1
|
Park Y, Solhtalab M, Thongsomboon W, Aristilde L. Strategies of organic phosphorus recycling by soil bacteria: acquisition, metabolism, and regulation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:3-24. [PMID: 35001516 PMCID: PMC9306846 DOI: 10.1111/1758-2229.13040] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 05/12/2023]
Abstract
Critical to meeting cellular phosphorus (P) demand, soil bacteria deploy a number of strategies to overcome limitation in inorganic P (Pi ) in soils. As a significant contributor to P recycling, soil bacteria secrete extracellular enzymes to degrade organic P (Po ) in soils into the readily bioavailable Pi . In addition, several Po compounds can be transported directly via specific transporters and subsequently enter intracellular metabolic pathways. In this review, we highlight the strategies that soil bacteria employ to recycle Po from the soil environment. We discuss the diversity of extracellular phosphatases in soils, the selectivity of these enzymes towards various Po biomolecules and the influence of the soil environmental conditions on the enzyme's activities. Moreover, we outline the intracellular metabolic pathways for Po biosynthesis and transporter-assisted Po and Pi uptake at different Pi availabilities. We further highlight the regulatory mechanisms that govern the production of phosphatases, the expression of Po transporters and the key metabolic changes in P metabolism in response to environmental Pi availability. Due to the depletion of natural resources for Pi , we propose future studies needed to leverage bacteria-mediated P recycling from the large pools of Po in soils or organic wastes to benefit agricultural productivity.
Collapse
Affiliation(s)
- Yeonsoo Park
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Mina Solhtalab
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| | - Wiriya Thongsomboon
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Chemistry, Faculty of ScienceMahasarakham UniversityMahasarakham44150Thailand
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied ScienceNorthwestern UniversityEvanstonIL60208USA
- Department of Biological and Environmental EngineeringCornell University, Riley‐Robb HallIthacaNY14853USA
| |
Collapse
|
2
|
Ireland WT, Beeler SM, Flores-Bautista E, McCarty NS, Röschinger T, Belliveau NM, Sweredoski MJ, Moradian A, Kinney JB, Phillips R. Deciphering the regulatory genome of Escherichia coli, one hundred promoters at a time. eLife 2020; 9:e55308. [PMID: 32955440 PMCID: PMC7567609 DOI: 10.7554/elife.55308] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023] Open
Abstract
Advances in DNA sequencing have revolutionized our ability to read genomes. However, even in the most well-studied of organisms, the bacterium Escherichia coli, for ≈65% of promoters we remain ignorant of their regulation. Until we crack this regulatory Rosetta Stone, efforts to read and write genomes will remain haphazard. We introduce a new method, Reg-Seq, that links massively parallel reporter assays with mass spectrometry to produce a base pair resolution dissection of more than a E. coli promoters in 12 growth conditions. We demonstrate that the method recapitulates known regulatory information. Then, we examine regulatory architectures for more than 80 promoters which previously had no known regulatory information. In many cases, we also identify which transcription factors mediate their regulation. This method clears a path for highly multiplexed investigations of the regulatory genome of model organisms, with the potential of moving to an array of microbes of ecological and medical relevance.
Collapse
Affiliation(s)
- William T Ireland
- Department of Physics, California Institute of TechnologyPasadenaUnited States
| | - Suzannah M Beeler
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Emanuel Flores-Bautista
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Nicholas S McCarty
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Tom Röschinger
- Division of Chemistry and Chemical Engineering, California Institute of TechnologyPasadenaUnited States
| | - Nathan M Belliveau
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of TechnologyPasadenaUnited States
| | - Annie Moradian
- Proteome Exploration Laboratory, Division of Biology and Biological Engineering, Beckman Institute, California Institute of TechnologyPasadenaUnited States
| | - Justin B Kinney
- Simons Center for Quantitative Biology, Cold Spring Harbor LaboratoryCold Spring HarborUnited States
| | - Rob Phillips
- Department of Physics, California Institute of TechnologyPasadenaUnited States
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
3
|
Phaneuf PV, Yurkovich JT, Heckmann D, Wu M, Sandberg TE, King ZA, Tan J, Palsson BO, Feist AM. Causal mutations from adaptive laboratory evolution are outlined by multiple scales of genome annotations and condition-specificity. BMC Genomics 2020; 21:514. [PMID: 32711472 PMCID: PMC7382830 DOI: 10.1186/s12864-020-06920-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/17/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Adaptive Laboratory Evolution (ALE) has emerged as an experimental approach to discover mutations that confer phenotypic functions of interest. However, the task of finding and understanding all beneficial mutations of an ALE experiment remains an open challenge for the field. To provide for better results than traditional methods of ALE mutation analysis, this work applied enrichment methods to mutations described by a multiscale annotation framework and a consolidated set of ALE experiment conditions. A total of 25,321 unique genome annotations from various sources were leveraged to describe multiple scales of mutated features in a set of 35 Escherichia coli based ALE experiments. These experiments totalled 208 independent evolutions and 2641 mutations. Additionally, mutated features were statistically associated across a total of 43 unique experimental conditions to aid in deconvoluting mutation selection pressures. RESULTS Identifying potentially beneficial, or key, mutations was enhanced by seeking coding and non-coding genome features significantly enriched by mutations across multiple ALE replicates and scales of genome annotations. The median proportion of ALE experiment key mutations increased from 62%, with only small coding and non-coding features, to 71% with larger aggregate features. Understanding key mutations was enhanced by considering the functions of broader annotation types and the significantly associated conditions for key mutated features. The approaches developed here were used to find and characterize novel key mutations in two ALE experiments: one previously unpublished with Escherichia coli grown on glycerol as a carbon source and one previously published with Escherichia coli tolerized to high concentrations of L-serine. CONCLUSIONS The emergent adaptive strategies represented by sets of ALE mutations became more clear upon observing the aggregation of mutated features across small to large scale genome annotations. The clarification of mutation selection pressures among the many experimental conditions also helped bring these strategies to light. This work demonstrates how multiscale genome annotation frameworks and data-driven methods can help better characterize ALE mutations, and thus help elucidate the genotype-to-phenotype relationship of the studied organism.
Collapse
Affiliation(s)
- Patrick V Phaneuf
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - David Heckmann
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Muyao Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zachary A King
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Justin Tan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Adam M Feist
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Glycerol metabolism and its regulation in lactic acid bacteria. Appl Microbiol Biotechnol 2019; 103:5079-5093. [DOI: 10.1007/s00253-019-09830-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/09/2023]
|
5
|
Aghamali M, Sedighi M, Zahedi Bialvaei A, Mohammadzadeh N, Abbasian S, Ghafouri Z, Kouhsari E. Fosfomycin: mechanisms and the increasing prevalence of resistance. J Med Microbiol 2019; 68:11-25. [PMID: 30431421 DOI: 10.1099/jmm.0.000874] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There are challenges regarding increased global rates of microbial resistance and the emergence of new mechanisms that result in microorganisms becoming resistant to antimicrobial drugs. Fosfomycin is a broad-spectrum bactericidal antibiotic effective against Gram-negative and certain Gram-positive bacteria, such as Staphylococci, that interfere with cell wall synthesis. During the last 40 years, fosfomycin has been evaluated in a wide range of applications and fields. Although numerous studies have been done in this area, there remains limited information regarding the prevalence of resistance. Therefore, in this review, we focus on the available data concerning the mechanisms and increasing resistance regarding fosfomycin.
Collapse
Affiliation(s)
- Mina Aghamali
- 1Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sedighi
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Mohammadzadeh
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Abbasian
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- 3Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- 2Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Pavan ME, Venero ES, Egoburo DE, Pavan EE, López NI, Julia Pettinari M. Glycerol inhibition of melanin biosynthesis in the environmental Aeromonas salmonicida 34mel T. Appl Microbiol Biotechnol 2018; 103:1865-1876. [PMID: 30539256 DOI: 10.1007/s00253-018-9545-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
The environmental strain Aeromonas salmonicida subsp. pectinolytica 34melT produces abundant melanin through the homogentisate pathway in several culture media, but unexpectedly not when grown in a medium containing glycerol. Using this observation as a starting point, this study investigated the underlying causes of the inhibition of melanin synthesis by glycerol, to shed light on factors that affect melanin production in this microorganism. The effect of different carbon sources on melanin formation was related to the degree of oxidation of their C atoms, as the more reduced substrates delayed melanization more than the more oxidized ones, although only glycerol completely abolished melanin production. Glyphosate, an inhibitor of aromatic amino acid synthesis, did not affect melanization, while bicyclopyrone, an inhibitor of 4-hydroxyphenylpyruvate dioxygenase (Hpd), the enzyme responsible for the synthesis of homogentisate, prevented melanin synthesis. These results showed that melanin production in 34melT depends on the degradation of aromatic amino acids from the growth medium and not on de novo aromatic amino acid synthesis. The presence of glycerol changed the secreted protein profile, but none of the proteins affected could be directly connected with melanin synthesis or transport. Transcription analysis of hpd, encoding the key enzyme for melanin synthesis, showed a clear inhibition caused by glycerol. The results obtained in this work indicate that a significant decrease in the transcription of hpd, together with a more reduced intracellular state, would lead to the abolishment of melanin synthesis observed. The effect of glycerol on melanization can thus be attributed to a combination of metabolic and regulatory effects.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esmeralda Solar Venero
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Diego E Egoburo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban E Pavan
- Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Multiple Optimal Phenotypes Overcome Redox and Glycolytic Intermediate Metabolite Imbalances in Escherichia coli pgi Knockout Evolutions. Appl Environ Microbiol 2018; 84:AEM.00823-18. [PMID: 30054360 DOI: 10.1128/aem.00823-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
A mechanistic understanding of how new phenotypes develop to overcome the loss of a gene product provides valuable insight on both the metabolic and regulatory functions of the lost gene. The pgi gene, whose product catalyzes the second step in glycolysis, was deleted in a growth-optimized Escherichia coli K-12 MG1655 strain. The initial knockout (KO) strain exhibited an 80% drop in growth rate that was largely recovered in eight replicate, but phenotypically distinct, cultures after undergoing adaptive laboratory evolution (ALE). Multi-omic data sets showed that the loss of pgi substantially shifted pathway usage, leading to a redox and sugar phosphate stress response. These stress responses were overcome by unique combinations of innovative mutations selected for by ALE. Thus, the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after the loss of a major gene product were revealed.IMPORTANCE A mechanistic understanding of how microbes are able to overcome the loss of a gene through regulatory and metabolic changes is not well understood. Eight independent adaptive laboratory evolution (ALE) experiments with pgi knockout strains resulted in eight phenotypically distinct endpoints that were able to overcome the gene loss. Utilizing multi-omics analysis, the coordinated mechanisms from genome to metabolome that lead to multiple optimal phenotypes after the loss of a major gene product were revealed.
Collapse
|
8
|
GlpR Is a Direct Transcriptional Repressor of Fructose Metabolic Genes in Haloferax volcanii. J Bacteriol 2018; 200:JB.00244-18. [PMID: 29914986 DOI: 10.1128/jb.00244-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
DeoR-type helix-turn-helix (HTH) domain proteins are transcriptional regulators of sugar and nucleoside metabolism in diverse bacteria and also occur in select archaea. In the model archaeon Haloferax volcanii, previous work implicated GlpR, a DeoR-type transcriptional regulator, in the transcriptional repression of glpR and the gene encoding the fructose-specific phosphofructokinase (pfkB) during growth on glycerol. However, the global regulon governed by GlpR remained unclear. Here, we compared transcriptomes of wild-type and ΔglpR mutant strains grown on glycerol and glucose to detect significant transcript level differences for nearly 50 new genes regulated by GlpR. By coupling computational prediction of GlpR binding sequences with in vivo and in vitro DNA binding experiments, we determined that GlpR directly controls genes encoding enzymes involved in fructose degradation, including fructose bisphosphate aldolase, a central control point in glycolysis. GlpR also directly controls other transcription factors. In contrast, other metabolic pathways appear to be under the indirect influence of GlpR. In vitro experiments demonstrated that GlpR purifies to function as a tetramer that binds the effector molecule fructose-1-phosphate (F1P). These results suggest that H. volcanii GlpR functions as a direct negative regulator of fructose degradation during growth on carbon sources other than fructose, such as glucose and glycerol, and that GlpR bears striking functional similarity to bacterial DeoR-type regulators.IMPORTANCE Many archaea are extremophiles, able to thrive in habitats of extreme salinity, pH and temperature. These biological properties are ideal for applications in biotechnology. However, limited knowledge of archaeal metabolism is a bottleneck that prevents the broad use of archaea as microbial factories for industrial products. Here, we characterize how sugar uptake and use are regulated in a species that lives in high salinity. We demonstrate that a key sugar regulatory protein in this archaeal species functions using molecular mechanisms conserved with distantly related bacterial species.
Collapse
|
9
|
Tolstorukov MY, Virnik K, Zhurkin VB, Adhya S. Organization of DNA in a bacterial nucleoid. BMC Microbiol 2016; 16:22. [PMID: 26897370 PMCID: PMC4761138 DOI: 10.1186/s12866-016-0637-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 02/04/2016] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND It is unclear how DNA is packaged in a bacterial cell in the absence of nucleosomes. To investigate the initial level of DNA condensation in bacterial nucleoid we used in vivo DNA digestion coupled with high-throughput sequencing of the digestion-resistant fragments. To this end, we transformed E. coli cells with a plasmid expressing micrococcal nuclease. The nuclease expression was under the control of AraC repressor, which enabled us to perform an inducible digestion of bacterial nucleoid inside a living cell. RESULTS Analysis of the genomic localization of the digestion-resistant fragments revealed their non-random distribution. The patterns observed in the distribution of the sequenced fragments indicate the presence of short DNA segments protected from the enzyme digestion, possibly because of interaction with DNA-binding proteins. The average length of such digestion-resistant segments is about 50 bp and the characteristic repeat in their distribution is about 90 bp. The gene starts are depleted of the digestion-resistant fragments, suggesting that these genomic regions are more exposed than genomic sequences on average. Sequence analysis of the digestion-resistant segments showed that while the GC-content of such sequences is close to the genome-wide value, they are depleted of A-tracts as compared to the bulk genomic DNA or to the randomized sequence of the same nucleotide composition. CONCLUSIONS Our results suggest that DNA is packaged in the bacterial nucleoid in a non-random way that facilitates interaction of the DNA binding factors with regulatory regions of the genome.
Collapse
Affiliation(s)
- Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| | - Konstantin Virnik
- Laboratory of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Silver Spring, MD, 20993, USA.
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sankar Adhya
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Wang F, Ren NN, Luo S, Chen XX, Mao XM, Li YQ. DptR2, a DeoR-type auto-regulator, is required for daptomycin production in Streptomyces roseosporus. Gene 2014; 544:208-15. [PMID: 24768321 DOI: 10.1016/j.gene.2014.04.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 01/27/2023]
Abstract
Daptomycin, a novel cyclic lipopeptide antibiotic against Gram-positive bacteria, is produced by Streptomyces roseosporus. Though its biosynthetic mechanism, structural shuffling and fermentation optimization have been extensively studied, little is understood about its production regulation at the transcriptional levels. Here we reported that dptR2, encoding a DeoR-type regulator located close to the daptomycin biosynthesis gene cluster in S. roseosporus SW0702, is required for daptomycin production, but not for the expression of daptomycin gene cluster, suggesting that DptR2 was not a pathway-specific regulator. Furthermore, EMSA and qRT-PCR analysis suggested that DptR2 was positively auto-regulated by binding to its own promoter. Meanwhile, the binding sites on the dptR2 promoter were determined by a DNase I footprinting assay, and the essentiality of the inverted complementary sequences in the protected region for DptR2 binding was assessed. Our results for the first time reported the regulation of daptomycin production at the transcriptional level in S. roseosporus.
Collapse
Affiliation(s)
- Feng Wang
- Zhejiang University, College of Life Sciences, Hangzhou 310058, China; Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ni-Ni Ren
- Zhejiang University, College of Life Sciences, Hangzhou 310058, China; Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Shuai Luo
- Zhejiang University, College of Life Sciences, Hangzhou 310058, China; Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Xiao-Xia Chen
- Hangzhou Huadong Medicine Group Biotechnology Institute Co., Ltd., Hangzhou 310011, China; Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Xu-Ming Mao
- Zhejiang University, College of Life Sciences, Hangzhou 310058, China; Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China.
| | - Yong-Quan Li
- Zhejiang University, College of Life Sciences, Hangzhou 310058, China; Key Laboratory of Microbial Biochemistry and Metabolism Engineering of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
11
|
Castañeda-García A, Blázquez J, Rodríguez-Rojas A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics (Basel) 2013; 2:217-36. [PMID: 27029300 PMCID: PMC4790336 DOI: 10.3390/antibiotics2020217] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections caused by antibiotic-resistant isolates have become a major health problem in recent years, since they are very difficult to treat, leading to an increase in morbidity and mortality. Fosfomycin is a broad-spectrum bactericidal antibiotic that inhibits cell wall biosynthesis in both Gram-negative and Gram-positive bacteria. This antibiotic has a unique mechanism of action and inhibits the initial step in peptidoglycan biosynthesis by blocking the enzyme, MurA. Fosfomycin has been used successfully for the treatment of urinary tract infections for a long time, but the increased emergence of antibiotic resistance has made fosfomycin a suitable candidate for the treatment of infections caused by multidrug-resistant pathogens, especially in combination with other therapeutic partners. The acquisition of fosfomycin resistance could threaten the reintroduction of this antibiotic for the treatment of bacterial infection. Here, we analyse the mechanism of action and molecular mechanisms for the development of fosfomycin resistance, including the modification of the antibiotic target, reduced antibiotic uptake and antibiotic inactivation. In addition, we describe the role of each pathway in clinical isolates.
Collapse
Affiliation(s)
- Alfredo Castañeda-García
- Genome Damage and Stability Centre, University of Sussex, Falmer, Science Park Road, Brighton, East Sussex BN1 9RQ, UK.
| | - Jesús Blázquez
- Centro Nacional de Biotecnología (CSIC), Departamento de Biotecnología Microbiana, Calle Darwin 3, 28049 Madrid, Spain.
| | | |
Collapse
|
12
|
Lei GS, Syu WJ, Liang PH, Chak KF, Hu WS, Hu ST. Repression of btuB gene transcription in Escherichia coli by the GadX protein. BMC Microbiol 2011; 11:33. [PMID: 21314918 PMCID: PMC3050690 DOI: 10.1186/1471-2180-11-33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 02/11/2011] [Indexed: 01/16/2023] Open
Abstract
Background BtuB (B
twelve uptake) is an outer membrane protein of Escherichia coli, it serves as a receptor for cobalamines uptake or bactericidal toxin entry. A decrease in the production of the BtuB protein would cause E. coli to become resistant to colicins. The production of BtuB has been shown to be regulated at the post-transcriptional level. The secondary structure switch of 5' untranslated region of butB and the intracellular concentration of adenosylcobalamin (Ado-Cbl) would affect the translation efficiency and RNA stability of btuB. The transcriptional regulation of btuB expression is still unclear. Results To determine whether the btuB gene is also transcriptionally controlled by trans-acting factors, a genomic library was screened for clones that enable E. coli to grow in the presence of colicin E7, and a plasmid carrying gadX and gadY genes was isolated. The lacZ reporter gene assay revealed that these two genes decreased the btuB promoter activity by approximately 50%, and the production of the BtuB protein was reduced by approximately 90% in the presence of a plasmid carrying both gadX and gadY genes in E. coli as determined by Western blotting. Results of electrophoretic mobility assay and DNase I footprinting indicated that the GadX protein binds to the 5' untranslated region of the btuB gene. Since gadX and gadY genes are more highly expressed under acidic conditions, the transcriptional level of btuB in cells cultured in pH 7.4 or pH 5.5 medium was examined by quantitative real-time PCR to investigate the effect of GadX. The results showed the transcription of gadX with 1.4-fold increase but the level of btuB was reduced to 57%. Conclusions Through biological and biochemical analysis, we have demonstrated the GadX can directly interact with btuB promoter and affect the expression of btuB. In conclusion, this study provides the first evidence that the expression of btuB gene is transcriptionally repressed by the acid responsive genes gadX and gadY.
Collapse
Affiliation(s)
- Guang-Sheng Lei
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Zhu L, Liu X, Zheng X, Bu X, Zhao G, Xie C, Zhang J, Li N, Feng E, Wang J, Jiang Y, Huang P, Wang H. Global analysis of a plasmid-cured Shigella flexneri strain: new insights into the interaction between the chromosome and a virulence plasmid. J Proteome Res 2010; 9:843-54. [PMID: 20000779 DOI: 10.1021/pr9007514] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Shigella flexneri is an important human pathogen that causes dysentery, and remains a significant threat to public health, particularly in developing countries. The virulence of this pathogen is dependent on an acquired virulence plasmid. To investigate the crosstalk between the bacterial chromosome and the exogenous virulence plasmid, a virulence plasmid-cured strain was constructed using plasmid incompatibility. The global patterns of gene expression of this strain compared with the wild-type strain were analyzed using 2-DE combined with MALDI-TOF MS. Most known virulence factors of S. flexneri were identified in the 2-DE gels. Interestingly, the expression of the glycerol 3-phosphate (glp) regulon-encoded proteins was increased when the virulence plasmid was absent. Microarray analysis confirmed that regulation occurred at the transcriptional level. Purification and identification of DNA binding proteins with affinity for the regulatory region of the glp genes revealed that regulation mediated by the virulence plasmid to control the expression of the glp regulon might in turn be mediated by protein GlpR. To our knowledge, this is the first study analyzing the interaction between a pathogen chromosome and a virulence plasmid at the proteomic level.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, 100071 Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The Streptomyces clavuligerus ATCC 27064 glycerol cluster gylR-glpF1K1D1 is induced by glycerol but is not affected by glucose. S. clavuligerus growth and clavulanic acid production are stimulated by glycerol, but this does not occur in a glpK1-deleted mutant. Amplification of glpK1D1 results in transformants yielding larger amounts of clavulanic acid in the wild-type strain and in overproducer S. clavuligerus Gap15-7-30 or S. clavuligerus Delta relA strains.
Collapse
|
15
|
Garces F, Fernández FJ, Gómez AM, Pérez-Luque R, Campos E, Prohens R, Aguilar J, Baldomà L, Coll M, Badía J, Vega MC. Quaternary structural transitions in the DeoR-type repressor UlaR control transcriptional readout from the L-ascorbate utilization regulon in Escherichia coli. Biochemistry 2008; 47:11424-33. [PMID: 18844374 DOI: 10.1021/bi800748x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
UlaR is a DNA binding protein of the DeoR family of eubacterial transcriptional repressors which maintains the utilization of the L-ascorbate ula regulon in a repressed state. The availability of L-ascorbate in the growth medium releases UlaR-mediated repression on the ula regulon, thereby activating transcription. The molecular details of this induction by L-ascorbate have remained elusive to date. Here we have identified L-ascorbate 6-phosphate as a direct effector of UlaR; using a combination of site-directed mutagenesis, gel retardation, isothermal titration calorimetry, and analytical ultracentrifugation studies, we have identified the key amino acid residues that mediate L-ascorbate 6-phosphate binding and constructed the first model of regulation of a DeoR family member, establishing the basis of the ula regulon transcription control by UlaR. In this model, specific quaternary rearrangements of the DeoR-type repressor are the molecular underpinning of the activating and repressing forms. A DNA-bound UlaR tetramer establishes repression, whereas an L-ascorbate-6-phosphate-induced breakdown of the tetrameric configuration in favor of an UlaR dimeric state results in dissociation of UlaR from DNA and allows transcription of ulaG and ula ABCDEF structural genes. Despite the fact that similar changes have been described for other unrelated repressor factors, this is the first report to demonstrate that specific oligomerization changes are responsible for the activating and repressing forms of a DeoR-type eubacterial transcriptional repressor.
Collapse
Affiliation(s)
- Fernando Garces
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ray WK, Larson TJ. Application of AgaR repressor and dominant repressor variants for verification of a gene cluster involved in N-acetylgalactosamine metabolism in Escherichia coli K-12. Mol Microbiol 2004; 51:813-26. [PMID: 14731281 DOI: 10.1046/j.1365-2958.2003.03868.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The agaZVWEFASYBCDI gene cluster encodes the phosphotransferase systems and enzymes responsible for the uptake and metabolism of N-acetylgalactosamine and galactosamine in Escherichia coli. In some strains of E. coli, particularly the common K-12 strain, a portion of this cluster is missing because of a site-specific recombination event that occurred between sites in agaW and agaA. Strains that have undergone this recombination event have lost the ability to utilize either N-acetylgalactosamine or galactosamine as sole sources of carbon. Divergently transcribed from this gene cluster is the gene agaR encoding a transcriptional repressor belonging to the DeoR/GlpR family of transcriptional regulators. Promoters upstream of agaR, agaZ and agaS were characterized. All three promoters had elevated activity in the presence of N-acetylgalactosamine or galactosamine, were regulated in vivo by AgaR and possessed specific DNA-binding sites for AgaR upstream from the start sites of transcription as determined by DNase I footprinting. In vivo analysis and DNase I footprinting indicated that the promoter specific for agaZ also requires activation by cAMP-CRP. Previous work with GlpR and other members of the DeoR/GlpR family have identified highly conserved amino acid residues that function in DNA-binding or response to inducer. These residues of AgaR were targeted for site-directed mutagenesis and yielded variants of AgaR that were either negatively dominant or non-inducible. The apparent ability to produce negatively dominant and non-inducible variants of proteins of the DeoR/GlpR family of currently unknown function will likely facilitate screening for function.
Collapse
Affiliation(s)
- W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
17
|
Campos E, Baldoma L, Aguilar J, Badia J. Regulation of expression of the divergent ulaG and ulaABCDEF operons involved in LaAscorbate dissimilation in Escherichia coli. J Bacteriol 2004; 186:1720-8. [PMID: 14996803 PMCID: PMC355983 DOI: 10.1128/jb.186.6.1720-1728.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ula regulon, responsible for the utilization of L-ascorbate in Escherichia coli, is formed by two divergently transcribed operons, ulaG and ulaABCDEF. The regulon is negatively regulated by a repressor of the DeoR family which is encoded by the constitutive gene ulaR located downstream of ulaG. Full repression of the ula regulon requires simultaneous interaction of the repressor with both divergent promoters and seems to be dependent on repressor-mediated DNA loop formation, which is helped by the action of integration host factor. Two operator sites have been identified in each promoter. Lack of either of the two sets of operators partially relieved the repression of the other operon; thus, each promoter is dependent on the UlaR operator sites of the other promoter to enhance repression. Electrophoretic mobility shift assays with purified UlaR protein and promoter deletion analyses revealed a conserved sequence, present in each of the four operators, acting as a UlaR binding site. Glucose represses the ula regulon via at least two mechanisms, one dependent on cyclic AMP (cAMP)-cAMP receptor protein (CRP) and the other (possibly inducer exclusion) independent of it. Glucose effects mediated by other global regulators cannot be ruled out with the present information. Changes in cAMP-CRP levels affected only the expression of the ulaABCDEF operon.
Collapse
Affiliation(s)
- Evangelina Campos
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Sakamoto Y, Furukawa S, Ogihara H, Yamasaki M. Fosmidomycin resistance in adenylate cyclase deficient (cya) mutants of Escherichia coli. Biosci Biotechnol Biochem 2003; 67:2030-3. [PMID: 14519998 DOI: 10.1271/bbb.67.2030] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenylate cyclase deficient (cya) mutants of E. coli K-12 were found to be resistant to fosmidomycin, a specific inhibitor of the non-mevalonate pathway, just like to fosfomycin. E. coli glpT mutants were resistant to fosfomycin and also to fosmidomycin. This fact shows that fosmidomycin was transported inside via the glycerol-3-phosphate transporter, GlpT. DNA micro-array analysis showed that the transcription of glpT and other genes concerning glycerol utilization were highly dependent on the presence of cAMP.
Collapse
Affiliation(s)
- Yoshiko Sakamoto
- Department of Food Science and Technology, College of Bioresouce Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | | | | | | |
Collapse
|
19
|
Holtman CK, Pawlyk AC, Meadow ND, Pettigrew DW. Reverse genetics of Escherichia coli glycerol kinase allosteric regulation and glucose control of glycerol utilization in vivo. J Bacteriol 2001; 183:3336-44. [PMID: 11344141 PMCID: PMC99631 DOI: 10.1128/jb.183.11.3336-3344.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reverse genetics is used to evaluate the roles in vivo of allosteric regulation of Escherichia coli glycerol kinase by the glucose-specific phosphocarrier of the phosphoenolpyruvate:glycose phosphotransferase system, IIA(Glc) (formerly known as III(glc)), and by fructose 1,6-bisphosphate. Roles have been postulated for these allosteric effectors in glucose control of both glycerol utilization and expression of the glpK gene. Genetics methods based on homologous recombination are used to place glpK alleles with known specific mutations into the chromosomal context of the glpK gene in three different genetic backgrounds. The alleles encode glycerol kinases with normal catalytic properties and specific alterations of allosteric regulatory properties, as determined by in vitro characterization of the purified enzymes. The E. coli strains with these alleles display the glycerol kinase regulatory phenotypes that are expected on the basis of the in vitro characterizations. Strains with different glpR alleles are used to assess the relationships between allosteric regulation of glycerol kinase and specific repression in glucose control of the expression of the glpK gene. Results of these studies show that glucose control of glycerol utilization and glycerol kinase expression is not affected by the loss of IIA(Glc) inhibition of glycerol kinase. In contrast, fructose 1,6-bisphosphate inhibition of glycerol kinase is the dominant allosteric control mechanism, and glucose is unable to control glycerol utilization in its absence. Specific repression is not required for glucose control of glycerol utilization, and the relative roles of various mechanisms for glucose control (catabolite repression, specific repression, and inducer exclusion) are different for glycerol utilization than for lactose utilization.
Collapse
Affiliation(s)
- C K Holtman
- Department of Biochemistry and Biophysics, Program in Microbial Genetics and Genomics, Texas A&M University, College Station, TX 77843-2128, USA
| | | | | | | |
Collapse
|
20
|
Ray WK, Zeng G, Potters MB, Mansuri AM, Larson TJ. Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin. J Bacteriol 2000; 182:2277-84. [PMID: 10735872 PMCID: PMC111278 DOI: 10.1128/jb.182.8.2277-2284.2000] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Rhodaneses catalyze the transfer of the sulfane sulfur from thiosulfate or thiosulfonates to thiophilic acceptors such as cyanide and dithiols. In this work, we define for the first time the gene, and hence the amino acid sequence, of a 12-kDa rhodanese from Escherichia coli. Well-characterized rhodaneses are comprised of two structurally similar ca. 15-kDa domains. Hence, it is thought that duplication of an ancestral rhodanese gene gave rise to the genes that encode the two-domain rhodaneses. The glpE gene, a member of the sn-glycerol 3-phosphate (glp) regulon of E. coli, encodes the 12-kDa rhodanese. As for other characterized rhodaneses, kinetic analysis revealed that catalysis by purified GlpE occurs by way of an enzyme-sulfur intermediate utilizing a double-displacement mechanism requiring an active-site cysteine. The K(m)s for SSO(3)(2-) and CN(-) were 78 and 17 mM, respectively. The apparent molecular mass of GlpE under nondenaturing conditions was 22.5 kDa, indicating that GlpE functions as a dimer. GlpE exhibited a k(cat) of 230 s(-1). Thioredoxin 1 from E. coli, a small multifunctional dithiol protein, served as a sulfur acceptor substrate for GlpE with an apparent K(m) of 34 microM when thiosulfate was near its K(m), suggesting that thioredoxin 1 or related dithiol proteins could be physiological substrates for sulfurtransferases. The overall degree of amino acid sequence identity between GlpE and the active-site domain of mammalian rhodaneses is limited ( approximately 17%). This work is significant because it begins to reveal the variation in amino acid sequences present in the sulfurtransferases. GlpE is the first among the 41 proteins in COG0607 (rhodanese-related sulfurtransferases) of the database Clusters of Orthologous Groups of proteins (http://www.ncbi.nlm.nih.gov/COG/) for which sulfurtransferase activity has been confirmed.
Collapse
Affiliation(s)
- W K Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
21
|
Song XM, Forsgren A, Janson H. Glycerol-3-phosphate transport in Haemophilus influenzae: cloning, sequencing, and transcription analysis of the glpT gene. Gene 1998; 215:381-8. [PMID: 9714837 DOI: 10.1016/s0378-1119(98)00259-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The presence of a functional glpT gene in Haemophilus influenzae could be questioned, since there is only what appears to be a truncated glpT (HI0686, 143 nt in the 5'-end) available in the H. influenzae Rd genome database (Fleischmann et al. , 1995). For cloning of the glpT gene from H. influenzae type b strain Eagan, an isogenic glpT, rec-1 double mutant and a selective medium for detection of the glpT mutant strains were constructed. The recombinant plasmid carrying glpT was able to complement the isogenic glpT mutant to wild-type levels of G3P uptake and permitted growth on a selective medium with G3P as a major carbon source. The nucleotide sequences of the glpT gene were determined both directly from PCR products and from the cloned DNA insert of strain Eagan. An identical 1440 bp open reading frame with 480 deduced amino acids, highly homologous to other bacterial G3P permeases, was identified. A Northern blot analysis showed that the glpT genes in both Eagan and Rd strains were transcribed on a RNA of approximately 1.4 kb in size. Thus, it is likely that HI0686 sequence originates from a mutated glpT clone in Escherichia coli.
Collapse
Affiliation(s)
- X M Song
- Department of Medical Microbiology, Lund University, Malmö University Hospital, S-205 02, Malmö, Sweden
| | | | | |
Collapse
|
22
|
Elashvili I, Defrank JJ, Culotta VC. phnE and glpT genes enhance utilization of organophosphates in Escherichia coli K-12. Appl Environ Microbiol 1998; 64:2601-8. [PMID: 9647836 PMCID: PMC106432 DOI: 10.1128/aem.64.7.2601-2608.1998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wild-type Escherichia coli K-12 strain JA221 grows poorly on low concentrations (< or = 1 mM) of diisopropyl fluorophosphate and its hydrolysis product, diisopropyl phosphate (DIPP), as sole phosphorus sources. Spontaneous organophosphate utilization (OPU) mutants were isolated that efficiently utilized these alternate sources of phosphate. A genomic library was constructed from one such OPU mutant, and two genes were isolated that conferred the OPU phenotype to strain JA221 upon transformation. These genes were identified as phnE and glpT. The original OPU mutation represented phnE gene activation and corresponded to the same 8-bp unit deletion from the cryptic wild-type E. coli K-12 phnE gene that has been shown previously to result in phnE activation. In comparison, sequence analysis revealed that the observed OPU phenotype conferred by the glpT gene was not the result of a mutation. PCR clones of glpT from both the mutant and the wild type were found to confer the OPU phenotype to JA221 when they were present on the high-copy-number pUC19 plasmid but not when they were present on the low-copy-number pWSK29 plasmid. This suggests that the OPU phenotype associated with the glpT gene is the result of amplification and overproduction of the glpT gene product. Both the active phnE and multicopy glpT genes facilitated effective metabolism of low concentrations of DIPP, whereas only the active phnE gene could confer the ability to break down a chromogenic substrate, 5-bromo-4-chloro-3-indoxyl phosphate-p-toluidine (X-Pi). This result indicates that in E. coli, X-Pi is transported exclusively by the Phn system, whereas DIPP (or its metabolite) may be transported by both Phn and Glp systems.
Collapse
Affiliation(s)
- I Elashvili
- Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
23
|
Yang B, Larson TJ. Multiple promoters are responsible for transcription of the glpEGR operon of Escherichia coli K-12. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1396:114-26. [PMID: 9524241 DOI: 10.1016/s0167-4781(97)00179-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transcriptional organization of the glpEGR genes of Escherichia coli was studied. Besides a promoter located upstream of the glpE start codon, three internal glpGR promoters were identified that express glpG and/or glpR (glp repressor). One promoter was located just upstream of the glpG start codon and two others (separated by several hundred base pairs) were located within glpG upstream of the glpR start codon. The transcriptional start points of these promoters were identified by primer extension analysis. The strengths of the individual promoters were compared by analysis of their expression when fused to a pormoter-probe vector. Analysis of the transcriptional expression of the glpEGR sequence with different combinations of the glpEGR promoters revealed no internal transcriptional terminators within the entire operon. Thus, the glpEGR genes are co-transcribed and form a single complex operon. The presence of multiple promoters may provide for differential expression of glpE, glpG and glpR. Potential regulation of the operon promoters by GlpR, catabolite repression, anaerobiosis or by FIS was studied. The glpE promoter was apparently controlled by the cAMP-CRP complex, but none of the promoters was responsive to specific repression by GlpR, to anaerobiosis or to FIS. Specific repression exerted by GlpR was characterized in vivo using glpD-lacZ and glpK-lacZ fusions. The degree of repression was correlated with the level of GlpR expression, and was inefficient when the glpD-encoded glycerol-P dehydrogenase was absent, presumably due to accumulation of the inducer, glycerol-P. This is in contrast to the previous conclusion that gpsA-encoded glycerol-P synthase tightly controls the cellular level of glycerol-P by end product inhibition.
Collapse
Affiliation(s)
- B Yang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | |
Collapse
|
24
|
Zeng G, Ye S, Larson TJ. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain. J Bacteriol 1996; 178:7080-9. [PMID: 8955387 PMCID: PMC178618 DOI: 10.1128/jb.178.24.7080-7089.1996] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nucleotide sequence of the glpEGR operon of Escherichia coli was determined. The translational reading frame at the beginning, middle, and end of each gene was verified. The glpE gene encodes an acidic, cytoplasmic protein of 108 amino acids with a molecular weight of 12,082. The glpG gene encodes a basic, cytoplasmic membrane-associated protein of 276 amino acids with a molecular weight of 31,278. The functions of GlpE and GlpG are unknown. The glpR gene encodes the repressor for the glycerol 3-phosphate regulon, a protein predicted to contain 252 amino acids with a calculated molecular weight of 28,048. The amino acid sequence of the glp repressor was similar to several repressors of carbohydrate catabolic systems, including those of the glucitol (GutR), fucose (FucR), and deoxyribonucleoside (DeoR) systems of E. coli, as well as those of the lactose (LacR) and inositol (IolR) systems of gram-positive bacteria and agrocinopine (AccR) system of Agrobacterium tumefaciens. These repressors constitute a family of related proteins, all of which contain approximately 250 amino acids, possess a helix-turn-helix DNA-binding motif near the amino terminus, and bind a sugar phosphate molecule as the inducing signal. The DNA recognition helix of the glp repressor and the nucleotide sequence of the glp operator were very similar to those of the deo system. The presumptive recognition helix of the glp repressor was changed by site-directed mutagenesis to match that of the deo repressor or, in a separate construct, to abolish DNA binding. Neither altered form of the glp repressor recognized the glp or deo operator, either in vivo or in vitro. However, both altered forms of the glp repressor were negatively dominant to the wild-type glp repressor, indicating that the inability to bind DNA with high affinity was due to alteration of the DNA-binding domain, not to an inability to oligomerize or instability of the altered repressors. For the first time, analysis of repressors with altered DNA-binding domains has verified the assignment of the helix-turn-helix motif of the transcriptional regulators in the deoR family.
Collapse
Affiliation(s)
- G Zeng
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
25
|
Yang B, Larson TJ. Action at a distance for negative control of transcription of the glpD gene encoding sn-glycerol 3-phosphate dehydrogenase of Escherichia coli K-12. J Bacteriol 1996; 178:7090-8. [PMID: 8955388 PMCID: PMC178619 DOI: 10.1128/jb.178.24.7090-7098.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aerobic sn-glycerol 3-phosphate dehydrogenase is a cytoplasmic membrane-associated respiratory enzyme encoded by the glpD gene of Escherichia coli. The glpD operon is tightly controlled by cooperative binding of the glp repressor to tandem operators (O(D)1 and O(D)2) that cover the -10 promoter element and 30 bp downstream of the transcription start site. In this work, two additional operators were identified within the glpD structural gene at positions 568 to 587 (0(D)3) and 609 to 628 (0(D)4). The two internal operators bound the glp repressor in the presence or absence of the tandem operators (O(D)1 and O(D)2) in vitro, as shown by DNase I footprinting. To assess a potential regulatory role for the two internal operators in vivo, a glpD-lacZ transcriptional fusion containing all four operators was constructed. The response of this fusion to the glp repressor was compared with those of fusion constructs in which O(D)3 and O(D)4 were inactivated by either deletion or site-directed mutagenesis. It was found that the repression conferred by binding of the glp repressor to O(D)1 and O(D)2 was increased five- to sevenfold upon introduction of the internal operators. A regulatory role for HU was suggested when it was found that repressor-mediated control of glpD transcription was increased fourfold in strains containing HU compared with that of strains deficient in HU. The effect of HU was apparent only in the presence of all four glpD operators. The results suggest that glpD is controlled by formation of a repression loop between the tandem and internal operators. HU may assist repression by bending the DNA to facilitate loop formation.
Collapse
Affiliation(s)
- B Yang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | |
Collapse
|
26
|
Zhao N, Oh W, Trybul D, Thrasher KS, Kingsbury TJ, Larson TJ. Characterization of the interaction of the glp repressor of Escherichia coli K-12 with single and tandem glp operator variants. J Bacteriol 1994; 176:2393-7. [PMID: 8157609 PMCID: PMC205364 DOI: 10.1128/jb.176.8.2393-2397.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The glp operons of Escherichia coli are negatively controlled by the glp repressor. Comparison of the repressor-binding affinities for consensus and altered consensus operators in vivo showed that all base substitutions at positions 3, 4, 5, and 8 from the center of the palindromic operator caused a striking decrease in repressor binding. Substitutions at other positions had a severe to no effect on repressor binding, depending on the base substitution. The results obtained indicate that the repressor binds with highest affinity to operators with the half-site WATKYTCGWW, where W is A or T, K is G or T, and Y is C or T. Strong cooperative binding of the repressor to tandem operators was demonstrated in vivo. Cooperativity was maximal when two 20-bp operators were directly repeated or when 2 bp separated the two operators. Cooperativity decreased with the deletion of 2 bp or the addition of 4 bp between the individual operators. Cooperativity was eliminated with a 6-bp insertion between the operators.
Collapse
Affiliation(s)
- N Zhao
- Department of Biochemistry and Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308
| | | | | | | | | | | |
Collapse
|
27
|
Structure and regulation of the glpFK operon encoding glycerol diffusion facilitator and glycerol kinase of Escherichia coli K-12. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42670-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|