1
|
Jahan MI, Tobe R, Mihara H. Characterization of a Novel Porin-Like Protein, ExtI, from Geobacter sulfurreducens and Its Implication in the Reduction of Selenite and Tellurite. Int J Mol Sci 2018. [PMID: 29534491 PMCID: PMC5877670 DOI: 10.3390/ijms19030809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The extI gene in Geobacter sulfurreducens encodes a putative outer membrane channel porin, which resides within a cluster of extHIJKLMNOPQS genes. This cluster is highly conserved across the Geobacteraceae and includes multiple putative c-type cytochromes. In silico analyses of the ExtI sequence, together with Western blot analysis and proteinase protection assays, showed that it is an outer membrane protein. The expression level of ExtI did not respond to changes in osmolality and phosphate starvation. An extI-deficient mutant did not show any significant impact on fumarate or Fe(III) citrate reduction or sensitivity to β-lactam antibiotics, as compared with those of the wild-type strain. However, extI deficiency resulted in a decreased ability to reduce selenite and tellurite. Heme staining analysis revealed that extI deficiency affects certain heme-containing proteins in the outer and inner membranes, which may cause a decrease in the ability to reduce selenite and tellurite. Based on these observations, we discuss possible roles for ExtI in selenite and tellurite reduction in G. sulfurreducens.
Collapse
Affiliation(s)
- Mst Ishrat Jahan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
2
|
Arunasri K, Adil M, Khan PAA, Shivaji S. Global gene expression analysis of long-term stationary phase effects in E. coli K12 MG1655. PLoS One 2014; 9:e96701. [PMID: 24858919 PMCID: PMC4032248 DOI: 10.1371/journal.pone.0096701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/11/2014] [Indexed: 12/27/2022] Open
Abstract
Global gene expression was monitored in long-term stationary phase (LSP) cells of E. coli K12 MG1655 and compared with stationary phase (SP) cells that were sub-cultured without prolonged delay to get an insight into the survival strategies of LSP cells. The experiments were carried out using both LB medium and LB supplemented with 10% of glycerol. In both the media the LSP cells showed decreased growth rate compared to SP cells. DNA microarray analysis of LSP cells in both the media resulted in the up- and down-regulation of several genes in LSP cells compared to their respective SP cells in the corresponding media. In LSP cells grown in LB 204 genes whereas cells grown in LB plus glycerol 321 genes were differentially regulated compared to the SP cells. Comparison of these differentially regulated genes indicated that irrespective of the medium used for growth in LSP cells expression of 95 genes (22 genes up-regulated and 73 down-regulated) were differentially regulated. These 95 genes could be associated with LSP status of the cells and are likely to influence survival and growth characteristics of LSP cells. This is indeed so since the up- and down-regulated genes include genes that protect E. coli LSP cells from stationary phase stress and genes that would help to recover from stress when transferred into fresh medium. The growth phenotype in LSP cells could be attributed to up-regulation of genes coding for insertion sequences that confer beneficial effects during starvation, genes coding for putative transposases and simultaneous down-regulation of genes coding for ribosomal protein synthesis, transport-related genes, non-coding RNA genes and metabolic genes. As yet we still do not know the role of several unknown genes and genes coding for hypothetical proteins which are either up- or down-regulated in LSP cells compared to SP cells.
Collapse
Affiliation(s)
| | - Mohammed Adil
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | - Sisinthy Shivaji
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- * E-mail:
| |
Collapse
|
3
|
Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu Reddy S, Shivaji S. Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS One 2013; 8:e57860. [PMID: 23472115 PMCID: PMC3589462 DOI: 10.1371/journal.pone.0057860] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/26/2013] [Indexed: 12/23/2022] Open
Abstract
This study demonstrates the effects of simulated microgravity on E. coli K 12 MG1655 grown on LB medium supplemented with glycerol. Global gene expression analysis indicated that the expressions of hundred genes were significantly altered in simulated microgravity conditions compared to that of normal gravity conditions. Under these conditions genes coding for adaptation to stress are up regulated (sufE and ssrA) and simultaneously genes coding for membrane transporters (ompC, exbB, actP, mgtA, cysW and nikB) and carbohydrate catabolic processes (ldcC, ptsA, rhaD and rhaS) are down regulated. The enhanced growth in simulated gravity conditions may be because of the adequate supply of energy/reducing equivalents and up regulation of genes involved in DNA replication (srmB) and repression of the genes encoding for nucleoside metabolism (dfp, pyrD and spoT). In addition, E. coli cultured in LB medium supplemented with glycerol (so as to protect the cells from freezing temperatures) do not exhibit multiple stress responses that are normally observed when cells are exposed to microgravity in LB medium without glycerol.
Collapse
Affiliation(s)
| | - Mohammed Adil
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | | | | |
Collapse
|
4
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Graeme-Cook KA. The regulation of porin expression inEscherichia coli: effect of turgor stress. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04532.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Forst S, Delgado J, Rampersaud A, Inouye M. In vivo phosphorylation of OmpR, the transcription activator of the ompF and ompC genes in Escherichia coli. J Bacteriol 1990; 172:3473-7. [PMID: 2160945 PMCID: PMC209160 DOI: 10.1128/jb.172.6.3473-3477.1990] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An in vivo approach was taken to assess whether the phosphorylated state of the transcription activator OmpR was affected by changes in the osmolarity of the growth medium or by mutations in envZ, the gene encoding the inner membrane histidine kinase that phosphorylates OmpR. We present results that support the view that increased phosphorylation of OmpR is correlated with enhanced expression of ompC. The in vivo phosphorylation approach was also used to show that OmpR can be phosphorylated in an envZ null strain. This result indicates that phosphorylation cross talk can occur in vivo between OmpR and a kinase(s) that is functionally homologous to envZ.
Collapse
Affiliation(s)
- S Forst
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | | | |
Collapse
|
7
|
Puente JL, Alvarez-Scherer V, Gosset G, Calva E. Comparative analysis of the Salmonella typhi and Escherichia coli ompC genes. Gene X 1989; 83:197-206. [PMID: 2684785 DOI: 10.1016/0378-1119(89)90105-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nucleotide (nt) sequence of the gene encoding the Salmonella typhi OmpC outer membrane protein, and its deduced amino acid (aa) sequence are presented here. The S. typhi ompC gene consists of an open reading frame of 1134 nt, corresponding to a protein of 378 aa; with a 21-aa signal peptide. This protein is 11 aa longer than Escherichia coli OmpC, but it has an identical leader peptide. The mature OmpC sequence shows 79% similarity for both bacteria at the aa level, and 77% similarity at the nt level. Seven main variable regions in the OmpC protein were identified. Five of them correspond to hydrophilic regions and contain aa observed most frequently in turn configurations in soluble proteins. This suggests that these aa stretches could be located on the exterior of the outer membrane. To probe into the genus and species specificity of the main variable regions, we have constructed complementary oligodeoxyribonucleotides. The use of one of them with a small number of DNA samples is illustrated here; no restriction fragment length polymorphism or nt sequence heterogeneity could be found between S. typhi and Salmonella typhimurium.
Collapse
Affiliation(s)
- J L Puente
- Departamento de Biología Molecular, Universidad Nacional Autónoma de México
| | | | | | | |
Collapse
|
8
|
Forst SA, Delgado J, Inouye M. DNA-binding properties of the transcription activator (OmpR) for the upstream sequences of ompF in Escherichia coli are altered by envZ mutations and medium osmolarity. J Bacteriol 1989; 171:2949-55. [PMID: 2656631 PMCID: PMC209999 DOI: 10.1128/jb.171.6.2949-2955.1989] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Expression in Escherichia coli of the genes that encode the major outer membrane porin proteins (OmpF and OmpC) is regulated by the transcription activator protein OmpR and the receptorlike protein EnvZ, which is located in the inner membrane. Using synthesized oligonucleotide fragments containing the OmpR-binding site of ompF, we show that soluble extracts and partially purified OmpR derived from both the parent strain grown in nutrient broth plus 20% sucrose and the envZ11 strain grown in nutrient broth produced high-affinity DNA-binding activity, whereas soluble extracts from the parent strain grown in nutrient broth produced low-affinity binding. We also show that the soluble extracts from the envZ22(Am) strain grown in nutrient broth did not produce detectable bound forms of the ompF fragments, but low levels of DNA binding were detected with soluble extracts of the envZ22 strain grown in nutrient broth plus sucrose. In addition, the time course of the repression of OmpF synthesis produced by a shift to high-osmolarity growth medium was correlated with an increase in the DNA-binding affinity of soluble extracts to the ompF fragment. These results provide evidence that envZ function influences the DNA-binding activity of OmpR and suggest that high-affinity binding of OmpR to the upstream sequences of ompF is correlated with the repression of OmpF production.
Collapse
Affiliation(s)
- S A Forst
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854
| | | | | |
Collapse
|
9
|
Forst S, Delgado J, Ramakrishnan G, Inouye M. Regulation of ompC and ompF expression in Escherichia coli in the absence of envZ. J Bacteriol 1988; 170:5080-5. [PMID: 2846509 PMCID: PMC211574 DOI: 10.1128/jb.170.11.5080-5085.1988] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The expression of the genes encoding the major outer membrane porin proteins OmpF and OmpC in Escherichia coli is regulated by ompR, which encodes the transcriptional activator protein OmpR, and envZ, which encodes a receptorlike protein located in the inner membrane. To examine the role of EnvZ in the expression of the osmoregulated porin genes, we analyzed the production of OmpF and OmpC in cells that lack envZ function. We show that EnvZ is required for the maximal production of OmpC in cells grown in minimal medium but is not essential for the efficient induction of OmpC that occurs during a shift to a high-osmolarity medium. In contrast, the production of OmpF in cells that lack envZ function was similar to that of the parent strain, whereas OmpF repression during a shift to a high-osmolarity medium was incomplete in the absence of EnvZ. These results are discussed in the context of the putative role of EnvZ in the expression of ompF and ompC.
Collapse
Affiliation(s)
- S Forst
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | | | |
Collapse
|
10
|
Liljeström P, Laamanen I, Palva ET. Structure and expression of the ompB operon, the regulatory locus for the outer membrane porin regulon in Salmonella typhimurium LT-2. J Mol Biol 1988; 201:663-73. [PMID: 2845093 DOI: 10.1016/0022-2836(88)90465-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ompB operon of Salmonella typhimurium encodes a positive transcriptional regulator OmpR and an inner membrane protein EnvZ. Both proteins are needed for the proper expression of the outer membrane proteins OmpC and OmpF. We have determined the nucleotide sequence of the ompB locus and its adjacent regions. A comparison between the S. typhimurium and Escherichia coli sequences revealed that the ompB locus is highly conserved. The sequence data also showed that ompR and envZ form an operon, where the coding regions overlap by four base-pairs. Utilizing ompR-lacZ and envZ-lacZ gene fusions, the translational levels of expression of these two genes were measured, showing that ompR is considerably more efficiently expressed than envZ. Analysis of ompR frameshift mutations showed that translation of envZ is almost totally dependent on the translation of the upstream gene ompR. The mechanism of this translational coupling appears to be a reinitiation of the ribosome at the overlapping region of the two genes. The characteristics of the OmpR and EnvZ proteins were in agreement with the known functions and cellular locations of these proteins. OmpR was found to contain a putative DNA binding site, while EnvZ contained two hydrophobic stretches typical of transmembrane regions. Both OmpR and EnvZ show extensive homologies with many proteins from a number of different origins, all of which function in pairs and through which environmental signals modulate gene expression. Hence, the tightly coupled synthesis of these proteins seems to be essential in eliciting a proper response in the transmembrane regulation of gene expression.
Collapse
Affiliation(s)
- P Liljeström
- Department of Molecular Biology, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
11
|
Forst S, Comeau D, Norioka S, Inouye M. Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)49274-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Norioka S, Ramakrishnan G, Ikenaka K, Inouye M. Interaction of a transcriptional activator, OmpR, with reciprocally osmoregulated genes, ompF and ompC, of Escherichia coli. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)76006-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|