1
|
Moles TM, de Brito Francisco R, Mariotti L, Pompeiano A, Lupini A, Incrocci L, Carmassi G, Scartazza A, Pistelli L, Guglielminetti L, Pardossi A, Sunseri F, Hörtensteiner S, Santelia D. Salinity in Autumn-Winter Season and Fruit Quality of Tomato Landraces. FRONTIERS IN PLANT SCIENCE 2019; 10:1078. [PMID: 31611885 PMCID: PMC6769068 DOI: 10.3389/fpls.2019.01078] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/07/2019] [Indexed: 05/02/2023]
Abstract
Tomato landraces, originated by adaptive responses to local habitats, are considered a valuable resource for many traits of agronomic interest, including fruit nutritional quality. Primary and secondary metabolites are essential determinants of fruit organoleptic quality, and some of them, such as carotenoids and phenolics, have been associated with beneficial proprieties for human health. Landraces' fruit taste and flavour are often preferred by consumers compared to the commercial varieties' ones. In an autumn-winter greenhouse hydroponic experiment, the response of three Southern-Italy tomato landraces (Ciettaicale, Linosa and Corleone) and one commercial cultivar (UC-82B) to different concentrations of sodium chloride (0 mM, 60 mM or 120 mM NaCl) were evaluated. At harvest, no losses in marketable yield were noticed in any of the tested genotypes. However, under salt stress, fresh fruit yield as well as fruit calcium concentration were higher affected in the commercial cultivar than in the landraces. Furthermore, UC-82B showed a trend of decreasing lycopene and total antioxidant capacity with increasing salt concentration, whereas no changes in these parameters were observed in the landraces under 60 mM NaCl. Landraces under 120 mM NaCl accumulated more fructose and glucose in the fruits, while salt did not affect hexoses levels in UC-82B. Ultra-performance liquid chromatography-tandem mass spectrometry analysis revealed differential accumulation of glycoalkaloids, phenolic acids, flavonoids and their derivatives in the fruits of all genotypes under stress. Overall, the investigated Italian landraces showed a different behaviour compared to the commercial variety UC-82B under moderate salinity stress, showing a tolerable compromise between yield and quality attributes. Our results point to the feasible use of tomato landraces as a target to select interesting genetic traits to improve fruit quality under stress conditions.
Collapse
Affiliation(s)
- Tommaso Michele Moles
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Rita de Brito Francisco
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- *Correspondence: Tommaso Michele Moles, ; Rita de Brito Francisco, ; Lorenzo Mariotti,
| | - Antonio Pompeiano
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czechia
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Antonio Lupini
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Luca Incrocci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Giulia Carmassi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Andrea Scartazza
- Institute of Research on Terrestrial Ecosystems, National Research Council, Pisa, Italy
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Alberto Pardossi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesco Sunseri
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Stefan Hörtensteiner
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Diana Santelia
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Zhao J, Li L, Zhao Y, Zhao C, Chen X, Liu P, Zhou H, Zhang J, Hu C, Chen A, Liu G, Peng X, Lu X, Xu G. Metabolic changes in primary, secondary, and lipid metabolism in tobacco leaf in response to topping. Anal Bioanal Chem 2018; 410:839-851. [PMID: 28929184 DOI: 10.1007/s00216-017-0596-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/25/2017] [Accepted: 08/18/2017] [Indexed: 12/19/2022]
Abstract
As an important cultivation practice used for flue-cured tobacco, topping affects diverse biological processes in the later stages of development and growth. Some studies have focused on using tobacco genes to reflect the physiological changes caused by topping. However, the complex metabolic shifts in the leaf resulting from topping have not yet been investigated in detail. In this study, a comprehensive metabolic profile of primary, secondary, and lipid metabolism in flue-cured tobacco leaf was generated with use of a multiple platform consisting of gas chromatography-mass spectrometry, capillary electrophoresis-mass spectrometry, and liquid chromatography-mass spectrometry/ultraviolet spectroscopy. A total of 367 metabolites were identified and determined. Both principal component analysis and the number of significantly different metabolites indicated that topping had the greatest influence on the upper leaves. During the early stage of topping, great lipid level variations in the upper leaves were observed, and antioxidant defense metabolites were accumulated. This indicated that the topping activated lipid turnover and the antioxidant defense system. At the mature stage, lower levels of senescence-related metabolites and higher levels of secondary metabolites were found in the topped mature leaves. This implied that topping delayed leaf senescence and promoted secondary metabolite accumulation. This study provides a global view of the metabolic perturbation in response to topping. Graphical abstract Metabolic alterations in tobacco leaf in response to topping using a multiplatform metabolomics.
Collapse
Affiliation(s)
- Jieyu Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Lili Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Yanni Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan, 450001, China
| | - Junjie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China
| | - Aiguo Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266101, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning, 116023, China.
| |
Collapse
|
3
|
Lorenz P, Duckstein S, Conrad J, Knödler M, Meyer U, Stintzing FC. An Approach to the Chemotaxonomic Differentiation of Two European Dog's Mercury Species: Mercurialis annua L. and M. perennis L. Chem Biodivers 2012; 9:282-97. [DOI: 10.1002/cbdv.201100341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Kaur H, Heinzel N, Schöttner M, Baldwin IT, Gális I. R2R3-NaMYB8 regulates the accumulation of phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against insect herbivores in Nicotiana attenuata. PLANT PHYSIOLOGY 2010; 152:1731-47. [PMID: 20089770 PMCID: PMC2832263 DOI: 10.1104/pp.109.151738] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 01/13/2010] [Indexed: 05/17/2023]
Abstract
Although phenylpropanoid-polyamine conjugates (PPCs) occur ubiquitously in plants, their biological roles remain largely unexplored. The two major PPCs of Nicotiana attenuata plants, caffeoylputrescine (CP) and dicaffeoylspermidine, increase dramatically in local and systemic tissues after herbivore attack and simulations thereof. We identified NaMYB8, a homolog of NtMYBJS1, which in BY-2 cells regulates PPC biosynthesis, and silenced its expression by RNA interference in N. attenuata (ir-MYB8), to understand the ecological role(s) of PPCs. The regulatory role of NaMYB8 in PPC biosynthesis was validated by a microarray analysis, which revealed that transcripts of several key biosynthetic genes in shikimate and polyamine metabolism accumulated in a NaMYB8-dependent manner. Wild-type N. attenuata plants typically contain high levels of PPCs in their reproductive tissues; however, NaMYB8-silenced plants that completely lacked CP and dicaffeoylspermidine showed no changes in reproductive parameters of the plants. In contrast, a defensive role for PPCs was clear; both specialist (Manduca sexta) and generalist (Spodoptera littoralis) caterpillars feeding on systemically preinduced young stem leaves performed significantly better on ir-MYB8 plants lacking PPCs compared with wild-type plants expressing high levels of PPCs. Moreover, the growth of M. sexta caterpillars was significantly reduced when neonates were fed ir-MYB8 leaves sprayed with synthetic CP, corroborating the role of PPCs as direct plant defense. The spatiotemporal accumulation and function of PPCs in N. attenuata are consistent with the predictions of the optimal defense theory: plants preferentially protect their most fitness-enhancing and vulnerable parts, young tissues and reproductive organs, to maximize their fitness.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Gális
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, D–07745 Jena, Germany
| |
Collapse
|
5
|
Lenucci M, Piro G, Miller JG, Dalessandro G, Fry SC. Do polyamines contribute to plant cell wall assembly by forming amide bonds with pectins? PHYTOCHEMISTRY 2005; 66:2581-94. [PMID: 16242166 DOI: 10.1016/j.phytochem.2005.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/30/2005] [Accepted: 08/30/2005] [Indexed: 05/05/2023]
Abstract
Two new reducing glycoconjugates [N-D-galacturonoyl-putrescinamide (GalA-Put) and N,N'-di-D-galacturonoyl-putrescinamide (GalA-Put-GalA)] and homogalacturonan-putrescine (GalAn-Put) conjugates were synthesised as model compounds representing possible amide (isopeptide) linkage points between a polyamine and either one or two pectic galacturonate residues. The amide bond(s) were stable to cold acid and alkali (2M TFA and 0.1M NaOH at 25 degrees C) but rapidly hydrolysed by these agents at 100 degrees C. The amide bond(s) were resistant to Driselase and to all proteinases tested, although Driselase digested GalAn-Put, releasing fragments such as GalA3-Put-GalA3. To trace the possible formation of GalA-polyamine amide bonds in vivo, we fed Arabidopsis and rose cell-cultures and chickpea internodes with [14C]Put. About 20% of the 14C taken up was released as 14CO2, indicating some catabolism. An additional approximately 73% of the 14C taken up (in Arabidopsis), or approximately 21% (in rose), became ethanol-insoluble, superficially suggestive of polysaccharide-Put covalent bonding. However, much of the ethanol-inextractable 14C was subsequently extractable by acidified phenol or by cold 1M TFA. The small proportion of radioactive material that stayed insoluble in both phenol and TFA was hydrolysable by Driselase or hot 6M HCl, yielding 14C-oligopeptides and/or amino acids (including Asp, Glu, Gly, Ala and Val); no free 14C-polyamines were released by hot HCl. We conclude that if pectin-polyamine amide bonds are present, they are a very minor component of the cell walls of cultured rose and Arabidopsis cells and chickpea internodes.
Collapse
Affiliation(s)
- Marcello Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università di Lecce, via prov.le Lecce-Monteroni, 73100 Lecce, Italy
| | | | | | | | | |
Collapse
|
6
|
Abstract
Twelve N-caffeoylamino acids and N-cinnamoylamino acids were synthesized and their vasorelaxation activity against norepinephrine (NE)-induced contraction of rat aorta was examined. The following structure-activity relationships were found. 1) On the benzene ring, the caffeoyl structure is effective for vasorelaxation, while the cinnamoyl structure reduced vasorelaxation activity. 2) Four to six carbons are more effective as the carbon chain connecting the acylamino and carboxyl terminal groups. N-Caffeoyl-beta-alanine and N-caffeoyltranexamic acid were used to investigate the action mechanism of vasorelaxing activities. It is believed that these compounds antagonize NE-induced vasocontraction by inhibiting receptor-operated calcium channels.
Collapse
Affiliation(s)
- Toru Iizuka
- Faculty of Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | |
Collapse
|
7
|
Metabolism of Aromatic Compounds and Nucleic Acid Bases. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50028-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|