1
|
Peng H, Chen IA, Qimron U. Engineering Phages to Fight Multidrug-Resistant Bacteria. Chem Rev 2025; 125:933-971. [PMID: 39680919 PMCID: PMC11758799 DOI: 10.1021/acs.chemrev.4c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Facing the global "superbug" crisis due to the emergence and selection for antibiotic resistance, phages are among the most promising solutions. Fighting multidrug-resistant bacteria requires precise diagnosis of bacterial pathogens and specific cell-killing. Phages have several potential advantages over conventional antibacterial agents such as host specificity, self-amplification, easy production, low toxicity as well as biofilm degradation. However, the narrow host range, uncharacterized properties, as well as potential risks from exponential replication and evolution of natural phages, currently limit their applications. Engineering phages can not only enhance the host bacteria range and improve phage efficacy, but also confer new functions. This review first summarizes major phage engineering techniques including both chemical modification and genetic engineering. Subsequent sections discuss the applications of engineered phages for bacterial pathogen detection and ablation through interdisciplinary approaches of synthetic biology and nanotechnology. We discuss future directions and persistent challenges in the ongoing exploration of phage engineering for pathogen control.
Collapse
Affiliation(s)
- Huan Peng
- Cellular
Signaling Laboratory, International Research Center for Sensory Biology
and Technology of MOST, Key Laboratory of Molecular Biophysics of
MOE, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, Hubei China
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry
and Biochemistry, University of California
Los Angeles, Los Angeles, California 90095-1592, United States
| | - Udi Qimron
- Department
of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
2
|
Tao P, Wu X, Tang WC, Zhu J, Rao V. Engineering of Bacteriophage T4 Genome Using CRISPR-Cas9. ACS Synth Biol 2017; 6:1952-1961. [PMID: 28657724 DOI: 10.1021/acssynbio.7b00179] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteriophages likely constitute the largest biomass on Earth. However, very few phage genomes have been well-characterized, the tailed phage T4 genome being one of them. Even in T4, much of the genome remained uncharacterized. The classical genetic strategies are tedious, compounded by genome modifications such as cytosine hydroxylmethylation and glucosylation which makes T4 DNA resistant to most restriction endonucleases. Here, using the type-II CRISPR-Cas9 system, we report the editing of both modified (ghm-Cytosine) and unmodified (Cytosine) T4 genomes. The modified genome, however, is less susceptible to Cas9 nuclease attack when compared to the unmodified genome. The efficiency of restriction of modified phage infection varied greatly in a spacer-dependent manner, which explains some of the previous contradictory results. We developed a genome editing strategy by codelivering into E. coli a CRISPR-Cas9 plasmid and a donor plasmid containing the desired mutation(s). Single and multiple point mutations, insertions and deletions were introduced into both modified and unmodified genomes. As short as 50-bp homologous flanking arms were sufficient to generate recombinants that can be selected under the pressure of CRISPR-Cas9 nuclease. A 294-bp deletion in RNA ligase gene rnlB produced viable plaques, demonstrating the usefulness of this editing strategy to determine the essentiality of a given gene. These results provide the first demonstration of phage T4 genome editing that might be extended to other phage genomes in nature to create useful recombinants for phage therapy applications.
Collapse
Affiliation(s)
- Pan Tao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| | - Xiaorong Wu
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| | - Wei-Chun Tang
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| | - Jingen Zhu
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| | - Venigalla Rao
- Department of Biology, The Catholic University of America, Washington, D.C. 20064, United States
| |
Collapse
|
3
|
Andersson CE, Lagerbäck P, Carlson K. Structure of bacteriophage T4 endonuclease II mutant E118A, a tetrameric GIY-YIG enzyme. J Mol Biol 2010; 397:1003-16. [PMID: 20156453 DOI: 10.1016/j.jmb.2010.01.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 01/22/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
Abstract
Coliphage T4 endonuclease II (EndoII), encoded by gene denA, is a small (16 kDa, 136 aa) enzyme belonging to the GIY-YIG family of endonucleases, which lacks a C-terminal domain corresponding to that providing most of the binding energy in the structurally characterized GIY-YIG endonucleases, I-TevI and UvrC. In vivo, it is involved in degradation of host DNA, permitting scavenging of host-derived nucleotides for phage DNA synthesis. EndoII primarily catalyzes single-stranded nicking of DNA; 5- to 10-fold less frequently double-stranded breaks are produced. The Glu118Ala mutant of EndoII was crystallized in space group P2(1) with four monomers in the asymmetric unit. The fold of the EndoII monomer is similar to that of the catalytic domains of UvrC and I-TevI. In contrast to these enzymes, EndoII forms a striking X-shaped tetrameric structure composed as a dimer of dimers, with a protruding hairpin domain not present in UvrC or I-TevI providing most of the dimerization and tetramerization interfaces. A bound phosphate ion in one of the four active sites of EndoII likely mimics the scissile phosphate in a true substrate complex. In silico docking experiments showed that a protruding loop containing a nuclease-associated modular domain 3 element is likely to be involved in substrate binding, as well as residues forming a separate nucleic acid binding surface adjacent to the active site. The positioning of these sites within the EndoII primary dimer suggests that the substrate would bind to a primary EndoII dimer diagonally over the active sites, requiring significant distortion of the enzyme or the substrate DNA, or both, for simultaneous nicking of both DNA strands. The scarcity of potential nucleic acid binding residues between the active sites indicates that EndoII may bind its substrate inefficiently across the two sites in the dimer, offering a plausible explanation for the catalytic preponderance of single-strand nicks. Mutations analyzed in earlier functional studies are discussed in their structural context.
Collapse
Affiliation(s)
- C Evalena Andersson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | |
Collapse
|
4
|
Lagerbäck P, Andersson E, Malmberg C, Carlson K. Bacteriophage T4 endonuclease II, a promiscuous GIY-YIG nuclease, binds as a tetramer to two DNA substrates. Nucleic Acids Res 2009; 37:6174-83. [PMID: 19666720 PMCID: PMC2764454 DOI: 10.1093/nar/gkp652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oligomerization state and mode of binding to DNA of the GIY-YIG endonuclease II (EndoII) from bacteriophage T4 was studied using gel filtration and electrophoretic mobility shift assays with a set of mutants previously found to have altered enzyme activity. At low enzyme/DNA ratios all mutants except one bound to DNA only as tetramers to two DNA substrates. The putatively catalytic E118 residue actually interfered with DNA binding (possibly due to steric hindrance or repulsion between the glutamate side chain and DNA), as shown by the ability of E118A to bind stably also as monomer or dimer to a single substrate. The tetrameric structure of EndoII in the DNA-protein complex is surprising considering the asymmetry of the recognized sequence and the predominantly single-stranded nicking. Combining the results obtained here with those from our previous in vivo studies and the recently obtained crystal structure of EndoII E118A, we suggest a model where EndoII translocates DNA between two adjacent binding sites and either nicks one strand of one or both substrates bound by the tetramer, or nicks both strands of one substrate. Thus, only one or two of the four active sites in the tetramer is catalytically active at any time.
Collapse
Affiliation(s)
- Pernilla Lagerbäck
- Department of Cell and Molecular Biology, University of Uppsala and Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
5
|
Lagerbäck P, Carlson K. Amino acid residues in the GIY-YIG endonuclease II of phage T4 affecting sequence recognition and binding as well as catalysis. J Bacteriol 2008; 190:5533-44. [PMID: 18539732 PMCID: PMC2519379 DOI: 10.1128/jb.00094-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 05/26/2008] [Indexed: 11/20/2022] Open
Abstract
Phage T4 endonuclease II (EndoII), a GIY-YIG endonuclease lacking a carboxy-terminal DNA-binding domain, was subjected to site-directed mutagenesis to investigate roles of individual amino acids in substrate recognition, binding, and catalysis. The structure of EndoII was modeled on that of UvrC. We found catalytic roles for residues in the putative catalytic surface (G49, R57, E118, and N130) similar to those described for I-TevI and UvrC; in addition, these residues were found to be important for substrate recognition and binding. The conserved glycine (G49) and arginine (R57) were essential for normal sequence recognition. Our results are in agreement with a role for these residues in forming the DNA-binding surface and exposing the substrate scissile bond at the active site. The conserved asparagine (N130) and an adjacent proline (P127) likely contribute to positioning the catalytic domain correctly. Enzymes in the EndoII subfamily of GIY-YIG endonucleases share a strongly conserved middle region (MR, residues 72 to 93, likely helical and possibly substituting for heterologous helices in I-TevI and UvrC) and a less strongly conserved N-terminal region (residues 12 to 24). Most of the conserved residues in these two regions appeared to contribute to binding strength without affecting the mode of substrate binding at the catalytic surface. EndoII K76, part of a conserved NUMOD3 DNA-binding motif of homing endonucleases found to overlap the MR, affected both sequence recognition and catalysis, suggesting a more direct involvement in positioning the substrate. Our data thus suggest roles for the MR and residues conserved in GIY-YIG enzymes in recognizing and binding the substrate.
Collapse
Affiliation(s)
- Pernilla Lagerbäck
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala, Sweden
| | | |
Collapse
|
6
|
Hirano N, Ohshima H, Takahashi H. Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesis. Nucleic Acids Res 2006; 34:4743-51. [PMID: 16971463 PMCID: PMC1635256 DOI: 10.1093/nar/gkl553] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endonuclease IV encoded by denB of bacteriophage T4 is implicated in restriction of deoxycytidine (dC)-containing DNA in the host Escherichia coli. The enzyme was synthesized with the use of a wheat germ cell-free protein synthesis system, given a lethal effect of its expression in E.coli cells, and was purified to homogeneity. The purified enzyme showed high activity with single-stranded (ss) DNA and denatured dC-substituted T4 genomic double-stranded (ds) DNA but exhibited no activity with dsDNA, ssRNA or denatured T4 genomic dsDNA containing glucosylated deoxyhydroxymethylcytidine. Characterization of Endo IV activity revealed that the enzyme catalyzed specific endonucleolytic cleavage of the 5' phosphodiester bond of dC in ssDNA with an efficiency markedly dependent on the surrounding nucleotide sequence. The enzyme preferentially targeted 5'-dTdCdA-3' but tolerated various combinations of individual nucleotides flanking this trinucleotide sequence. These results suggest that Endo IV preferentially recognizes short nucleotide sequences containing 5'-dTdCdA-3', which likely accounts for the limited digestion of ssDNA by the enzyme and may be responsible in part for the indispensability of a deficiency in denB for stable synthesis of dC-substituted T4 genomic DNA.
Collapse
Affiliation(s)
| | | | - Hideo Takahashi
- To whom correspondence should be addressed. Tel: +81 466 84 3350; Fax: +81 466 84 3698;
| |
Collapse
|
7
|
Carlson K, Lagerbäck P, Nyström AC. Bacteriophage T4 endonuclease II: concerted single-strand nicks yield double-strand cleavage. Mol Microbiol 2004; 52:1403-11. [PMID: 15165242 DOI: 10.1111/j.1365-2958.2004.04062.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In vivo, endonuclease II (EndoII) of coliphage T4 cleaves sites with conserved sequence elements (CSEs) to both the left and the right of the cleaved bonds, 16 bp altogether with some variability tolerated. In vitro, however, single-strand nicks in the lower strand predominate at sites containing only the left-side CSE that determines the precise position of lower strand nicks. Upper strand nick positions vary both in vivo and in vitro. A 24 bp substrate was nicked with the same precision as in longer substrates, showing that the conserved sequence suffices for precise nicking by EndoII. Using DNA ligase in vitro, we found that EndoII nicked both strands simultaneously at an in vivo-favoured site but not at an in vitro-favoured site. This indicates that the right-side CSE at in vivo-favoured sites is important for simultaneous nicking of both strands, generating double-strand cleavage. Separate analysis of the two strands following in vitro digestion at two in vitro-favoured sites showed that EndoII nicked the lower strand about 1.5-fold faster than the upper strand. In addition, the upper and lower strands were nicked independently of each other, seldom resulting in double-strand cleavage. Thus, cleavage by EndoII is the fortuitous outcome of two separate nicking events.
Collapse
Affiliation(s)
- Karin Carlson
- Department of Cell and Molecular Biology, University of Uppsala, Uppsala, Sweden.
| | | | | |
Collapse
|
8
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Carlson K, Kosturko LD, Nyström AC. Sequence-specific cleavage by bacteriophage T4 endonuclease II in vitro. Mol Microbiol 1999; 31:1395-405. [PMID: 10200960 DOI: 10.1046/j.1365-2958.1999.01281.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 136 codon (408 bp) denA gene encoding endonuclease II (Endoll) of bacteriophage T4 was unambiguously identified through sequencing and subsequent cloning. Endoll prepared from cloned DNA through coupled in vitro transcription-translation nicked and cut DNA in vitro in a sequence-specific manner. In vitro (and in vivo), the bottom strand was nicked between the first and second base pair to the right of a top-strand CCGC motif shared by favoured in vitro and in vivo cleavage sites; top-strand cleavage positions varied. To the right of the cleavage position, favoured in vitro sites lacked a sequence element conserved at favoured in vivo sites. In pBR322 DNA, the sites cleaved in vivo as previously described were also cleaved in vitro, but in vitro additional sites were nicked or cleaved and the preference for individual sites was different. Also, different from the in vivo reaction, nicking was more frequent than ds cutting; in many copies of a ds cleavage site, only the bottom strand was nicked in vitro. A model is discussed in which sequential nicking of the two strands, and different factors influencing bottom-strand nicking and top-strand nicking, can explain the differences between the in vitro and the in vivo reaction.
Collapse
Affiliation(s)
- K Carlson
- Department of Microbiology, University of Uppsala Biomedical Center, Sweden.
| | | | | |
Collapse
|
10
|
Tétart F, Desplats C, Krisch HM. Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J Mol Biol 1998; 282:543-56. [PMID: 9737921 DOI: 10.1006/jmbi.1998.2047] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption specificity of the T-even phages is determined by the protein sequence near the tip of the long tail fibers. These adhesin sequences are highly variable in both their sequence and specificity for bacterial receptors. The tail fiber adhesin domains are located in different genes in closely related phages of the T-even type. In phage T4, the adhesin sequence is encoded by the C-terminal domain of the large tail fiber gene (gene 37), but in T2, the adhesin is a separate gene product (gene 38) that binds to the tip of T2 tail fibers. Analysis of phage T6 and Ac3 sequences reveals additional variant forms of this locus. The tail fiber host specificity determinants can be exchanged, although the different loci have only limited homology. Chimeric fibers can be created by crossovers either between small homologies within the structural part of the fiber gene or in conserved motifs of the adhesin domain. For example, the T2 adhesin determinants are flanked by G-rich DNA motifs and exchanges involving these sequences can replace the specificity determinants. These features of the distal tail fiber loci genetically link their different forms and can mediate acquisition of diverse host range determinants, including those that allow it to cross species boundaries and infect taxonomically distant hosts.
Collapse
Affiliation(s)
- F Tétart
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS, 118 Route de Narbonne, Toulouse Cedex, UPR 9007, France
| | | | | |
Collapse
|
11
|
Carlson K, Kosturko LD. Endonuclease II of coliphage T4: a recombinase disguised as a restriction endonuclease? Mol Microbiol 1998; 27:671-6. [PMID: 9515694 DOI: 10.1046/j.1365-2958.1998.00728.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
EndoII shares with restriction endonucleases the property of cleaving foreign DNA while leaving the endonuclease-encoding genome intact, ensuring the survival of one DNA species in the cell. In addition, in vivo EndoII cleaves a specific DNA sequence and cleavage is context dependent. These context effects extend over at least 1000 bp, largely limiting cleavage to once within this distance. Like homing endonucleases, in vivo EndoII recognizes a long, asymmetric and degenerate consensus sequence which has two distinct parts. Recognition of one part of the consensus sequence involves base-specific bonds, and recognition of the other involves sequence-dependent helical structure. EndoII fulfills an obvious short-term survival role in ensuring the dominance of phage DNA in an infected cell, but may also have a long-term evolutionary role, producing gene-size fragments of foreign DNA to be enrolled in the phage genetic repertoire.
Collapse
Affiliation(s)
- K Carlson
- Department of Microbiology, University of Uppsala Biomedical Center, Sweden.
| | | |
Collapse
|
12
|
Carlson K, Kosturko LD, Nyström AC. Short-range and long-range context effects on coliphage T4 endonuclease II-dependent restriction. J Bacteriol 1996; 178:6419-26. [PMID: 8932296 PMCID: PMC178526 DOI: 10.1128/jb.178.22.6419-6426.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Synthetic sites inserted into a plasmid were used to analyze the sequence requirements for in vivo DNA cleavage dependent on bacteriophage T4 endonuclease II. A 16-bp variable sequence surrounding the cleavage site was sufficient for cleavage, although context both within and around this sequence influenced cleavage efficiency. The most efficiently cleaved sites matched the sequence CGRCCGCNTTGGCNGC, in which the strongly conserved bases to the left were essential for cleavage. The less-conserved bases in the center and in the right half determined cleavage efficiency in a manner not directly correlated with the apparent base preference at each position; a sequence carrying, in each of the 16 positions, the base most preferred in natural sites in pBR322 was cleaved infrequently. This, along with the effects of substitutions at one or two of the less-conserved positions, suggests that several combinations of bases can fulfill the requirements for recognition of the right part of this sequence. The replacements that improve cleavage frequency are predicted to influence helical twist and roll, suggesting that recognition of sequence-dependent DNA structure and recognition of specific bases are both important. Upon introduction of a synthetic site, cleavage at natural sites within 800 to 1,500 bp from the synthetic site was significantly reduced. This suggests that the enzyme may engage more DNA than its cleavage site and cleaves the best site within this region. Cleavage frequency at sites which do not conform closely to the consensus is, therefore, highly context dependent. Models and possible biological implications of these findings are discussed.
Collapse
Affiliation(s)
- K Carlson
- Department of Microbiology, University of Uppsala Biomedical Center, Sweden.
| | | | | |
Collapse
|