1
|
Abstract
Transposable phage Mu has played a major role in elucidating the mechanism of movement of mobile DNA elements. The high efficiency of Mu transposition has facilitated a detailed biochemical dissection of the reaction mechanism, as well as of protein and DNA elements that regulate transpososome assembly and function. The deduced phosphotransfer mechanism involves in-line orientation of metal ion-activated hydroxyl groups for nucleophilic attack on reactive diester bonds, a mechanism that appears to be used by all transposable elements examined to date. A crystal structure of the Mu transpososome is available. Mu differs from all other transposable elements in encoding unique adaptations that promote its viral lifestyle. These adaptations include multiple DNA (enhancer, SGS) and protein (MuB, HU, IHF) elements that enable efficient Mu end synapsis, efficient target capture, low target specificity, immunity to transposition near or into itself, and efficient mechanisms for recruiting host repair and replication machineries to resolve transposition intermediates. MuB has multiple functions, including target capture and immunity. The SGS element promotes gyrase-mediated Mu end synapsis, and the enhancer, aided by HU and IHF, participates in directing a unique topological architecture of the Mu synapse. The function of these DNA and protein elements is important during both lysogenic and lytic phases. Enhancer properties have been exploited in the design of mini-Mu vectors for genetic engineering. Mu ends assembled into active transpososomes have been delivered directly into bacterial, yeast, and human genomes, where they integrate efficiently, and may prove useful for gene therapy.
Collapse
|
2
|
The N-terminal domain of MuB protein has striking structural similarity to DNA-binding domains and mediates MuB filament-filament interactions. J Struct Biol 2015; 191:100-11. [PMID: 26169224 DOI: 10.1016/j.jsb.2015.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 11/21/2022]
Abstract
MuB is an ATP-dependent DNA-binding protein that regulates the activity of MuA transposase and delivers the target DNA for transposition of phage Mu. Mechanistic insight into MuB function is limited to its AAA+ ATPase module, which upon ATP binding assembles into helical filaments around the DNA. However, the structure and function of the flexible N-terminal domain (NTD) appended to the AAA+ module remains uncharacterized. Here we report the solution structure of MuB NTD determined by NMR spectroscopy. The structure reveals a compact domain formed by four α-helices connected by short loops, and confirms the presence of a helix-turn-helix motif. High structural similarity and sequence homology with λ repressor-like DNA-binding domains suggest a possible role of MuB NTD in DNA binding. We also demonstrate that the NTD directly mediates the ability of MuB to establish filament-filament interactions. These findings lead us to a model in which the NTD interacts with the AAA+ spirals and perhaps also with the DNA bound within the filament, favoring MuB polymerization and filament clustering. We propose that the MuB NTD-dependent filament interactions might be an effective mechanism to bridge distant DNA regions during Mu transposition.
Collapse
|
3
|
Dramićanin M, Ramón-Maiques S. MuB gives a new twist to target DNA selection. Mob Genet Elements 2013; 3:e27515. [PMID: 24478936 PMCID: PMC3894238 DOI: 10.4161/mge.27515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/12/2013] [Indexed: 11/27/2022] Open
Abstract
Transposition target immunity is a phenomenon observed in some DNA transposons that are able to distinguish the host chromosome from their own DNA sequence, thus avoiding self-destructive insertions. The first molecular insight into target selection and immunity mechanisms came from the study of phage Mu transposition, which uses the protein MuB as a barrier to self-insertion. MuB is an ATP-dependent non-specific DNA binding protein that regulates the activity of the MuA transposase and captures target DNA for transposition. However, a detailed mechanistic understanding of MuB functioning was hindered by the poor solubility of the MuB-ATP complexes. Here we comment on the recent discovery that MuB is an AAA+ ATPase that upon ATP binding assembles into helical filaments that coat the DNA. Remarkably, the helical parameters of the MuB filament do not match those of the bound DNA. This intriguing mismatch symmetry led us to propose a model on how MuB targets DNA for transposition, favoring DNA bending and recognition by the transposase at the filament edge. We also speculate on a different protective role of MuB during immunity, where filament stickiness could favor the condensation of the DNA into a compact state that occludes it from the transposase.
Collapse
Affiliation(s)
- Marija Dramićanin
- Structural Bases of Genome Integrity Group; Structural Biology and Biocomputing Programme; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| | - Santiago Ramón-Maiques
- Structural Bases of Genome Integrity Group; Structural Biology and Biocomputing Programme; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| |
Collapse
|
4
|
MuB is an AAA+ ATPase that forms helical filaments to control target selection for DNA transposition. Proc Natl Acad Sci U S A 2013; 110:E2441-50. [PMID: 23776210 DOI: 10.1073/pnas.1309499110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MuB is an ATP-dependent nonspecific DNA-binding protein that regulates the activity of the MuA transposase and captures target DNA for transposition. Mechanistic understanding of MuB function has previously been hindered by MuB's poor solubility. Here we combine bioinformatic, mutagenic, biochemical, and electron microscopic analyses to unmask the structure and function of MuB. We demonstrate that MuB is an ATPase associated with diverse cellular activities (AAA+ ATPase) and forms ATP-dependent filaments with or without DNA. We also identify critical residues for MuB's ATPase, DNA binding, protein polymerization, and MuA interaction activities. Using single-particle electron microscopy, we show that MuB assembles into a helical filament, which binds the DNA in the axial channel. The helical parameters of the MuB filament do not match those of the coated DNA. Despite this protein-DNA symmetry mismatch, MuB does not deform the DNA duplex. These findings, together with the influence of MuB filament size on strand-transfer efficiency, lead to a model in which MuB-imposed symmetry transiently deforms the DNA at the boundary of the MuB filament and results in a bent DNA favored by MuA for transposition.
Collapse
|
5
|
Ge J, Lou Z, Harshey RM. Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein. Mob DNA 2010; 1:8. [PMID: 20226074 PMCID: PMC2837660 DOI: 10.1186/1759-8753-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 02/01/2010] [Indexed: 01/11/2023] Open
Abstract
We describe a new immunity mechanism that protects actively replicating/transposing Mu from self-integration. We show that this mechanism is distinct from the established cis-immunity mechanism, which operates by removal of MuB protein from DNA adjacent to Mu ends. MuB normally promotes integration into DNA to which it is bound, hence its removal prevents use of this DNA as target. Contrary to what might be expected from a cis-immunity mechanism, strong binding of MuB was observed throughout the Mu genome. We also show that the cis-immunity mechanism is apparently functional outside Mu ends, but that the level of protection offered by this mechanism is insufficient to explain the protection seen inside Mu. Thus, both strong binding of MuB inside and poor immunity outside Mu testify to a mechanism of immunity distinct from cis-immunity, which we call 'Mu genome immunity'. MuB has the potential to coat the Mu genome and prevent auto-integration as previously observed in vitro on synthetic A/T-only DNA, where strong MuB binding occluded the entire bound region from Mu insertions. The existence of two rival immunity mechanisms within and outside the Mu genome, both employing MuB, suggests that the replicating Mu genome must be segregated into an independent chromosomal domain. We propose a model for how formation of a 'Mu domain' may be aided by specific Mu sequences and nucleoid-associated proteins, promoting polymerization of MuB on the genome to form a barrier against self-integration.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
6
|
Effects of familial Alzheimer's disease mutations on the folding nucleation of the amyloid beta-protein. J Mol Biol 2008; 381:221-8. [PMID: 18597778 DOI: 10.1016/j.jmb.2008.05.069] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 05/22/2008] [Accepted: 05/28/2008] [Indexed: 01/13/2023]
Abstract
The effect of single amino acid substitutions associated with the Italian (E22K), Arctic (E22G), Dutch (E22Q) and Iowa (D23N) familial forms of Alzheimer's disease and cerebral amyloid angiopathy on the structure of the 21-30 fragment of the Alzheimer amyloid beta-protein (Abeta) is investigated by replica-exchange molecular dynamics simulations. The 21-30 segment has been shown in our earlier work to adopt a bend structure in solution that may serve as the folding nucleation site for Abeta. Our simulations reveal that the 24-28 bend motif is retained in all E22 mutants, suggesting that mutations involving residue E22 may not affect the structure of the folding nucleation site of Abeta. Enhanced aggregation in Abeta with familial Alzheimer's disease substitutions may result from the depletion of the E22-K28 salt bridge, which destabilizes the bend structure. Alternately, the E22 mutations may affect longer-range interactions outside the 21-30 segment that can impact the aggregation of Abeta. Substituting at residue D23, on the other hand, leads to the formation of a turn rather than a bend motif, implying that in contrast to E22 mutants, the D23N mutant may affect monomer Abeta folding and subsequent aggregation. Our simulations suggest that the mechanisms by which E22 and D23 mutations affect the folding and aggregation of Abeta are fundamentally different.
Collapse
|
7
|
Greene EC, Mizuuchi K. Visualizing the assembly and disassembly mechanisms of the MuB transposition targeting complex. J Biol Chem 2004; 279:16736-43. [PMID: 14871890 DOI: 10.1074/jbc.m311883200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MuB, a protein essential for replicative DNA transposition by the bacteriophage Mu, is an ATPase that assembles into a polymeric complex on DNA. We used total internal reflection fluorescence microscopy to observe the behavior of MuB polymers on single molecules of DNA. We demonstrate that polymer assembly is initiated by a stochastic nucleation event. After nucleation, polymer assembly occurs by a mechanism involving the sequential binding of small units of MuB. MuB that bound to A/T-rich regions of the DNA assembled into large polymeric complexes. In contrast, MuB that bound outside of the A/T-rich regions failed to assemble into large oligomeric complexes. Our data also show that MuB does not catalyze multiple rounds of ATP hydrolysis while remaining bound to DNA. Rather, a single ATP is hydrolyzed, then MuB dissociates from the DNA. Finally, we show that "capping" of the enhanced green fluorescent protein-MuB polymer ends with unlabeled MuB dramatically slows, but does not halt, dissociation. This suggests that MuB dissociation occurs through both an end-dependent mechanism and a slower mechanism wherein subunits dissociate from the polymer interior.
Collapse
Affiliation(s)
- Eric C Greene
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
8
|
Coros CJ, Sekino Y, Baker TA, Chaconas G. Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase. J Biol Chem 2003; 278:31210-7. [PMID: 12791691 DOI: 10.1074/jbc.m303693200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage Mu transposition requires two phage-encoded proteins, the transposase, Mu A, and an accessory protein, Mu B. Mu B is an ATP-dependent DNA-binding protein that is required for target capture and target immunity and is an allosteric activator of transpososome function. The recent NMR structure of the C-terminal domain of Mu B (Mu B223-312) revealed that there is a patch of positively charged residues on the solvent-exposed surface. This patch may be responsible for the nonspecific DNA binding activity displayed by the purified Mu B223-312 peptide. We show that mutations of three lysine residues within this patch completely abolish nonspecific DNA binding of the C-terminal peptide (Mu B223- 312). To determine how this DNA binding activity affects transposition we mutated these lysine residues in the full-length protein. The full-length protein carrying all three mutations was deficient in both strand transfer and allosteric activation of transpososome function but retained ATPase activity. Peptide binding studies also revealed that this patch of basic residues within the C-terminal domain of Mu B is within a region of the protein that interacts directly with Mu A. Thus, we conclude that this protein segment contributes to both DNA binding and protein-protein contacts with the Mu transposase.
Collapse
Affiliation(s)
- Colin J Coros
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
9
|
Greene EC, Mizuuchi K. Dynamics of a protein polymer: the assembly and disassembly pathways of the MuB transposition target complex. EMBO J 2002; 21:1477-86. [PMID: 11889053 PMCID: PMC125918 DOI: 10.1093/emboj/21.6.1477] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MuB assembles into a polymer on DNA in the presence of ATP and is directly involved in the selection of an appropriate site on the Escherichia coli chromosome for the insertion of the bacteriophage Mu genome. We have developed an assay using fluorescently tagged proteins to monitor the polymeric state of MuB via fluorescence resonance energy transfer. We show that polymer assembly is initiated by the formation of an ATP-MuB complex. MuB then self-associates into a protomer before binding to DNA. Upon binding to DNA, a dramatic increase in energy transfer is observed, suggesting a conformational change within MuB. Polymer disassembly is much slower than assembly and is greatly stimulated by the MuA transposase. Additionally, MuB is readily exchanged between polymers, and ATP hydrolysis is directly coupled to polymer disassembly. Our data support a model in which a combination of rapid polymer assembly, MuA-mediated disassembly, followed by rapid reassembly of the polymer allows MuB to sample multiple DNA targets until an appropriate site is located for the insertion of the bacteriophage genome.
Collapse
Affiliation(s)
| | - Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
10
|
Coros CJ, Chaconas G. Effect of mutations in the Mu-host junction region on transpososome assembly. J Mol Biol 2001; 310:299-309. [PMID: 11428891 DOI: 10.1006/jmbi.2001.4772] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mu transposition occurs through a series of higher-order nucleoprotein complexes called transpososomes. The region where the Mu DNA joins the host DNA plays an integral role in the assembly of these transpososomes. We have created a series of point mutations at the Mu-host junction and characterized their effect on the Mu in vitro strand transfer reaction. Analysis of these mutant constructs revealed an inhibition in transpososome assembly at the point in the reaction pathway when the junction region is engaged by the transposase active site (i.e. the transition from LER to type 0). We found that the degree of inhibition was dependent upon the particular base-pair change at each position and whether the substitution occurred at the left or right transposon end. The MuB transposition protein, an allosteric effector of MuA, was shown to suppress all of the inhibitory Mu-host junction mutants. Most of the mutant constructs were also suppressed, to varying degrees, by the substitution of Mg(2+) with Mn(2+). Analysis of the mutant constructs has revealed hierarchical nucleotide preferences at positions -1 through +3 for transpososome assembly and suggests the possibility that specific metal ion-DNA base interactions are involved in DNA recognition and transpososome assembly.
Collapse
Affiliation(s)
- C J Coros
- The Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
11
|
Roldan LA, Baker TA. Differential role of the Mu B protein in phage Mu integration vs. replication: mechanistic insights into two transposition pathways. Mol Microbiol 2001; 40:141-55. [PMID: 11298282 DOI: 10.1046/j.1365-2958.2001.02364.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Mu B protein is an ATP-dependent DNA-binding protein and an allosteric activator of the Mu transposase. As a result of these activities, Mu B is instrumental in efficient transposition and target-site choice. We analysed in vivo the role of Mu B in the two different recombination reactions performed by phage Mu: non-replicative transposition, the pathway used during integration, and replicative transposition, the pathway used during lytic growth. Utilizing a sensitive PCR-based assay for Mu transposition, we found that Mu B is not required for integration, but enhances the rate and extent of the process. Furthermore, three different mutant versions of Mu B, Mu BC99Y, Mu BK106A, and Mu B1-294, stimulate integration to a similar level as the wild-type protein. In contrast, these mutant proteins fail to support Mu growth. This deficiency is attributable to a defect in formation of an essential intermediate for replicative transposition. Biochemical analysis of the Mu B mutant proteins reveals common features: the mutants retain the ability to stimulate transposase, but are defective in DNA binding and target DNA delivery. These data indicate that activation of transposase by Mu B is sufficient for robust non-replicative transposition. Efficient replicative transposition, however, demands that the Mu B protein not only activate transposase, but also bind and deliver the target DNA.
Collapse
Affiliation(s)
- L A Roldan
- Department of Biology and the Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-523 Cambridge, MA 02139, USA
| | | |
Collapse
|
12
|
Millner A, Chaconas G. Disruption of target DNA binding in Mu DNA transposition by alteration of position 99 in the Mu B protein. J Mol Biol 1998; 275:233-43. [PMID: 9466906 DOI: 10.1006/jmbi.1997.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Target DNA binding by the Mu B protein is an important step in phage Mu transposition; however, the region of Mu B involved in target binding and the mechanism of the interaction are unknown. Previous studies have demonstrated that modification of Mu B with the sulfhydryl-specific reagent N-ethylmaleimide can selectively inhibit target DNA binding. We now show that individual mutation of the three cysteines in Mu B to serine results in proteins which are active in intermolecular strand transfer, but demonstrate variable levels of N-ethylmaleimide resistance. The data indicate that cysteine 99 is the primary site of modification affecting target DNA binding, with a minor contribution resulting from the derivatization of cysteine 129. These findings are confirmed by the construction of Mu B mutants containing a bulky side-chain at the individual cysteine to mimic the N-ethylmaleimide modified protein. The C99Y protein shows a complete loss in target-dependent strand transfer activity under standard reaction conditions and C129Y displays partial activity. The effect of the tyrosine substitutions is specific for target interaction as both mutants show wild-type activity in their ability to stimulate the Mu transposase to perform donor cleavage and intramolecular strand transfer. Finally, a target dissociation assay has shown that the C99Y-DNA complex generated in the presence of ATP-gamma-S has a drastically reduced half-life as previously found for N-ethylmaleimide treated wild-type Mu B. Modification of cysteine 99 is proposed to block target DNA binding by causing steric interference near the DNA binding pocket.
Collapse
Affiliation(s)
- A Millner
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
13
|
Affiliation(s)
- B D Lavoie
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
14
|
Ulycznyj PI, Salmon KA, Douillard H, DuBow MS. Characterization of the Pseudomonas aeruginosa transposable bacteriophage D3112 A and B genes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1264:249-53. [PMID: 8547306 DOI: 10.1016/0167-4781(95)00186-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The left end DNA of Mu-like transposable bacteriophage D3112 was sequenced from bp 2521 to bp 5483. Two large open reading frames were identified: ORF A (bp 2539-4611) and ORF B (bp 4626-5378). ORF A can encode a 690 amino acid, 78 kDa protein which is 44.4% similar to Mu transposase and ORF B can encode a 250 amino acid, 27 kDa protein, which is 46.4% similar to, though 62 amino acids shorter than, the Mu B protein. The cloned D3112 A gene exhibited activity on a mini-D3112-containing plasmid in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- P I Ulycznyj
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
15
|
|
16
|
Leung PC, Harshey RM. Two mutations of phage mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains. J Mol Biol 1991; 219:189-99. [PMID: 1645409 DOI: 10.1016/0022-2836(91)90561-j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two mutations within the transposase (the A protein) gene of phage Mu with distinct effects on DNA transposition have been studied. The first mutation maps to the central domain (domain II) of A, a protein consisting of three major structural domains. The variant protein is normal in synapsis and cleavage of Mu ends but is temperature-sensitive in the strand transfer reaction, joining the Mu ends to target DNA. The second mutation is a deletion at the C terminus (within domain III); on the basis of genetic studies, the mutant protein is predicted to have lost the ability to interact with the Mu B protein. The B protein, in conjunction with A, promotes efficient intermolecular transposition, while inhibiting intramolecular transposition. We show that the purified mutant protein is proficient in intramolecular, but not intermolecular transposition in vitro. The interactions between A and B proteins have been followed by a proteolysis assay. The chymotrypsin sensitivity of the interdomainal Phe221-Ser222 peptide bond within the bidomainally organized B protein is exquisitely modulated by ATP, DNA and A protein. The sensitive or "open" state of this bond in native B protein becomes partially "open" upon binding of ATP by B, attains a "closed" or resistant configuration upon binding of DNA in presence of ATP, and is rendered "open" again upon addition of the A protein. In this test for the interaction of A protein with B protein-DNA complex, the domain II mutant behaves like wild-type A protein. However, the domain III mutant fails to restore chymotrypsin susceptibility of the Phe221-Ser222 bond.
Collapse
Affiliation(s)
- P C Leung
- Department of Microbiology, University of Texas, Austin 78712
| | | |
Collapse
|
17
|
Adzuma K, Mizuuchi K. Steady-state kinetic analysis of ATP hydrolysis by the B protein of bacteriophage mu. Involvement of protein oligomerization in the ATPase cycle. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38098-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Abstract
Tn552, one of several closely related beta-lactamase-encoding transposons from Staphylococcus aureus, has a novel set of putative transposition functions. Each is homologous with a well-characterized function from a different type of mobile genetic element. Thus, Tn552 encodes: (i) resL-binL, a co-integrate resolution system homologous with those of Tn3 family elements; (ii) p480, a potential transposase significantly homologous with the DNA integrases of eukaryotic retroviruses and retrotransposons; and (iii) p271, a potential ATP-binding protein that shows homology with the B protein of phage Mu. The 3' terminal nucleotides of Tn552 (CA), adjacent to which p480 might cleave, are the same as those of retroviruses, retrotransposons and phage Mu. The presumptive resolvase (BinL) is very closely related to BinR, which was identified as a DNA invertase and is now shown to resolve an artificial co-integrate in vivo. Furthermore, the structure of the derivative of Tn552 found in the staphylococcal plasmid pI258 can be explained by a BinL (or BinR)-mediated site-specific deletion ('resolution') event. Thus, pI258 contains only the right-hand half of Tn552, which encodes the beta-lactamase and two regulatory proteins. The latter are homologous with the beta-lactamase gene repressor and co-inducer of Bacillus licheniformis. Interestingly, the order of the regulatory genes is reversed in S. aureus compared with Bacillus licheniformis.
Collapse
Affiliation(s)
- S J Rowland
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
19
|
Leung PC, Teplow DB, Harshey RM. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature 1989; 338:656-8. [PMID: 2539564 DOI: 10.1038/338656a0] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacteriophage Mu is the largest and most efficient transposable element known. The Mu transposase (A protein) of relative molecular mass 75,000 is a central component of the transposition machinery. We report here that the N-terminal region of Mu transposase contains two distinct DNA-binding domains, one which binds the two Mu DNA ends, and another which binds an internal operator region. This internal operator is required for the transposase-mediated synapsis and nicking of Mu ends in vitro, and stimulates transposition more than 100-fold in vivo. The orientation of the operator with respect to the ends is critical to its function, whereas its distance from the ends seems to be relatively unimportant. We propose that the operator enhances transposition by transiently interacting with the transposase and Mu DNA end(s) to form a complex in which synapsis of the ends occurs.
Collapse
Affiliation(s)
- P C Leung
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | |
Collapse
|