1
|
Ma R, Du B, Shi C, Wang L, Zeng F, Han J, Guan H, Wang Y, Yan K. Molecular basis for the regulation of human phosphorylase kinase by phosphorylation and Ca 2. Nat Commun 2025; 16:3020. [PMID: 40148320 PMCID: PMC11950179 DOI: 10.1038/s41467-025-58363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Phosphorylase kinase (PhK) regulates the degradation of glycogen by integrating diverse signals, providing energy to the organism. Dysfunctional mutations may directly lead to Glycogen Storage Disease type IX (GSD IX), whereas the abnormal expression of PhK is also associated with tumors. Here, we use cryo-electron microscopy (cryo-EM) to resolve its near-atomic structures in the inactive and active states. These structures reveal the interactions and relative locations of the four subunits (αβγδ) within the PhK complex. Phosphorylated α and β subunits induce PhK to present a more compact state, while Ca2+ causes sliding of the δ subunit along the helix of the γ subunit. Both actions synergistically activate PhK by enabling the de-inhibition of the γ subunit. We also identified different binding modes between PhK and its substrate, glycogen phosphorylase (GP), in two distinct states, using cross-linking mass spectrometry (XL-MS). This study provides valuable insights into the regulatory mechanisms of PhK, thereby enhancing our understanding of GSD IX and its implications in tumorigenesis.
Collapse
Affiliation(s)
- Ruifang Ma
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bowen Du
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chen Shi
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Lei Wang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Han
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huiyi Guan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314499, China.
| | - Kaige Yan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Bizerra PFV, Gilglioni EH, Li HL, Go S, Oude Elferink RPJ, Verhoeven AJ, Chang JC. Opposite regulation of glycogen metabolism by cAMP produced in the cytosol and at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119585. [PMID: 37714306 DOI: 10.1016/j.bbamcr.2023.119585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Cyclic AMP is produced in cells by two different types of adenylyl cyclases: at the plasma membrane by the transmembrane adenylyl cyclases (tmACs, ADCY1~ADCY9) and in the cytosol by the evolutionarily more conserved soluble adenylyl cyclase (sAC, ADCY10). By employing high-resolution extracellular flux analysis in HepG2 cells to study glycogen breakdown in real time, we showed that cAMP regulates glycogen metabolism in opposite directions depending on its location of synthesis within cells and the downstream cAMP effectors. While the canonical tmAC-cAMP-PKA signaling promotes glycogenolysis, we demonstrate here that the non-canonical sAC-cAMP-Epac1 signaling suppresses glycogenolysis. Mechanistically, suppression of sAC-cAMP-Epac1 leads to Ser-15 phosphorylation and thereby activation of the liver-form glycogen phosphorylase to promote glycogenolysis. Our findings highlight the importance of cAMP microdomain organization for distinct metabolic regulation and establish sAC as a novel regulator of glycogen metabolism.
Collapse
Affiliation(s)
- Paulo F V Bizerra
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; State University of Maringá, Paraná, Brazil
| | - Eduardo H Gilglioni
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Signal Transduction and Metabolism Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Hang Lam Li
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Simei Go
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Arthur J Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jung-Chin Chang
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Division of Cell Biology, Metabolism & Cancer, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Rimmer MA, Nadeau OW, Yang J, Artigues A, Zhang Y, Carlson GM. The structure of the large regulatory α subunit of phosphorylase kinase examined by modeling and hydrogen-deuterium exchange. Protein Sci 2017; 27:472-484. [PMID: 29098725 DOI: 10.1002/pro.3339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/31/2023]
Abstract
Phosphorylase kinase (PhK), a 1.3 MDa regulatory enzyme complex in the glycogenolysis cascade, has four copies each of four subunits, (αβγδ)4 , and 325 kDa of unique sequence (the mass of an αβγδ protomer). The α, β and δ subunits are regulatory, and contain allosteric activation sites that stimulate the activity of the catalytic γ subunit in response to diverse signaling molecules. Due to its size and complexity, no high resolution structures have been solved for the intact complex or its regulatory α and β subunits. Of PhK's four subunits, the least is known about the structure and function of its largest subunit, α. Here, we have modeled the full-length α subunit, compared that structure against previously predicted domains within this subunit, and performed hydrogen-deuterium exchange on the intact subunit within the PhK complex. Our modeling results show α to comprise two major domains: an N-terminal glycoside hydrolase domain and a large C-terminal importin α/β-like domain. This structure is similar to our previously published model for the homologous β subunit, although clear structural differences are present. The overall highly helical structure with several intervening hinge regions is consistent with our hydrogen-deuterium exchange results obtained for this subunit as part of the (αβγδ)4 PhK complex. Several low exchanging regions predicted to lack ordered secondary structure are consistent with inter-subunit contact sites for α in the quaternary structure of PhK; of particular interest is a low-exchanging region in the C-terminus of α that is known to bind the regulatory domain of the catalytic γ subunit.
Collapse
Affiliation(s)
- Mary Ashley Rimmer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, KS, 66160
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, KS, 66160
| | - Jianyi Yang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, MI, 48109
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, KS, 66160
| | - Yang Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, MI, 48109
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, KS, 66160
| |
Collapse
|
4
|
Rimmer MA, Artigues A, Nadeau OW, Villar MT, Vasquez-Montes V, Carlson GM. Mass Spectrometric Analysis of Surface-Exposed Regions in the Hexadecameric Phosphorylase Kinase Complex. Biochemistry 2015; 54:6887-95. [PMID: 26551836 DOI: 10.1021/acs.biochem.5b00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorylase kinase (PhK) is a 1.3 MDa (αβγδ)4 enzyme complex, in which αβγδ protomers associate in D2 symmetry to form two large octameric lobes that are interconnected by four bridges. The approximate locations of the subunits have been mapped in low-resolution cryo-electron microscopy structures of the complex; however, the disposition of the subunits within the complex remains largely unknown. We have used partial proteolysis and chemical footprinting in combination with high-resolution mass spectrometry to identify surface-exposed regions of the intact nonactivated and phospho-activated conformers. In addition to the known interaction of the γ subunit's C-terminal regulatory domain with the δ subunit (calmodulin), our exposure results indicate that the catalytic core of γ may also anchor to the PhK complex at the bottom backside of its C-terminal lobe facing away from the active site cleft. Exposed loops on the α and β regulatory subunits within the complex occur at regions overlapping with tissue-specific alternative RNA splice sites and regulatory phosphorylatable domains. Their phosphorylation alters the surface exposure of α and β, corroborating previous biophysical and biochemical studies that detected phosphorylation-dependent conformational changes in these subunits; however, for the first time, specific affected regions have been identified.
Collapse
Affiliation(s)
- Mary Ashley Rimmer
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Maria T Villar
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Victor Vasquez-Montes
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center , Kansas City, Kansas 66160, United States
| |
Collapse
|
5
|
Thompson JA, Nadeau OW, Carlson GM. A model for activation of the hexadecameric phosphorylase kinase complex deduced from zero-length oxidative crosslinking. Protein Sci 2015; 24:1956-63. [PMID: 26362516 DOI: 10.1002/pro.2804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 11/09/2022]
Abstract
Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)(4) enzyme complex that upon activation by phosphorylation stimulates glycogenolysis. Due to its large size (1.3 MDa), elucidating the structural changes associated with the activation of PhK has been challenging, although phosphoactivation has been linked with an increased tendency of the enzyme's regulatory β-subunits to self-associate. Here we report the effect of a peptide mimetic of the phosphoryltable N-termini of β on the selective, zero-length, oxidative crosslinking of these regulatory subunits to form β-β dimers in the nonactivated PhK complex. This peptide stimulated β-β dimer formation when not phosphorylated, but was considerably less effective in its phosphorylated form. Because this peptide mimetic of β competes with its counterpart region in the nonactivated enzyme complex in binding to the catalytic γ-subunit, we were able to formulate a structural model for the phosphoactivation of PhK. In this model, the nonactivated state of PhK is maintained by the interaction between the nonphosphorylated N-termini of β and the regulatory C-terminal domains of the γ-subunits; phosphorylation of β weakens this interaction, leading to activation of the γ-subunits.
Collapse
Affiliation(s)
- Jackie A Thompson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, Kansas, 66160
| | - Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, Kansas, 66160
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, Kansas, 66160
| |
Collapse
|
6
|
Nadeau OW, Lane LA, Xu D, Sage J, Priddy TS, Artigues A, Villar MT, Yang Q, Robinson CV, Zhang Y, Carlson GM. Structure and location of the regulatory β subunits in the (αβγδ)4 phosphorylase kinase complex. J Biol Chem 2012; 287:36651-61. [PMID: 22969083 DOI: 10.1074/jbc.m112.412874] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylase kinase (PhK) is a hexadecameric (αβγδ)(4) complex that regulates glycogenolysis in skeletal muscle. Activity of the catalytic γ subunit is regulated by allosteric activators targeting the regulatory α, β, and δ subunits. Three-dimensional EM reconstructions of PhK show it to be two large (αβγδ)(2) lobes joined with D(2) symmetry through interconnecting bridges. The subunit composition of these bridges was unknown, although indirect evidence suggested the β subunits may be involved in their formation. We have used biochemical, biophysical, and computational approaches to not only address the quaternary structure of the β subunits within the PhK complex, i.e. whether they compose the bridges, but also their secondary and tertiary structures. The secondary structure of β was determined to be predominantly helical by comparing the CD spectrum of an αγδ subcomplex with that of the native (αβγδ)(4) complex. An atomic model displaying tertiary structure for the entire β subunit was constructed using chemical cross-linking, MS, threading, and ab initio approaches. Nearly all this model is covered by two templates corresponding to glycosyl hydrolase 15 family members and the A subunit of protein phosphatase 2A. Regarding the quaternary structure of the β subunits, they were directly determined to compose the four interconnecting bridges in the (αβγδ)(4) kinase core, because a β(4) subcomplex was observed through both chemical cross-linking and top-down MS of PhK. The predicted model of the β subunit was docked within the bridges of a cryoelectron microscopic density envelope of PhK utilizing known surface features of the subunit.
Collapse
Affiliation(s)
- Owen W Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Vénien-Bryan C, Jonic S, Skamnaki V, Brown N, Bischler N, Oikonomakos NG, Boisset N, Johnson LN. The structure of phosphorylase kinase holoenzyme at 9.9 angstroms resolution and location of the catalytic subunit and the substrate glycogen phosphorylase. Structure 2009; 17:117-27. [PMID: 19141288 PMCID: PMC2639635 DOI: 10.1016/j.str.2008.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/13/2008] [Accepted: 10/13/2008] [Indexed: 11/30/2022]
Abstract
Phosphorylase kinase (PhK) coordinates hormonal and neuronal signals to initiate the breakdown of glycogen. The enzyme catalyzes the phosphorylation of inactive glycogen phosphorylase b (GPb), resulting in the formation of active glycogen phosphorylase a. We present a 9.9 Å resolution structure of PhK heterotetramer (αβγδ)4 determined by cryo-electron microscopy single-particle reconstruction. The enzyme has a butterfly-like shape comprising two lobes with 222 symmetry. This three-dimensional structure has allowed us to dock the catalytic γ subunit to the PhK holoenzyme at a location that is toward the ends of the lobes. We have also determined the structure of PhK decorated with GPb at 18 Å resolution, which shows the location of the substrate near the kinase subunit. The PhK preparation contained a number of smaller particles whose structure at 9.8 Å resolution was consistent with a proteolysed activated form of PhK that had lost the α subunits and possibly the γ subunits.
Collapse
Affiliation(s)
- Catherine Vénien-Bryan
- Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nadeau OW, Anderson DW, Yang Q, Artigues A, Paschall JE, Wyckoff GJ, McClintock JL, Carlson GM. Evidence for the location of the allosteric activation switch in the multisubunit phosphorylase kinase complex from mass spectrometric identification of chemically crosslinked peptides. J Mol Biol 2006; 365:1429-45. [PMID: 17123541 PMCID: PMC1852525 DOI: 10.1016/j.jmb.2006.10.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/10/2006] [Accepted: 10/18/2006] [Indexed: 10/24/2022]
Abstract
Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, regulates glycogenolysis. Its activity, catalyzed by the gamma subunit, is tightly controlled by phosphorylation and activators acting through allosteric sites on its regulatory alpha, beta and delta subunits. Activation by phosphorylation is predominantly mediated by the regulatory beta subunit, which undergoes a conformational change that is structurally linked with the gamma subunit and that is characterized by the ability of a short chemical crosslinker to form beta-beta dimers. To determine potential regions of interaction of the beta and gamma subunits, we have used chemical crosslinking and two-hybrid screening. The beta and gamma subunits were crosslinked to each other in phosphorylated PhK, and crosslinked peptides from digests were identified by Fourier transform mass spectrometry, beginning with a search engine developed "in house" that generates a hypothetical list of crosslinked peptides. A conjugate between beta and gamma that was verified by MS/MS corresponded to crosslinking between K303 in the C-terminal regulatory domain of gamma (gammaCRD) and R18 in the N-terminal regulatory region of beta (beta1-31), which contains the phosphorylatable serines 11 and 26. A synthetic peptide corresponding to residues 1-22 of beta inhibited the crosslinking between beta and gamma, and was itself crosslinked to K303 of gamma. In two-hybrid screening, the beta1-31 region controlled beta subunit self-interactions, in that they were favored by truncation of this region or by mutation of the phosphorylatable serines 11 and 26, thus providing structural evidence for a phosphorylation-dependent subunit communication network in the PhK complex involving at least these two regulatory regions of the beta and gamma subunits. The sum of our results considered together with previous findings implicates the gammaCRD as being an allosteric activation switch in PhK that interacts with all three of the enzyme's regulatory subunits and is proximal to the active site cleft.
Collapse
Affiliation(s)
- Owen W. Nadeau
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - David W. Anderson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - Qing Yang
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - Justin E. Paschall
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 66211
| | - Gerald J. Wyckoff
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 66211
| | - Jennifer L. McClintock
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| | - Gerald M. Carlson
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas 66209
| |
Collapse
|
9
|
Cook AG, Johnson LN, McDonnell JM. Structural characterization of Ca2+/CaM in complex with the phosphorylase kinase PhK5 peptide. FEBS J 2005; 272:1511-22. [PMID: 15752366 DOI: 10.1111/j.1742-4658.2005.04591.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Phosphorylase kinase (PhK) is a large hexadecameric enzyme consisting of four copies of four subunits: (alphabetagammadelta)4. An intrinsic calmodulin (CaM, the delta subunit) binds directly to the gamma protein kinase chain. The interaction site of CaM on gamma has been localized to a C-terminal extension of the kinase domain. Two 25-mer peptides derived from this region, PhK5 and PhK13, were identified previously as potential CaM-binding sites. Complex formation between Ca2+/CaM with these two peptides was characterized using analytical gel filtration and NMR methods. NMR chemical shift perturbation studies showed that while PhK5 forms a robust complex with Ca2+/CaM, no interactions with PhK13 were observed. 15N relaxation characteristics of Ca2+/CaM and Ca2+/CaM/PhK5 complexes were compared with the experimentally determined structures of several Ca2+/CaM/peptide complexes. Good fits were observed between Ca2+/CaM/PhK5 and three structures: Ca2+/CaM complexes with peptides from endothelial nitric oxide synthase, with smooth muscle myosin light chain kinase and CaM kinase I. We conclude that the PhK5 site is likely to have a direct role in Ca2+-regulated control of PhK activity through the formation of a classical 'compact' CaM complex.
Collapse
Affiliation(s)
- Atlanta G Cook
- Laboratory of Molecular Biophysics, Department of Biochemistry, Oxford University, UK
| | | | | |
Collapse
|
10
|
Kumar P, Brushia RJ, Hoye E, Walsh DA. Baculovirus-mediated overexpression of the phosphorylase b kinase holoenzyme and alpha gamma delta and gamma delta subcomplexes. Biochemistry 2004; 43:10247-54. [PMID: 15287752 DOI: 10.1021/bi049223i] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant baculoviruses were created and used to coexpress rat phosphorylase kinase (Phk) alpha, gamma, and delta subunits and rabbit beta subunit in insect cells. Coexpression allowed creation of the (alphabetagammadelta)4 hexadecamer, the alphagammadelta heterotrimer, and the gammadelta heterodimeric subcomplexes. Neither the individual alpha, beta, or gamma subunit nor any complex containing the beta subunit other than the hexadecameric holoenzyme was obtained in soluble form. The expressed complexes exhibited pH- and [Ca2+]-dependent specific activities that were similar to those of the Phk holoenzyme purified from rabbit skeletal muscle (SkM Phk). SkM Phk, expressed Phk, and the alphagammadelta subcomplex were activated by exogenous calmodulin and underwent Ca(2+)-dependent autophosphorylation. In some of these features there were subtle differences that could likely be attributed to differences in the covalent modification state of the baculovirus-driven expressed protein. Our results provide an important avenue to probe the detailed characterization of the structure of Phk and the function of the individual domains of the subunits using baculovirus-mediated expression of Phk and Phk subcomplexes.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
11
|
Pete MJ, Liao CX, Bartleson C, Graves DJ. A recombinant form of the catalytic subunit of phosphorylase kinase that is soluble, monomeric, and includes key C-terminal residues. Arch Biochem Biophys 1999; 367:104-14. [PMID: 10375405 DOI: 10.1006/abbi.1999.1256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Residues 302-326 of the catalytic (gamma) subunit of phosphorylase kinase (PhK) may comprise an autoinhibitory, pseudosubstrate domain that binds calmodulin. To study this, the cDNA corresponding to rabbit muscle PhKgamma was expressed using Escherichia coli. This yielded two stable, high-activity PhKgamma forms (35 and 42 kDa by SDS-PAGE) that were smaller than an authentic sample of rabbit muscle PhKgamma (45 kDa by SDS-PAGE). Each recombinant form was purified to homogeneity. The N-terminal sequence of the larger, 42-kDa form (pk42) matched that of the rabbit muscle enzyme. This suggested that pk42 consisted of PhKgamma residues 1-362, including the putative calmodulin-binding, autoinhibitory domain. Kinetic parameters obtained for pk42 were like those previously reported for the intact gamma subunit. This implied that the lack of 25 PhKgamma C-terminal residues did not affect phosphorylase kinase activity, but greatly improved enzyme stability. An additional 60 residues were removed from the C-terminus of pk42 using the protease m-calpain. This increased the kinase activity 1.5-fold. Consistent with this, the activity of a mutant PhKgamma that consisted of residues 1-300, denoted gamma1-300, was like that of the m-calpain-treated enzyme. Therefore, although the effect was small, some influence by the C-terminus of pk42 was noted. Moreover, when pk42 was incubated with ATP alone, a C-terminal threonine residue became phosphorylated. Although the influence of this autophosphorylation cannot be inferred from this data, it was evidence that the C-terminus accessed the enzyme's active site. Taken together, these data imply that pk42 will be useful to study phosphorylase kinase structure/activity relationships.
Collapse
Affiliation(s)
- M J Pete
- Signal Transduction Training Group, Iowa State University, Ames, Iowa, 50011, USA
| | | | | | | |
Collapse
|
12
|
Pierce HH, Adey N, Kay BK. Identification of cyclized calmodulin antagonists from a phage display random peptide library. Mol Divers 1996; 1:259-65. [PMID: 9237217 DOI: 10.1007/bf01715530] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To isolate peptide ligands that bound calmodulin (CaM) specifically, we screened an M13 phage library displaying cyclized octamer random peptides with immobilized bovine CaM. Isolates were recovered, sequenced, and deduced to express nine independent peptides, five of which contained the sequence Trp-Gly-Lys (WGK). Four of the nine peptide sequences were synthesized in cyclized, biotinylated form. All of the peptides required Ca2+ to bind CaM. The cyclized, disulfide-bonded form of one such peptide, SCLRWGKWSNCGS, bound CaM better than its reduced form or an analogue in which the cysteine residues were replaced by serine. The cyclized peptide also exhibited the ability to inhibit CaM-dependent kinase activity. Systematic alanine substitution of residues in this peptide sequence implicate the tryptophan residue as being critical for binding, with other residues contributing to binding to varying degrees. Cloning of ligand targets (COLT) confirmed the specificity of one of the cyclized peptides, yielding full-length and C-terminal CaM clones, in addition to a full-length clone of troponin C, a CaM-related protein. This study has demonstrated that conformationally constrained peptides isolated from a phage library acted as specific, Ca(2+)-dependent CaM ligands.
Collapse
Affiliation(s)
- H H Pierce
- Department of Biology, University of North Carolina at Chapel Hill 27599, USA
| | | | | |
Collapse
|
13
|
Wüllrich-Schmoll A, Kilimann MW. Structure of the human gene encoding the phosphorylase kinase beta subunit (PHKB). EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:374-80. [PMID: 8681948 DOI: 10.1111/j.1432-1033.1996.0374z.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have determined the cDNA sequence and the gene structure of the human phosphorylase kinase beta subunit (PHKB). With 95% amino acid sequence identity, the predicted primary structure is highly similar to that of the rabbit beta subunit. At least 140 kilonucleotides in length, the gene is large and consists of 33 exons. Exons 26 and 27 are two homologous, mutually exclusively spliced exons in the middle of the gene, and exon 2 is a facultatively utilized cassette exon encoding an alternative N-terminus of the beta subunit. The previous assignment of the PHKB gene to chromosome 16 is confirmed by the successful screening of a chromosome 16-specific genomic library. Plaque hybridization at reduced stringency led to the isolation of two processed pseudogenes, PHKBP1 and PHKBP2, but of no other PHKB-related sequences.
Collapse
Affiliation(s)
- A Wüllrich-Schmoll
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
14
|
Dasgupta M, Blumenthal DK. Characterization of the regulatory domain of the gamma-subunit of phosphorylase kinase. The two noncontiguous calmodulin-binding subdomains are also autoinhibitory. J Biol Chem 1995; 270:22283-9. [PMID: 7673209 DOI: 10.1074/jbc.270.38.22283] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphorylase kinase is a multimeric protein kinase (alpha 4 beta 4 gamma 4 delta 4) whose enzymatic activity is conferred by its gamma-subunit. A library of 18 overlapping synthetic peptides spanning residues 277-386 of the gamma-subunit has been prepared to use in identifying important regulatory structures in the protein. In the present study, the library was screened to identify regions that might function as autoinhibitory domains. Peptides from two distinct regions were found to inhibit the Ca2(+)-activated holoenzyme. The same regions were previously found to bind calmodulin (i.e. the delta-subunit; Dasgupta, M. Honeycutt, T., and Blumenthal, D. K. (1989) J. Biol. Chem. 264, 17156-17163). The most potent substrate antagonist peptides were PhK13 (residues 302-326; Ki = 300 nM) and PhK5 (residues 342-366; Ki = 20 microM). Both peptides inhibited the holoenzyme competitively with respect to phosphorylase b and noncompetitively with respect to Mg.ATP. When the pattern of inhibition with both peptides present was analyzed, inhibition was observed to be synergistic and modestly cooperative indicating that the two peptides can simultaneously occupy the protein substrate-binding site(s). These data are consistent with a model in which the regions of the gamma-subunit represented by PhK5 and PhK13 work in concert as regulatory subdomains that transduce Ca2(+)-induced conformational changes in the delta-subunit to the catalytic gamma-subunit through a pseudosubstrate autoinhibitory mechanism.
Collapse
Affiliation(s)
- M Dasgupta
- Department of Biochemistry, University of Texas Health Center, Tyler 75710, USA
| | | |
Collapse
|
15
|
Lanciotti RA, Bender PK. The gamma subunit of phosphorylase kinase contains a pseudosubstrate sequence. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:139-45. [PMID: 7601093 DOI: 10.1111/j.1432-1033.1995.0139i.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The catalytic subunit, gamma, of phosphorylase kinase is regulated by a complex set of interactions involving the calcium-binding protein calmodulin and two other subunits designated alpha and beta. These interactions regulate gamma activity that, at least for the calmodulin interactions, involves the regulatory domain in gamma spanning residues 302-366. Within this regulatory domain, we report the identification of a sequence (residues 326-334) that resembles the phosphorylation site in gamma substrates with the exception that a V residue (V332) occurs at the analogous position of the phosphorylated S/T residue. The inhibitory properties of the sequence were assayed with a 10-amino-acid peptide of the sequence. This peptide inhibits a truncated version of gamma, residues 1-300, which is missing the regulatory domain, more potently than it inhibits full-length gamma, and it is a better inhibitor of the full-length gamma at pH 8.2 than at pH 6.8. A similar peptide of the same sequence, except for a S substitution of the V residue, is a good substrate with a comparable Km and better Vmax than peptides of similar length that represent the phosphorylation site in the substrate of the enzyme, glycogen phosphorylase. A mutant gamma protein, with a S for V332 substitution ([V332S]gamma), was prepared using the baculovirus expression system. [V332S]gamma autophosphorylates by an intramolecular mechanism. This demonstrates that this sequence can occupy the catalytic site in the protein. Development of [V332S]gamma affords an experimental model in which the effects of the regulatory factors on autophosphorylation can be determined.
Collapse
Affiliation(s)
- R A Lanciotti
- Department of Biochemistry and Anaerobic Microbiology, Virginia Tech, Blacksburg 24061, USA
| | | |
Collapse
|
16
|
Huang CY, Yuan CJ, Blumenthal DK, Graves DJ. Identification of the substrate and pseudosubstrate binding sites of phosphorylase kinase gamma-subunit. J Biol Chem 1995; 270:7183-8. [PMID: 7706257 DOI: 10.1074/jbc.270.13.7183] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Using site-directed mutagenesis, we proposed that an autoinhibitory domain(s) is located at the C-terminal region (301-386) of the phosphorylase kinase gamma-subunit (Huang, C.-Y.F., Yuan C.-J., Livanova, N.B., and Graves, D.J. (1993) Mol. Cell. Biochem. 127/128, 7-18). Removal of the putative inhibitory domain(s) by truncation results in the generation of a constitutively active and calmodulin-independent form, gamma 1-300. To probe the structural basis of autoinhibition of gamma-subunit activity, two synthetic peptides, PhK13 (gamma 303-327) and PhK5 (gamma 343-367), corresponding to the two calmodulin-binding regions, were assayed for their ability to inhibit gamma 1-300. Competitive inhibition of gamma 1-300 by PhK13 was found versus phosphorylase b (Ki = 1.8 microM) and noncompetitive inhibition versus ATP. PhK5 showed noncompetitive inhibition with respect to both phosphorylase b and ATP. Calmodulin released the inhibition caused by both peptides. These results indicate that there are two distinct auto-inhibitory domains within the C terminus of the gamma-subunit and that these two domains overlap with the calmodulin-binding regions. Two mutant forms of gamma 1-300, E111K and E154R, were used to probe the enzyme-substrate-binding region using peptide substrate analogs corresponding to residues 9-18 of phosphorylase b (KRK11Q12ISVRGL). The data suggest that Glu111 interacts with the P-3 position of the substrate (Lys11) and Glu154 interacts with the P-2 site (Gln12). Both E111K and E154R were competitively inhibited with respect to phosphorylase b by PhK13, with 14- and 8-fold higher Ki values, respectively, than that observed with the wild-type enzyme. These data are consistent with a model for the regulation of the gamma-subunit of phosphorylase kinase in which PhK13 acts as a competitive pseudosubstrate that directly binds the substrate binding site of the gamma-subunit (Glu111 and Glu154).
Collapse
Affiliation(s)
- C Y Huang
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
17
|
Nadeau OW, Carlson GM. Zero length conformation-dependent cross-linking of phosphorylase kinase subunits by transglutaminase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43933-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Wüllrich A, Hamacher C, Schneider A, Kilimann M. The multiphosphorylation domain of the phosphorylase kinase alpha M and alpha L subunits is a hotspot of differential mRNA processing and of molecular evolution. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49449-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Paul S, Ebadi M. Vasoactive intestinal peptide: its interactions with calmodulin and catalytic antibodies. Neurochem Int 1993; 23:197-214. [PMID: 8220166 DOI: 10.1016/0197-0186(93)90111-h] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- S Paul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha 68198-6830
| | | |
Collapse
|
20
|
Sanchez V, Carlson G. Isolation of an autoinhibitory region from the regulatory beta-subunit of phosphorylase kinase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46788-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Farrar Y, Lukas T, Craig T, Watterson D, Carlson G. Features of calmodulin that are important in the activation of the catalytic subunit of phosphorylase kinase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53588-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Cawley K, Akita C, Angelos K, Walsh D. Characterization of the gene for rat phosphorylase kinase catalytic subunit. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54059-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|