 30307990 PMCID: PMC6181284 DOI: 10.1371/journal.pgen.1007654] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Almost 60 years ago, Severo Ochoa was awarded the Nobel Prize in Physiology or Medicine for his discovery of the enzymatic synthesis of RNA by polynucleotide phosphorylase (PNPase). Although this discovery provided an important tool for deciphering the genetic code, subsequent work revealed that the predominant function of PNPase in bacteria and eukaryotes is catalyzing the reverse reaction, i.e., the release of ribonucleotides from RNA. PNPase has a crucial role in RNA metabolism in bacteria and eukaryotes mainly through its roles in processing and degrading RNAs, but additional functions in RNA metabolism have recently been reported for this enzyme. Here, we discuss these established and noncanonical functions for PNPase and the possibility that the major impact of PNPase on cell physiology is through its unorthodox roles.
Collapse
Affiliation(s)
- Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Lisa M. Matz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, United States of America
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
13
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
14
|
A tRNA's fate is decided at its 3' end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:433-441. [PMID: 29374586 DOI: 10.1016/j.bbagrm.2018.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 02/07/2023]
Abstract
tRNAs are key players in translation and are additionally involved in a wide range of distinct cellular processes. The vital importance of tRNAs becomes evident in numerous diseases that are linked to defective tRNA molecules. It is therefore not surprising that the structural intactness of tRNAs is continuously scrutinized and defective tRNAs are eliminated. In this process, erroneous tRNAs are tagged with single-stranded RNA sequences that are recognized by degrading exonucleases. Recent discoveries have revealed that the CCA-adding enzyme - actually responsible for the de novo synthesis of the 3'-CCA end - plays an indispensable role in tRNA quality control by incorporating a second CCA triplet that is recognized as a degradation tag. In this review, we give an update on the latest findings regarding tRNA quality control that turns out to represent an interplay of the CCA-adding enzyme and RNases involved in tRNA degradation and maturation. In particular, the RNase-induced turnover of the CCA end is now recognized as a trigger for the CCA-adding enzyme to repeatedly scrutinize the structural intactness of a tRNA. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
|
15
|
The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets. J Bacteriol 2016; 198:3309-3317. [PMID: 27698082 DOI: 10.1128/jb.00624-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/25/2016] [Indexed: 12/18/2022] Open
Abstract
Gene regulation by base pairing between small noncoding RNAs (sRNAs) and their mRNA targets is an important mechanism that allows bacteria to maintain homeostasis and respond to dynamic environments. In Gram-negative bacteria, sRNA pairing and regulation are mediated by several RNA-binding proteins, including the sRNA chaperone Hfq and polynucleotide phosphorylase (PNPase). PNPase and its homolog RNase PH together represent the two 3' to 5' phosphorolytic exoribonucleases found in Escherichia coli; however, the role of RNase PH in sRNA regulation has not yet been explored and reported. Here, we have examined in detail how PNPase and RNase PH interact to support sRNA stability, activity, and base pairing in exponential and stationary growth conditions. Our results indicate that these proteins facilitate the stability and regulatory function of the sRNAs RyhB, CyaR, and MicA during exponential growth. PNPase further appears to contribute to pairing between RyhB and its mRNA targets. During stationary growth, each sRNA responded differently to the absence or presence of PNPase and RNase PH. Finally, our results suggest that PNPase and RNase PH stabilize only Hfq-bound sRNAs. Taken together, these results confirm and extend previous findings that PNPase participates in sRNA regulation and reveal that RNase PH serves a similar, albeit more limited, role as well. These proteins may, therefore, act to protect sRNAs from spurious degradation while also facilitating regulatory pairing with their targets. IMPORTANCE In many bacteria, Hfq-dependent base-pairing sRNAs facilitate rapid changes in gene expression that are critical for maintaining homeostasis and responding to stress and environmental changes. While a role for Hfq in this process was identified more than 2 decades ago, the identity and function of the other proteins required for Hfq-dependent regulation by sRNAs have not been resolved. Here, we demonstrate that PNPase and RNase PH, the two phosphorolytic RNases in E. coli, stabilize sRNAs against premature degradation and, in the case of PNPase, also accelerate regulation by sRNA-mRNA pairings for certain sRNAs. These findings are the first to demonstrate that RNase PH influences and supports sRNA regulation and suggest shared and distinct roles for these phosphorolytic RNases in this process.
Collapse
|
16
|
Mohanty BK, Petree JR, Kushner SR. Endonucleolytic cleavages by RNase E generate the mature 3' termini of the three proline tRNAs in Escherichia coli. Nucleic Acids Res 2016; 44:6350-62. [PMID: 27288443 PMCID: PMC5291269 DOI: 10.1093/nar/gkw517] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/30/2016] [Indexed: 11/12/2022] Open
Abstract
We demonstrate here for the first time that proline tRNA 3' end maturation in Escherichia coli employs a one-step endonucleolytic pathway that does not involve any of the six 3' → 5' exonucleases (RNase T, RNase PH, RNase D, RNase BN, RNase II and polynucleotide phosphorylase [PNPase]) to generate the mature CCA terminus. Rather, RNase E is primarily responsible for the endonucleolytic removal of the entire Rho-independent transcription terminator associated with the proK, proL and proM primary transcripts by cleaving immediately downstream of the CCA determinant. In the absence of RNase E, RNase G and RNase Z are weakly able to process the proK and proM transcripts, while PNPase and RNase P are utilized in the processing of proL The terminator fragment derived from the endonucleolytic cleavage of proL transcript is degraded through a PNPase-dependent pathway. It is not clear which enzymes degrade the proK and proM terminator fragments. Our data also suggest that the mature 5' nucleotide of the proline tRNAs may be responsible for the cleavage specificity of RNase E at the 3' terminus.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jessica R Petree
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
17
|
Nelson WC, Stegen JC. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front Microbiol 2015; 6:713. [PMID: 26257709 PMCID: PMC4508563 DOI: 10.3389/fmicb.2015.00713] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/29/2015] [Indexed: 11/21/2022] Open
Abstract
Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in a broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. “Housekeeping” genes and genes for biosynthesis of peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides, and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle, or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest that the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum.
Collapse
Affiliation(s)
- William C Nelson
- Microbiology, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - James C Stegen
- Microbiology, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
18
|
D'Apice MR, Novelli A, di Masi A, Biancolella M, Antoccia A, Gullotta F, Licata N, Minella D, Testa B, Nardone AM, Palmieri G, Calabrese E, Biancone L, Tanzarella C, Frontali M, Sangiuolo F, Novelli G, Pallone F. Deletion of REXO1L1 locus in a patient with malabsorption syndrome, growth retardation, and dysmorphic features: a novel recognizable microdeletion syndrome? BMC MEDICAL GENETICS 2015; 16:20. [PMID: 25927938 PMCID: PMC4422118 DOI: 10.1186/s12881-015-0164-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/12/2015] [Indexed: 12/27/2022]
Abstract
Background Copy number variations (CNVs) can contribute to genetic variation among individuals and/or have a significant influence in causing diseases. Many studies consider new CNVs’ effects on protein family evolution giving rise to gene duplicates or losses. “Unsuccessful” duplicates that remain in the genome as pseudogenes often exhibit functional roles. So, changes in gene and pseudogene number may contribute to development or act as susceptibility alleles of diseases. Case presentation We report a de novo heterozygous 271 Kb microdeletion at 8q21.2 region which includes the family of REXO1L genes and pseudogenes in a young man affected by global development delay, progeroid signs, and gastrointestinal anomalies. Molecular and cellular analysis showed that the REXO1L1 gene hemizygosity in a patient’s fibroblasts induces genetic instability and increased apoptosis after treatment with different DNA damage-induced agents. Conclusions The present results support the hypothesis that low copy gene number within REXO1L1 cluster could play a significant role in this complex clinical and cellular phenotype.
Collapse
Affiliation(s)
| | - Antonio Novelli
- Mendel Institute, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| | | | - Michela Biancolella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | | | - Francesca Gullotta
- Department of Biology, "Roma Tre" University, Rome, Italy. .,Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | - Norma Licata
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy. .,Department of Neuroscience, Psychiatry and Anaesthesiology, University of Messina, Messina, Italy.
| | - Daniela Minella
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | - Barbara Testa
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | | | | | - Emma Calabrese
- Department of Internal Medicine, Gastrointestinal Unit, Tor Vergata University of Rome, Rome, Italy.
| | - Livia Biancone
- Department of Internal Medicine, Gastrointestinal Unit, Tor Vergata University of Rome, Rome, Italy.
| | | | | | - Federica Sangiuolo
- Fondazione Policlinico Tor Vergata, Rome, Italy. .,Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.
| | - Giuseppe Novelli
- Fondazione Policlinico Tor Vergata, Rome, Italy. .,Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy. .,San Pietro Fatebenefratelli Hospital, Rome, Italy.
| | - Francesco Pallone
- Department of Internal Medicine, Gastrointestinal Unit, Tor Vergata University of Rome, Rome, Italy.
| |
Collapse
|
19
|
Betat H, Long Y, Jackman JE, Mörl M. From end to end: tRNA editing at 5'- and 3'-terminal positions. Int J Mol Sci 2014; 15:23975-98. [PMID: 25535083 PMCID: PMC4284800 DOI: 10.3390/ijms151223975] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023] Open
Abstract
During maturation, tRNA molecules undergo a series of individual processing steps, ranging from exo- and endonucleolytic trimming reactions at their 5'- and 3'-ends, specific base modifications and intron removal to the addition of the conserved 3'-terminal CCA sequence. Especially in mitochondria, this plethora of processing steps is completed by various editing events, where base identities at internal positions are changed and/or nucleotides at 5'- and 3'-ends are replaced or incorporated. In this review, we will focus predominantly on the latter reactions, where a growing number of cases indicate that these editing events represent a rather frequent and widespread phenomenon. While the mechanistic basis for 5'- and 3'-end editing differs dramatically, both reactions represent an absolute requirement for generating a functional tRNA. Current in vivo and in vitro model systems support a scenario in which these highly specific maturation reactions might have evolved out of ancient promiscuous RNA polymerization or quality control systems.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| | - Yicheng Long
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Jane E Jackman
- Department of Chemistry and Biochemistry, Center for RNA Biology and Ohio State Biochemistry Program, the Ohio State University, Columbus, OH 43210, USA.
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstraße 34, 04103 Leipzig, Germany.
| |
Collapse
|
20
|
Agrawal A, Mohanty BK, Kushner SR. Processing of the seven valine tRNAs in Escherichia coli involves novel features of RNase P. Nucleic Acids Res 2014; 42:11166-79. [PMID: 25183518 PMCID: PMC4176162 DOI: 10.1093/nar/gku758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Here we report that RNase P is required for the initial separation of all seven valine tRNAs from three distinct polycistronic transcripts (valV valW, valU valX valY lysY and lysT valT lysW valZ lysY lysZ lysQ). Particularly significant is the mechanism by which RNase P processes the valU and lysT polycistronic transcripts. Specifically, the enzyme initiates processing by first removing the Rho-independent transcription terminators from the primary valU and lysT transcripts. Subsequently, it proceeds in the 3′ → 5′ direction generating one pre-tRNA at a time. Based on the absolute requirement for RNase P processing of all three primary transcripts, inactivation of the enzyme leads to a >4-fold decrease in the levels of both type I and type II valine tRNAs. The ability of RNase P to initiate tRNA processing at the 3′ ends of long primary transcripts by endonucleolytically removing the Rho-independent transcription terminator represents a previously unidentified function for the enzyme, which is responsible for generating the mature 5’ termini of all 86 E. coli tRNAs. RNase E only plays a very minor role in the processing of all three valine polycistronic transcripts.
Collapse
Affiliation(s)
- Ankit Agrawal
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sidney R Kushner
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
21
|
Martínez VPM, Dehò G, Simons RW, García-Mena J. Ribonuclease PH interacts with an acidic ribonuclease E site through a basic 80-amino acid domain. FEMS Microbiol Lett 2014; 355:51-60. [PMID: 24766456 DOI: 10.1111/1574-6968.12448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
In this work, we characterize the domains for the in vivo interaction between ribonuclease E (RNase E) and ribonuclease PH (RNase PH). We initially explored the interaction using pull-down assays with full wild-type proteins expressed from a chromosomal monocopy gene. Once the interaction was confirmed, we narrowed down the sites of interaction in each enzyme to an acidic 16-amino acid region in the carboxy-terminal domain of RNase E and a basic 80-amino acid region in RNase PH including an α3 helix. Our results suggest two novel functional domains of interaction between ribonucleases.
Collapse
Affiliation(s)
- Víctor Pérez-Medina Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del IPN, Mexico DF, Mexico
| | | | | | | |
Collapse
|
22
|
Dutta T, Malhotra A, Deutscher MP. How a CCA sequence protects mature tRNAs and tRNA precursors from action of the processing enzyme RNase BN/RNase Z. J Biol Chem 2013; 288:30636-30644. [PMID: 24022488 DOI: 10.1074/jbc.m113.514570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In many organisms, 3' maturation of tRNAs is catalyzed by the endoribonuclease, RNase BN/RNase Z, which cleaves after the discriminator nucleotide to generate a substrate for addition of the universal CCA sequence. However, tRNAs or tRNA precursors that already contain a CCA sequence are not cleaved, thereby avoiding a futile cycle of removal and readdition of these essential residues. We show here that the adjacent C residues of the CCA sequence and an Arg residue within a highly conserved sequence motif in the channel leading to the RNase catalytic site are both required for the protective effect of the CCA sequence. When both of these determinants are present, CCA-containing RNAs in the channel are unable to move into the catalytic site; however, substitution of either of the C residues by A or U or mutation of Arg(274) to Ala allows RNA movement and catalysis to proceed. These data define a novel mechanism for how tRNAs are protected against the promiscuous action of a processing enzyme.
Collapse
Affiliation(s)
- Tanmay Dutta
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Arun Malhotra
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Murray P Deutscher
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136.
| |
Collapse
|
23
|
Lery LMS, Goulart CL, Figueiredo FR, Verdoorn KS, Einicker-Lamas M, Gomes FM, Machado EA, Bisch PM, von Kruger WMA. A comparative proteomic analysis of Vibrio cholerae O1 wild-type cells versus a phoB mutant showed that the PhoB/PhoR system is required for full growth and rpoS expression under inorganic phosphate abundance. J Proteomics 2013; 86:1-15. [PMID: 23665147 DOI: 10.1016/j.jprot.2013.04.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/09/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. In order to disclose other roles of this system, a proteomic analysis of Vibrio cholerae 569BSR and its phoB/phoR mutant under high Pi levels was performed. Most of the proteins downregulated by the mutant have roles in energy production and conversion and in amino acid transport and metabolism. In contrast, the phoB/phoR mutant upregulated genes mainly involved in adaptation to atypical conditions, indicating that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways. This might be a strategy to overcome the lack of RpoS, whose expression in the stationary phase cells of V. cholerae seems to be controlled by PhoB/PhoR. Moreover, compared to the wild-type strain the phoB/phoR mutant presented a reduced cell density at stationary phase of culture in Pi abundance, lower resistance to acid shock, but higher tolerance to thermal and osmotic stresses. Together our findings show, for the first time, the requirement of PhoB/PhoR for full growth under high Pi level and for the accumulation of RpoS, indicating that PhoB/PhoR is a fundamental system for the biology of V. cholerae. BIOLOGICAL SIGNIFICANCE Certain V. cholerae strains are pathogenic to humans, causing cholera, an acute dehydrating diarrhoeal disease endemic in Southern Asia, parts of Africa and Latin America, where it has been responsible for significant mortality and economical damage. Its ability to grow within distinct niches is dependent on gene expression regulation. PhoB/PhoR is a two-component system originally described as involved in inorganic phosphate (Pi) transport and metabolism under Pi limitation. However, Pho regulon genes also play roles in virulence, motility and biofilm formation, among others. In this paper we report that the absence of a functional PhoB/PhoR caused increased expression of a number of genes from distinct stress response pathways, in Pi abundance. Moreover, we showed, for the first time, that the interrelationship between PhoB-RpoS-(p)ppGpp-poly(P) in V. cholerae, is somewhat diverse from the model of inter-regulation between those systems, described in Escherichia coli. The V. cholerae dependence on PhoB/PhoR for the RpoS mediated stress response and cellular growth under Pi abundance, suggests that this system's roles are broader than previously thought.
Collapse
Affiliation(s)
- Letícia M S Lery
- Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hsiao YY, Duh Y, Chen YP, Wang YT, Yuan HS. How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes. Nucleic Acids Res 2012; 40:8144-54. [PMID: 22718982 PMCID: PMC3439924 DOI: 10.1093/nar/gks548] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Exonucleases are key enzymes in the maintenance of genome stability, processing of immature RNA precursors and degradation of unnecessary nucleic acids. However, it remains unclear how exonucleases digest nucleic acids to generate correct end products for next-step processing. Here we show how the exonuclease RNase T stops its trimming precisely. The crystal structures of RNase T in complex with a stem-loop DNA, a GG dinucleotide and single-stranded DNA with different 3′-end sequences demonstrate why a duplex with a short 3′-overhang, a dinucleotide and a ssDNA with a 3′-end C cannot be further digested by RNase T. Several hydrophobic residues in RNase T change their conformation upon substrate binding and induce an active or inactive conformation in the active site that construct a precise machine to determine which substrate should be digested based on its sequence, length and structure. These studies thus provide mechanistic insights into how RNase T prevents over digestion of its various substrates, and the results can be extrapolated to the thousands of members of the DEDDh family of exonucleases.
Collapse
Affiliation(s)
- Yu-Yuan Hsiao
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan, ROC
| | | | | | | | | |
Collapse
|
25
|
Abstract
Escherichia coli contains multiple 3' to 5' RNases, of which two, RNase PH and polynucleotide phosphorylase (PNPase), use inorganic phosphate as a nucleophile to catalyze RNA cleavage. It is known that an absence of these two enzymes causes growth defects, but the basis for these defects has remained undefined. To further an understanding of the function of these enzymes, the degradation pattern of different cellular RNAs was analyzed. It was observed that an absence of both enzymes results in the appearance of novel mRNA degradation fragments. Such fragments were also observed in strains containing mutations in RNase R and PNPase, enzymes whose collective absence is known to cause an accumulation of structured RNA fragments. Additional experiments indicated that the growth defects of strains containing RNase R and PNPase mutations were exacerbated upon RNase PH removal. Taken together, these observations suggested that RNase PH could play a role in structured RNA degradation. Biochemical experiments with RNase PH demonstrated that this enzyme digests through RNA duplexes of moderate stability. In addition, mapping and sequence analysis of an mRNA degradation fragment that accumulates in the absence of the phosphorolytic enzymes revealed the presence of an extended stem-loop motif at the 3' end. Overall, these results indicate that RNase PH plays a novel role in the degradation of structured RNAs and provides a potential explanation for the growth defects caused by an absence of the phosphorolytic RNases.
Collapse
|
26
|
Alluri RK, Li Z. Novel one-step mechanism for tRNA 3'-end maturation by the exoribonuclease RNase R of Mycoplasma genitalium. J Biol Chem 2012; 287:23427-33. [PMID: 22605341 DOI: 10.1074/jbc.m111.324970] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycoplasma genitalium is expected to metabolize RNA using unique pathways because its minimal genome encodes very few ribonucleases. In this work, we report that the only exoribonuclease identified in M. genitalium, RNase R, is able to remove tRNA 3'-trailers and generate mature 3'-ends. Several sequence and structural features of a tRNA precursor determine its precise processing at the 3'-end by RNase R in a purified system. The aminoacyl-acceptor stem plays a major role in stopping RNase R digestion at the mature 3'-end. Disruption of the stem causes partial or complete degradation of the pre-tRNA by RNase R, whereas extension of the stem results in the formation of a product terminating downstream at the new mature 3'-end. In addition, the 3'-terminal CCA sequence and the discriminator residue influence the ability of RNase R to stop at the mature 3'-end. RNase R-mediated generation of the mature 3'-end prefers a sequence of RCCN at the 3' terminus of tRNA. Variations of this sequence may cause RNase R to trim further and remove terminal CA residues from the mature 3'-end. Therefore, M. genitalium RNase R can precisely remove the 3'-trailer of a tRNA precursor by recognizing features in the terminal domains of tRNA, a process requiring multiple RNases in most bacteria.
Collapse
Affiliation(s)
- Ravi K Alluri
- Department of Biomedical Science, Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | | |
Collapse
|
27
|
Mohanty BK, Maples VF, Kushner SR. Polyadenylation helps regulate functional tRNA levels in Escherichia coli. Nucleic Acids Res 2012; 40:4589-603. [PMID: 22287637 PMCID: PMC3378859 DOI: 10.1093/nar/gks006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/24/2022] Open
Abstract
Here we demonstrate a new regulatory mechanism for tRNA processing in Escherichia coli whereby RNase T and RNase PH, the two primary 3' → 5' exonucleases involved in the final step of 3'-end maturation, compete with poly(A) polymerase I (PAP I) for tRNA precursors in wild-type cells. In the absence of both RNase T and RNase PH, there is a >30-fold increase of PAP I-dependent poly(A) tails that are ≤10 nt in length coupled with a 2.3- to 4.2-fold decrease in the level of aminoacylated tRNAs and a >2-fold decrease in growth rate. Only 7 out of 86 tRNAs are not regulated by this mechanism and are also not substrates for RNase T, RNase PH or PAP I. Surprisingly, neither PNPase nor RNase II has any effect on tRNA poly(A) tail length. Our data suggest that the polyadenylation of tRNAs by PAP I likely proceeds in a distributive fashion unlike what is observed with mRNAs.
Collapse
Affiliation(s)
| | | | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Gutgsell NS, Jain C. Role of precursor sequences in the ordered maturation of E. coli 23S ribosomal RNA. RNA (NEW YORK, N.Y.) 2012; 18:345-353. [PMID: 22190745 PMCID: PMC3264920 DOI: 10.1261/rna.027854.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
The maturation of ribosomal RNAs (rRNAs) is an important but incompletely understood process required for rRNAs to become functional. In order to determine the enzymes responsible for initiating 3' end maturation of 23S rRNA in Escherichia coli, we analyzed a number of strains lacking different combinations of 3' to 5' exo-RNases. Through these analyses, we identified RNase PH as a key effector of 3' end maturation. Further analysis of the processing reaction revealed that the 23S rRNA precursor contains a CC dinucleotide sequence that prevents maturation from being performed by RNase T instead. Mutation of this dinucleotide resulted in a growth defect, suggesting a strategic significance for this RNase T stalling sequence to prevent premature processing by RNase T. To further explore the roles of RNase PH and RNase T in RNA processing, we identified a subset of transfer RNAs (tRNAs) that contain an RNase T stall sequence, and showed that RNase PH activity is particularly important to process these tRNAs. Overall, the results obtained point to a key role of RNase PH in 23S rRNA processing and to an interplay between this enzyme and RNase T in the processing of different species of RNA molecules in the cell.
Collapse
Affiliation(s)
- Nancy S. Gutgsell
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| |
Collapse
|
29
|
Maes A, Gracia C, Hajnsdorf E, Régnier P. Search for poly(A) polymerase targets in E. coli reveals its implication in surveillance of Glu tRNA processing and degradation of stable RNAs. Mol Microbiol 2011; 83:436-51. [PMID: 22142150 DOI: 10.1111/j.1365-2958.2011.07943.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyadenylation is a universal post-transcriptional modification involved in degradation and quality control of bacterial RNAs. In Escherichia coli, it is admitted that any accessible RNA 3' end can be tagged by a poly(A) tail for decay. However, we do not have yet an overall view of the population of polyadenylated molecules. The sampling of polyadenylated RNAs presented here demonstrates that rRNA fragments and tRNA precursors originating from the internal spacer regions of the rrn operons, in particular, rrnB are abundant poly(A) polymerase targets. Focused analysis showed that Glu tRNA precursors originating from the rrnB and rrnG transcripts exhibit long 3' trailers that are primarily removed by PNPase and to a lesser extent by RNase II and poly(A) polymerase. Moreover, 3' trimming by exoribonucleases precedes 5' end maturation by RNase P. Interestingly, characterization of RNA fragments that accumulate in a PNPase deficient strain showed that Glu tRNA precursors still harbouring the 5' leader can be degraded by a 3' to 5' quality control pathway involving poly(A) polymerase. This demonstrates that the surveillance of tRNA maturation described for a defective tRNA also applies to a wild-type tRNA.
Collapse
Affiliation(s)
- Alexandre Maes
- CNRS UPR9073, associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
30
|
Structural basis for RNA trimming by RNase T in stable RNA 3'-end maturation. Nat Chem Biol 2011; 7:236-43. [PMID: 21317904 DOI: 10.1038/nchembio.524] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 01/07/2011] [Indexed: 01/28/2023]
Abstract
RNA maturation relies on various exonucleases to remove nucleotides successively from the 5' or 3' end of nucleic acids. However, little is known regarding the molecular basis for substrate and cleavage preference of exonucleases. Our biochemical and structural analyses on RNase T-DNA complexes show that the RNase T dimer has an ideal architecture for binding a duplex with a short 3' overhang to produce a digestion product of a duplex with a 2-nucleotide (nt) or 1-nt 3' overhang, depending on the composition of the last base pair in the duplex. A 'C-filter' in RNase T screens out the nucleic acids with 3'-terminal cytosines for hydrolysis by inducing a disruptive conformational change at the active site. Our results reveal the general principles and the working mechanism for the final trimming step made by RNase T in the maturation of stable RNA and pave the way for the understanding of other DEDD family exonucleases.
Collapse
|
31
|
Large scale expression and purification of recombinant RNA in Escherichia coli. Methods 2011; 54:267-73. [PMID: 21320602 DOI: 10.1016/j.ymeth.2011.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 12/21/2010] [Accepted: 02/09/2011] [Indexed: 11/20/2022] Open
Abstract
Stable, folded RNA are involved in many key cellular processes and can be used as tools for biological, pharmacological and/or molecular design studies. However, their widespread use has been somewhat limited by their fragile nature and by the difficulties associated with their production on a large scale, which were limited to in vitro methods. This work reviews the novel techniques recently developed that allow efficient expression of recombinant RNA in vivo in Escherichia coli. Based on the extensive data available on the genetic and metabolic mechanisms of this model organism, conditions for optimal production can be derived. Combined with a large repertoire of RNA motifs which can be assembled by recombinant DNA techniques, this opens the way to the modular design of RNA molecules with novel properties.
Collapse
|
32
|
Zeng Q, Ibekwe AM, Biddle E, Yang CH. Regulatory mechanisms of exoribonuclease PNPase and regulatory small RNA on T3SS of Dickeya dadantii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1345-1355. [PMID: 20831411 DOI: 10.1094/mpmi-03-10-0063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The type III secretion system (T3SS) is an essential virulence factor for many bacterial pathogens. Polynucleotide phosphorylase (PNPase) is one of the major exoribonucleases in bacteria and plays important roles in mRNA degradation, tRNA processing, and small RNA (sRNA) turnover. In this study, we showed that PNPase downregulates the transcription of T3SS structural and effector genes of the phytopathogenic bacterium Dickeya dadantii. This negative regulation of T3SS by PNPase occurs by repressing the expression of hrpL, encoding a master regulator of T3SS in D. dadantii. By reducing rpoN mRNA stability, PNPase downregulates the transcription of hrpL, which leads to a reduction in T3SS gene expression. Moreover, we have found that PNPase downregulates T3SS by decreasing hrpL mRNA stability. RsmB, a regulatory sRNA, enhances hrpL mRNA stability in D. dadantii. Our results suggest that PNPase decreases the amount of functional RsmB transcripts that could result in reduction of hrpL mRNA stability. In addition, bistable gene expression (differential expression of a single gene that creates two distinct subpopulations) of hrpA, hrpN, and dspE was observed in D. dadantii under in vitro conditions. Although PNPase regulates the proportion of cells in the high state and the low state of T3SS gene expression, it appears that PNPase is not the key switch that triggers the bistable expression patterns of T3SS genes.
Collapse
Affiliation(s)
- Quan Zeng
- Department of Biological Sciences, University of Wisconsin-Milwaukee, WI 53211, USA
| | | | | | | |
Collapse
|
33
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
34
|
Dutta T, Deutscher MP. Mode of action of RNase BN/RNase Z on tRNA precursors: RNase BN does not remove the CCA sequence from tRNA. J Biol Chem 2010; 285:22874-81. [PMID: 20489203 PMCID: PMC2906279 DOI: 10.1074/jbc.m110.141101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/13/2010] [Indexed: 11/06/2022] Open
Abstract
RNase BN, the Escherichia coli homolog of RNase Z, was previously shown to act as both a distributive exoribonuclease and an endoribonuclease on model RNA substrates and to be inhibited by the presence of a 3'-terminal CCA sequence. Here, we examined the mode of action of RNase BN on bacteriophage and bacterial tRNA precursors, particularly in light of a recent report suggesting that RNase BN removes CCA sequences (Takaku, H., and Nashimoto, M. (2008) Genes Cells 13, 1087-1097). We show that purified RNase BN can process both CCA-less and CCA-containing tRNA precursors. On CCA-less precursors, RNase BN cleaved endonucleolytically after the discriminator nucleotide to allow subsequent CCA addition. On CCA-containing precursors, RNase BN acted as either an exoribonuclease or endoribonuclease depending on the nature of the added divalent cation. Addition of Co(2+) resulted in higher activity and predominantly exoribonucleolytic activity, whereas in the presence of Mg(2+), RNase BN was primarily an endoribonuclease. In no case was any evidence obtained for removal of the CCA sequence. Certain tRNA precursors were extremely poor substrates under any conditions tested. These findings provide important information on the ability of RNase BN to process tRNA precursors and help explain the known physiological properties of this enzyme. In addition, they call into question the removal of CCA sequences by RNase BN.
Collapse
Affiliation(s)
- Tanmay Dutta
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| | - Murray P. Deutscher
- From the Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33101
| |
Collapse
|
35
|
Messenger RNA Turnover Processes in Escherichia coli, Bacillus subtilis, and Emerging Studies in Staphylococcus aureus. Int J Microbiol 2009; 2009:525491. [PMID: 19936110 PMCID: PMC2777011 DOI: 10.1155/2009/525491] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/14/2008] [Indexed: 11/17/2022] Open
Abstract
The regulation of mRNA turnover is a recently appreciated phenomenon by which bacteria modulate gene expression. This review outlines the mechanisms by which three major classes of bacterial trans-acting factors, ribonucleases (RNases), RNA binding proteins, and small noncoding RNAs (sRNA), regulate the transcript stability and protein production of target genes. Because the mechanisms of RNA decay and maturation are best characterized in Escherichia coli, the majority of this review will focus on how these factors modulate mRNA stability in this organism. However, we also address the effects of RNases, RNA binding proteins, sRNAs on mRNA turnover, and gene expression in Bacillus subtilis, which has served as a model for studying RNA processing in gram-positive organisms. We conclude by discussing emerging studies on the role modulating mRNA stability has on gene expression in the important human pathogen Staphylococcus aureus.
Collapse
|
36
|
Ozanick SG, Wang X, Costanzo M, Brost RL, Boone C, Anderson JT. Rex1p deficiency leads to accumulation of precursor initiator tRNAMet and polyadenylation of substrate RNAs in Saccharomyces cerevisiae. Nucleic Acids Res 2008; 37:298-308. [PMID: 19042972 PMCID: PMC2615624 DOI: 10.1093/nar/gkn925] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A synthetic genetic array was used to identify lethal and slow-growth phenotypes produced when a mutation in TRM6, which encodes a tRNA modification enzyme subunit, was combined with the deletion of any non-essential gene in Saccharomyces cerevisiae. We found that deletion of the REX1 gene resulted in a slow-growth phenotype in the trm6-504 strain. Previously, REX1 was shown to be involved in processing the 3′ ends of 5S rRNA and the dimeric tRNAArg-tRNAAsp. In this study, we have discovered a requirement for Rex1p in processing the 3′ end of tRNAiMet precursors and show that precursor tRNAiMet accumulates in a trm6-504 rex1Δ strain. Loss of Rex1p results in polyadenylation of its substrates, including tRNAiMet, suggesting that defects in 3′ end processing can activate the nuclear surveillance pathway. Finally, purified Rex1p displays Mg2+-dependent ribonuclease activity in vitro, and the enzyme is inactivated by mutation of two highly conserved amino acids.
Collapse
Affiliation(s)
- Sarah G Ozanick
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ibrahim H, Wilusz J, Wilusz CJ. RNA recognition by 3'-to-5' exonucleases: the substrate perspective. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1779:256-65. [PMID: 18078842 PMCID: PMC2365504 DOI: 10.1016/j.bbagrm.2007.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/08/2007] [Accepted: 11/09/2007] [Indexed: 12/30/2022]
Abstract
The 3'-to-5' exonucleolytic decay and processing of a variety of RNAs is an essential feature of RNA metabolism in all cells. The 3'-5' exonucleases, and in particular the exosome, are involved in a large number of pathways from 3' processing of rRNA, snRNA and snoRNA, to decay of mRNAs and mRNA surveillance. The potent enzymes performing these reactions are regulated to prevent processing of inappropriate substrates whilst mature RNA molecules exhibit several attributes that enable them to evade 3'-5' attack. How does an enzyme perform such selective activities on different substrates? The goal of this review is to provide an overview and perspective of available data on the underlying principles for the recognition of RNA substrates by 3'-to-5' exonucleases.
Collapse
Affiliation(s)
- Hend Ibrahim
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80525
| | - Jeffrey Wilusz
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80525
| | - Carol J. Wilusz
- Colorado State University, Department of Microbiology, Immunology and Pathology, Fort Collins, CO 80525
| |
Collapse
|
38
|
Abstract
Stable RNA, mainly comprised of rRNA and tRNA, accounts for the majority of cellular RNA. Although normally stable under favorable growth conditions in the laboratory, these RNA species undergo extensive degradation responding to many environmental changes and stress conditions. Multiple ribonucleases and other enzymes may be involved in the decay of stable RNA. The onset and rate of degradation are probably determined by the status of the RNA as well as the availability of the degrading activities. The elucidation of pathways for stable RNA decay has been benefited by many biochemical and genetic approaches. These include purification of the enzymes and characterization of their substrate specificity in vitro, and studies of stable RNA decay by inactivating and overexpressing the degradation activities in vivo. Furthermore, RNA degradation intermediates have been characterized in detail, such as determining the sizes, the sequences, the 5'- and 3'-termini, etc. In this work, we describe the methods that are most commonly used in the study of the degradation and processing of stable RNA in E. coli. Most of them should be also useful in studies of other RNA species or RNA from other organisms.
Collapse
Affiliation(s)
- Zhongwei Li
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida, USA
| | | |
Collapse
|
39
|
Lalonde MS, Zuo Y, Zhang J, Gong X, Wu S, Malhotra A, Li Z. Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. RNA (NEW YORK, N.Y.) 2007; 13:1957-68. [PMID: 17872508 PMCID: PMC2040080 DOI: 10.1261/rna.706207] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mycoplasma genitalium, a small bacterium having minimal genome size, has only one identified exoribonuclease, RNase R (MgR). We have purified MgR to homogeneity, and compared its RNA degradative properties to those of its Escherichia coli homologs RNase R (EcR) and RNase II (EcII). MgR is active on a number of substrates including oligoribonucleotides, poly(A), rRNA, and precursors to tRNA. Unlike EcR, which degrades rRNA and pre-tRNA without formation of intermediate products, MgR appears sensitive to certain RNA structural features and forms specific products from these stable RNA substrates. The 3'-ends of two MgR degradation products of 23S rRNA were mapped by RT-PCR to positions 2499 and 2553, each being 1 nucleotide downstream of a 2'-O-methylation site. The sensitivity of MgR to ribose methylation is further demonstrated by the degradation patterns of 16S rRNA and a synthetic methylated oligoribonucleotide. Remarkably, MgR removes the 3'-trailer sequence from a pre-tRNA, generating product with the mature 3'-end more efficiently than EcII does. In contrast, EcR degrades this pre-tRNA without the formation of specific products. Our results suggest that MgR shares some properties of both EcR and EcII and can carry out a broad range of RNA processing and degradative functions.
Collapse
Affiliation(s)
- Maureen S Lalonde
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Schuster J, Betat H, Mörl M. Is yeast on its way to evolving tRNA editing? EMBO Rep 2005; 6:367-72. [PMID: 15791267 PMCID: PMC1299291 DOI: 10.1038/sj.embor.7400381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 02/18/2005] [Accepted: 02/22/2005] [Indexed: 11/08/2022] Open
Abstract
In human mitochondria, genes for tRNA(Tyr) and tRNA(Cys) overlap by a single nucleotide. From polycistronic precursors, a 3'-truncated upstream tRNA(Tyr) is released, missing the overlapping position. A subsequent editing reaction restores this position. Similar mitochondrial tRNA gene overlaps exist in all metazoans, but not in organisms such as yeast or Escherichia coli. Therefore, we asked whether tRNA overlaps are processed in these organisms. Corresponding constructs were introduced and transcripts tested for processing and editing in E. coli and yeast. E. coli produces only one functional tRNA from these precursors, indicating that tRNA overlaps are incompatible with its processing pathway. In contrast, yeast processes overlapping tRNAs similar to human mitochondria, releasing a 3'-truncated upstream tRNA. This tRNA is restored in an editing-like event, although yeast does not carry a corresponding endogenous editing substrate. These findings support the hypothesis of the evolution of editing by recruitment of a pre-existing and promiscuous editing enzyme.
Collapse
Affiliation(s)
- Jens Schuster
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Heike Betat
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
- Tel: +49 341 3550 507; Fax: +49 341 3550 555; E-mail:
| |
Collapse
|
41
|
Li Z, Gong X, Joshi VH, Li M. Co-evolution of tRNA 3' trailer sequences with 3' processing enzymes in bacteria. RNA (NEW YORK, N.Y.) 2005; 11:567-77. [PMID: 15811923 PMCID: PMC1370745 DOI: 10.1261/rna.7287505] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Maturation of the tRNA 3' terminus is a complicated process in bacteria. Usually, it is initiated by an endonucleolytic cleavage carried out by RNase E and Z in different bacteria. In Escherichia coli, RNase E cleaves AU-rich sequences downstream of tRNA, producing processing intermediates with a few extra residues at the 3' end; these are then removed by exoribonuclease trimming to generate the mature 3' end. Here we show that essentially all E. coli tRNA precursors contain a potential RNase E cleavage site, the AU-rich sequence element (AUE), in the 3' trailer. This suggests that RNase E cleavage and exonucleolytic trimming is a general pathway for tRNA maturation in this organism. Remarkably, the AUE immediately downstream of each tRNA is selectively conserved in bacteria having RNase E and tRNA-specific exoribonucleases, suggesting that this pathway for tRNA processing is also commonly used in these bacteria. Two types of RNase E-like proteins are identified in actinobacteria and the alpha-subdivision of proteobacteria. The tRNA 3' proximal AUE is conserved in bacteria with only one type of E-like protein. Selective conservation of the AUE is usually not observed in bacteria without RNase E. These results demonstrate a novel example of co-evolution of RNA sequences with processing activities.
Collapse
Affiliation(s)
- Zhongwei Li
- Department of Biomedical Sciences, Florida Atlantic University, 777 Glades Road, BC71, Boca Raton, FL 33431, USA.
| | | | | | | |
Collapse
|
42
|
Yakunin AF, Proudfoot M, Kuznetsova E, Savchenko A, Brown G, Arrowsmith CH, Edwards AM. The HD domain of the Escherichia coli tRNA nucleotidyltransferase has 2',3'-cyclic phosphodiesterase, 2'-nucleotidase, and phosphatase activities. J Biol Chem 2004; 279:36819-27. [PMID: 15210699 DOI: 10.1074/jbc.m405120200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all mature tRNAs, the 3'-terminal CCA sequence is synthesized or repaired by a template-independent nucleotidyltransferase (ATP(CTP):tRNA nucleotidyltransferase; EC 2.7.7.25). The Escherichia coli enzyme comprises two domains: an N-terminal domain containing the nucleotidyltransferase activity and an uncharacterized C-terminal HD domain. The HD motif defines a superfamily of metal-dependent phosphohydrolases that includes a variety of uncharacterized proteins and domains associated with nucleotidyltransferases and helicases from bacteria, archaea, and eukaryotes. The C-terminal HD domain in E. coli tRNA nucleotidyltransferase demonstrated Ni(2+)-dependent phosphatase activity toward pyrophosphate, canonical 5'-nucleoside tri- and diphosphates, NADP, and 2'-AMP. Assays with phosphodiesterase substrates revealed surprising metal-independent phosphodiesterase activity toward 2',3'-cAMP, -cGMP, and -cCMP. Without metal or in the presence of Mg(2+), the tRNA nucleotidyltransferase hydrolyzed 2',3'-cyclic substrates with the formation of 2'-nucleotides, whereas in the presence of Ni(2+), the protein also produced some 3'-nucleotides. Mutations at the conserved His-255 and Asp-256 residues comprising the C-terminal HD domain of this protein inactivated both phosphodiesterase and phosphatase activities, indicating that these activities are associated with the HD domain. Low concentrations of the E. coli tRNA (10 nm) had a strong inhibiting effect on both phosphatase and phosphodiesterase activities. The competitive character of inhibition by tRNA suggests that it might be a natural substrate for these activities. This inhibition was completely abolished by the addition of Mg(2+), Mn(2+), or Ca(2+), but not Ni(2+). The data suggest that the phosphohydrolase activities of the HD domain of the E. coli tRNA nucleotidyltransferase are involved in the repair of the 3'-CCA end of tRNA.
Collapse
Affiliation(s)
- Alexander F Yakunin
- Banting and Best Department of Medical Research and Structural Genomics Consortium, 112 College St., University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Cho HD, Oyelere AK, Strobel SA, Weiner AM. Use of nucleotide analogs by class I and class II CCA-adding enzymes (tRNA nucleotidyltransferase): deciphering the basis for nucleotide selection. RNA (NEW YORK, N.Y.) 2003; 9:970-981. [PMID: 12869708 PMCID: PMC1370463 DOI: 10.1261/rna.2110903] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Accepted: 04/29/2003] [Indexed: 05/24/2023]
Abstract
We explored the specificity and nature of the nucleotide-binding pocket of the CCA-adding enzyme (tRNA nucleotidyltransferase) by using CTP and ATP analogs as substrates for a panel of class I and class II enzymes. Overall, class I and class II enzymes displayed remarkably similar substrate requirements, implying that the mechanism of CCA addition is conserved between enzyme classes despite the absence of obvious sequence homology outside the active site signature sequence. CTP substrates are more tolerant of base modifications than ATP substrates, but sugar modifications prevent incorporation of both CTP and ATP analogs by class I and class II enzymes. Use of CTP analogs (zebularine, pseudoisocytidine, 6-azacytidine, but not 6-azauridine) suggests that base modifications generally do not interfere with recognition or incorporation of CTP analogs by either class I or class II enzymes, and that UTP is excluded because N-3 is a positive determinant and/or O-4 is an antideterminant. Use of ATP analogs (N6-methyladenosine, diaminopurine, purine, 2-aminopurine, and 7-deaza-adenosine, but not guanosine, deoxyadenosine, 2'-O-methyladenosine, 2'-deoxy-2'-fluoroadenosine, or inosine) suggests that base modifications generally do not interfere with recognition or incorporation of ATP analogs by either class I or class II enzymes, and that GTP is excluded because N-1 is a positive determinant and/or the 2-amino and 6-keto groups are antideterminants. We also found that the 3'-terminal sequence of the growing tRNA substrate can affect the efficiency or specificity of subsequent nucleotide addition. Our data set should allow rigorous evaluation of structural hypotheses for nucleotide selection based on existing and future crystal structures.
Collapse
Affiliation(s)
- Hyundae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
44
|
Abstract
This review focuses on the enzymes and pathways of RNA processing and degradation in Bacillus subtilis, and compares them to those of its gram-negative counterpart, Escherichia coli. A comparison of the genomes from the two organisms reveals that B. subtilis has a very different selection of RNases available for RNA maturation. Of 17 characterized ribonuclease activities thus far identified in E. coli and B. subtilis, only 6 are shared, 3 exoribonucleases and 3 endoribonucleases. Some enzymes essential for cell viability in E. coli, such as RNase E and oligoribonuclease, do not have homologs in B. subtilis, and of those enzymes in common, some combinations are essential in one organism but not in the other. The degradation pathways and transcript half-lives have been examined to various degrees for a dozen or so B. subtilis mRNAs. The determinants of mRNA stability have been characterized for a number of these and point to a fundamentally different process in the initiation of mRNA decay. While RNase E binds to the 5' end and catalyzes the rate-limiting cleavage of the majority of E. coli RNAs by looping to internal sites, the equivalent nuclease in B. subtilis, although not yet identified, is predicted to scan or track from the 5' end. RNase E can also access cleavage sites directly, albeit less efficiently, while the enzyme responsible for initiating the decay of B. subtilis mRNAs appears incapable of direct entry. Thus, unlike E. coli, RNAs possessing stable secondary structures or sites for protein or ribosome binding near the 5' end can have very long half-lives even if the RNA is not protected by translation.
Collapse
Affiliation(s)
- Ciarán Condon
- UPR 9073, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| |
Collapse
|
45
|
MESH Headings
- Active Transport, Cell Nucleus
- Endoribonucleases/metabolism
- Genes, Fungal
- Mitochondria/metabolism
- Models, Biological
- Nucleic Acid Conformation
- Protein Biosynthesis
- RNA Editing
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA, Catalytic/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribonuclease P
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Anita K Hopper
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
46
|
Zuo Y, Deutscher MP. The physiological role of RNase T can be explained by its unusual substrate specificity. J Biol Chem 2002; 277:29654-61. [PMID: 12050169 DOI: 10.1074/jbc.m204252200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli RNase T, the enzyme responsible for the end-turnover of tRNA and for the 3' maturation of 5 S and 23 S rRNAs and many other small, stable RNAs, was examined in detail with respect to its substrate specificity. The enzyme was found to be a single-strand-specific exoribonuclease that acts in the 3' to 5' direction in a non-processive manner. However, although other Escherichia coli exoribonucleases stop several nucleotides downstream of an RNA duplex, RNase T can digest RNA up to the first base pair. The presence of a free 3'-hydroxyl group is required for the enzyme to initiate digestion. Studies with RNA homopolymers and a variety of oligoribonucleotides revealed that RNase T displays an unusual base specificity, discriminating against pyrimidine and, particularly, C residues. Although RNase T appears to bind up to 10 nucleotides in its active site, its specificity is defined largely by the last 4 residues. A single 3'-terminal C residue can reduce RNase T action by >100-fold, and 2-terminal C residues essentially stop the enzyme. In vivo, the substrates of RNase T are similar in that they all contain a double-stranded stem followed by a single-stranded 3' overhang; yet, the action of RNase T on these substrates differs. The substrate specificity described here helps to explain why the different substrates yield different products, and why certain RNA molecules are not substrates at all.
Collapse
Affiliation(s)
- Yuhong Zuo
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | |
Collapse
|
47
|
Abstract
RNase E, an essential endoribonuclease in Escherichia coli, is involved in 9S rRNA processing, the degradation of many mRNAs, and the processing of the M1 RNA subunit of RNase P. However, the reason that RNase E is required for cell viability is still not fully understood. In fact, recent experiments have suggested that defects in 9S rRNA processing and mRNA decay are not responsible for the lack of cell growth in RNase E mutants. By using several new rne alleles, we have confirmed these observations and have also ruled out that M1 processing by RNase E is required for cell viability. Rather, our data suggest that the critical in vivo role of RNase E is the initiation of tRNA maturation. Specifically, RNase E catalytic activity starts the processing of both polycistronic operons, such as glyW cysT leuZ, argX hisR leuT proM, and lysT valT lysW valZ lysY lysZ lysQ, as well as monocistronic transcripts like pheU, pheV, asnT, asnU, asnV, and asnW. Cleavage by RNase E within a few nucleotides of the mature 3' CCA terminus is required before RNase P and the various 3' --> 5' exonucleases can complete tRNA maturation. All 59 tRNAs tested involved RNase E processing, although some were cleaved more efficiently than others.
Collapse
Affiliation(s)
- Maria C Ow
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
48
|
Briani F, Del Vecchio E, Migliorini D, Hajnsdorf E, Régnier P, Ghisotti D, Dehò G. RNase E and polyadenyl polymerase I are involved in maturation of CI RNA, the P4 phage immunity factor. J Mol Biol 2002; 318:321-31. [PMID: 12051840 DOI: 10.1016/s0022-2836(02)00085-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophage P4 immunity is controlled by a small stable RNA (CI RNA) that derives from the processing of primary transcripts. In previous works, we observed that the endonuclease RNase P is required for the maturation of CI RNA 5'-end; moreover, we found that polynucleotide phosphorylase (PNPase), a 3' to 5' RNA-degrading enzyme, is required for efficient 5'-end processing of CI RNA, suggesting that 3'-end degradation of the primary transcript might be involved in the production of proper RNase P substrates. Here, we demonstrate that another Escherichia coli nuclease, RNase E, would appear to be involved in this process. We found that transcripts of the P4 immunity region are modified by the post-transcriptional addition of short poly(A) tails and heteropolymeric tails with prevalence of A residues. Most oligoadenylated transcripts encompass the whole cI locus and are thus compatible as intermediates in the CI RNA maturation pathway. On the contrary, in a polynucleotide phosphorylase (PNPase)-defective host, adenylation occurred most frequently within cI, implying that such transcripts are targeted for degradation. We did not find polyadenylation in a pcnB mutant, suggesting that the pcnB-encoded polyadenyl polymerase I (PAP I) is the only enzyme responsible for modification of P4 immunity transcripts. Maturation of CI RNA 5'-end in such a mutant was impaired, further supporting the idea that processing of the 3'-end of primary transcripts is an important step for efficient maturation of CI RNA by RNase P.
Collapse
Affiliation(s)
- Federica Briani
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
Cho HD, Tomita K, Suzuki T, Weiner AM. U2 small nuclear RNA is a substrate for the CCA-adding enzyme (tRNA nucleotidyltransferase). J Biol Chem 2002; 277:3447-55. [PMID: 11700323 DOI: 10.1074/jbc.m109559200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CCA-adding enzyme builds and repairs the 3' terminus of tRNA. Approximately 65% of mature human U2 small nuclear RNA (snRNA) ends in 3'-terminal CCA, as do all mature tRNAs; the other 35% ends in 3' CC or possibly 3' C. The 3'-terminal A of U2 snRNA cannot be encoded because the 3' end of the U2 snRNA coding region is CC/CC, where the slash indicates the last encoded nucleotide. The first detectable U2 snRNA precursor contains 10-16 extra 3' nucleotides that are removed by one or more 3' exonucleases. Thus, if 3' exonuclease activity removes the encoded 3' CC during U2 snRNA maturation, as appears to be the case in vitro, the cell may need to build or rebuild the 3'-terminal A, CA, or CCA of U2 snRNA. We asked whether homologous and heterologous class I and class II CCA-adding enzymes could add 3'-terminal A, CA, or CCA to human U2 snRNA lacking 3'-terminal A, CA, or CCA. The naked U2 snRNAs were good substrates for the human CCA-adding enzyme but were inactive with the Escherichia coli enzyme; activity was also observed on native U2 snRNPs. We suggest that the 3' stem/loop of U2 snRNA resembles a tRNA minihelix, the smallest efficient substrate for class I and II CCA-adding enzymes, and that CCA addition to U2 snRNA may take place in vivo after snRNP assembly has begun.
Collapse
Affiliation(s)
- HyunDae D Cho
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
50
|
Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:67-105. [PMID: 11051762 DOI: 10.1016/s0079-6603(00)66027-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In recent years there has been a dramatic shift in our thinking about ribonucleases (RNases). Although they were once considered to be nonspecific, degradative enzymes, it is now clear that RNases play a central role in every aspect of cellular RNA metabolism, including decay of mRNA, conversion of RNA precursors to their mature forms, and end-turnover of certain RNAs. Recognition of the importance of this class of enzymes has led to an explosion of work and the establishment of significant new concepts. Thus, we now realize that RNases, both endoribonucleases and exoribonucleases, can be highly specific for particular sequences or structures. It has also become apparent that a single cell can contain a large number of distinct RNases, approaching as many as 20 members, often with overlapping specificities. Some RNases also have been found to be components of supramolecular complexes and to function in concert with other enzymes to carry out their role in RNA metabolism. This review focuses on the exoribonucleases, both prokaryotic and eukaryotic, and details their structure, catalytic properties, and physiological function.
Collapse
Affiliation(s)
- M P Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | |
Collapse
|