1
|
Koshevaya YS, Turkunova ME, Vechkasova AO, Serebryakova EA, Donnikov MY, Papanov SI, Chernov AN, Kolbasin LN, Kovalenko LV, Glotov AS, Glotov OS. Exome Sequencing for the Diagnostics of Osteogenesis Imperfecta in Six Russian Patients. Curr Issues Mol Biol 2024; 46:4106-4118. [PMID: 38785520 PMCID: PMC11119099 DOI: 10.3390/cimb46050252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a group of inherited disorders of connective tissue that cause significant deformities and fragility in bones. Most cases of OI are associated with pathogenic variants in collagen type I genes and are characterized by pronounced polymorphisms in clinical manifestations and the absence of clear phenotype-genotype correlation. The objective of this study was to conduct a comprehensive molecular-genetic and clinical analysis to verify the diagnosis of OI in six Russian patients with genetic variants in the COL1A1 and COL1A2 genes. Clinical and laboratory data were obtained from six OI patients who were observed at the Medical Genetics Center in Saint Petersburg from 2016 to 2023. Next-generation sequencing on MGISEQ G400 (MGI, China) was used for DNA analysis. The GATK bioinformatic software (version 4.5.0.0) was used for variant calling and hard filtering. Genetic variants were verified by the direct automatic sequencing of PCR products using the ABI 3500X sequencer. We identified six genetic variants, as follows pathogenic c.3505G>A (p. Gly1169Ser), c.769G>A (p.Gly257Arg), VUS c.4123G>A (p.Ala1375Thr), and c.4114A>T (p.Asn1372Tyr) in COL1A1; and likely pathogenic c.2035G>A (p.Gly679Ser) and c.739-2A>T in COL1A2. In addition, clinical cases are presented due to the presence of the c.4114A>T variant in the COL1A2 gene. Molecular genetics is essential for determining different OI types due to the high similarity across various types of the disease and the failure of unambiguous diagnosis based on clinical manifestations alone. Considering the variable approaches to OI classification, an integrated strategy is required for optimal patient management.
Collapse
Affiliation(s)
- Yulia S. Koshevaya
- Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), 194044 Saint Petersburg, Russia; (Y.S.K.); (M.E.T.); (A.O.V.); (E.A.S.)
| | - Mariia E. Turkunova
- Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), 194044 Saint Petersburg, Russia; (Y.S.K.); (M.E.T.); (A.O.V.); (E.A.S.)
- Federal State Budget Institution of Higher Education “North-Western State Medical University named after I.I Mechnikov”, Ministry of Public Health of the Russian Federation, 191015 Saint Petersburg, Russia
| | - Anastasia O. Vechkasova
- Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), 194044 Saint Petersburg, Russia; (Y.S.K.); (M.E.T.); (A.O.V.); (E.A.S.)
| | - Elena A. Serebryakova
- Saint-Petersburg State Medical Diagnostic Center (Genetic Medical Center), 194044 Saint Petersburg, Russia; (Y.S.K.); (M.E.T.); (A.O.V.); (E.A.S.)
| | - Maxim Yu. Donnikov
- Department of Children’s Diseases, Medical Institute of Surgut State University, 628400 Surgut, Russia; (M.Y.D.); (L.N.K.); (L.V.K.)
| | - Svyatoslav I. Papanov
- Surgut Disctrict Clinical Center of Maternity and Childhood Health Care, 628400 Surgut, Russia;
| | - Alexander N. Chernov
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint Petersburg, Russia;
| | - Lev N. Kolbasin
- Department of Children’s Diseases, Medical Institute of Surgut State University, 628400 Surgut, Russia; (M.Y.D.); (L.N.K.); (L.V.K.)
- Surgut Disctrict Clinical Center of Maternity and Childhood Health Care, 628400 Surgut, Russia;
| | - Lyudmila V. Kovalenko
- Department of Children’s Diseases, Medical Institute of Surgut State University, 628400 Surgut, Russia; (M.Y.D.); (L.N.K.); (L.V.K.)
| | - Andrey S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint Petersburg, Russia;
| | - Oleg S. Glotov
- Department of Genomic Medicine, D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034 Saint Petersburg, Russia;
- Department of Experimental Medical Virology, Molecular Genetics and Biobanking of Virological and Molecular Genetic Methods of Diagnostics of Children’s Scientific and Clinical Center for Infectious Diseases of the Federal Medical and Biological Agency, 197022 Saint Petersburg, Russia
| |
Collapse
|
2
|
Datta HK, Vila J, Tuck SP. Long-term evaluation of anabolic and anti-resorptive agents in adults with familial osteoporosis due to pro205ala variant of the col1a1 gene. Osteoporos Int 2021; 32:2105-2109. [PMID: 33796912 DOI: 10.1007/s00198-021-05933-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Osteogenesis imperfecta (OI) is a rare disorder with variable clinical presentation, commonly caused by mutations in collagen type I genes. OI affects both bone quality and density resulting in fractures and deformity. The effectiveness of bisphosphonates in the treatment of adult OI remains unclear. Small, randomised trials have shown increases in BMD, but without fracture rate reduction. AIM We report the results of BMD of a family harbouring C 613 C>G substitution in exon 8 of Col1A1 gene leading to Pro205Ala missense variant, as well as the results of long term treatment of a mother and daughter with this mutation.
Collapse
Affiliation(s)
- H K Datta
- Musculoskeletal Group, Department of Rheumatology, James Cook Blood Sciences (pathology), James Cook University Hospital, Middlesbrough, TS4 3BW, UK.
| | - J Vila
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - S P Tuck
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Department of Rheumatology (S.P.T.), James Cook University Hospital, Middlesbrough, TS4 3BW, UK.
| |
Collapse
|
3
|
Huq NL, Loganathan A, Cross KJ, Chen YY, Johnson NI, Willetts M, Veith PD, Reynolds EC. Association of bovine dentine phosphophoryn with collagen fragments. Arch Oral Biol 2006; 50:807-19. [PMID: 15970211 DOI: 10.1016/j.archoralbio.2005.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Accepted: 02/01/2005] [Indexed: 11/25/2022]
Abstract
Bovine dentine phosphophoryn (BDP), a protein rich in aspartyl (Asp) and O-phosphoseryl (Ser(P)) residues, is synthesized by odontoblasts and believed to be involved in matrix-mediated biomineralization of dentine. Phosphophoryn was purified from bovine dentine using EDTA extraction, Ca(2+) precipitation, anion exchange and size exclusion chromatography. The purified protein migrated on SDS-PAGGE as a single band. The protein was dephosphorylated using a chelex alkaline dialysis procedure, repurified using anion exchange and size exclusion chromatography and then subjected to cleavage with trypsin. The digest was subjected to reversed-phase HPLC and analysed by Q-TOF mass spectrometry. The only non-trypsin peptides that could be identified were two collagen Type I alpha2 peptides whose sequence was determined by fragmentation analysis. The association of collagen fragments with highly purified phosphophoryn suggests that the EDTA extraction method yields BDP that is strongly bound to collagen fragments. This association now helps explain discrepancies in molecular weight and amino acid composition data for various phosphophoryn preparations compared with the same data calculated from the C-terminal extension of mouse, rat and human dentine sialophosphoprotein (DSPP) gene products. Analysis of the mutation pattern of the clinical disorder Osteogenesis Imperfecta within the region enclosed by the identified collagen fragments reveals that phosphophoryn associates with a segment of collagen that is crucial for structure and/or function.
Collapse
Affiliation(s)
- N Laila Huq
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, 711 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Collagen overglycosylation: A biochemical feature that may contribute to bone quality. Biochem Biophys Res Commun 2005; 330:1-4. [PMID: 15781223 DOI: 10.1016/j.bbrc.2005.02.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Indexed: 11/17/2022]
|
5
|
Sun YL, Luo ZP, Fertala A, An KN. Direct quantification of the flexibility of type I collagen monomer. Biochem Biophys Res Commun 2002; 295:382-6. [PMID: 12150960 DOI: 10.1016/s0006-291x(02)00685-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Collagens are the most abundant structural proteins found in the extracellular matrix of vertebrates. Knowledge of the mechanical behavior of collagen monomers is essential for understanding the mechanical properties of collagen fibrils that constitute the main architectural framework of skin, bone, cartilage, and other connective tissues. In this study, the flexibility of type I collagen monomer was studied by stretching type I collagen monomers directly. The force-extension relationship was measured and analyzed by fitting the data into a worm-like chain elasticity model. The persistence length of collagen I monomer was determined to be 14.5 nm and the contour length was 309 nm. The results confirm that type I collagen monomer is flexible rather than rigid, rod-like molecule. Such flexibility may possibly be a consequence of the micro-unfolding of discrete domains of single collagen molecule.
Collapse
Affiliation(s)
- Yu-Long Sun
- Biomechanics Laboratory, Department of Orthopedic Surgery, Mayo Clinic/Mayo Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
6
|
Lund AM, Skovby F, Schwartz M. (G586V) substitutions in the alpha 1 and alpha 2 chains of collagen I: effect of alpha-chain stoichiometry on the phenotype of osteogenesis imperfecta? Hum Mutat 2000; 9:431-6. [PMID: 9143923 DOI: 10.1002/(sici)1098-1004(1997)9:5<431::aid-humu9>3.0.co;2-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Osteogenesis imperfecta (OI) is a congenital disease of connective tissue, most often caused by single amino acid substitutions of glycine residues within the triple helical region of collagen I. Collagen I consists of two alpha 1 chains and one alpha 2 chain. Thus, a substitution in the alpha 1(I) chain is thought to affect the function of the collagen molecule more than would a similar substitution in the alpha 2(I) chain, thereby causing more severe OI. Theoretically this hypothesis may be tested by comparing patients with identical substitutions in different alpha-chains. We present a Gly586Val substitution in the alpha 1(I) chain, and compare our findings to those resulting from Gly586Val substitutions in the alpha 2(I) chain (Forlino et al., 1994; Bateman et al., 1991). Our proband had lethal OI type II. Most alpha-chains of collagen I produced by his cultured fibroblasts were overmodified. The denaturation temperature of the abnormal collagen was 1.5 degrees C below normal. Cyanogen bromide cleavage and subsequent sequencing revealed a G-to-T base substitution at nucleotide 2420 of COL1A1, resulting in a Gly586Val substitution. The collagen findings were almost identical to those reported by Bateman et al. (1991) and Forlino et al. (1994), but the clinical phenotypes were different: the patients with the alpha 2(I) substitutions had OI type IV and III and not the lethal OI type II of our proband. It is known that identical biochemical aberrations in the same chain may have different phenotypic effects, both within families and between non-related patients. This must be taken into account in our cautious proposal that substitutions in the alpha 1(I) chain may have more serious consequences than similar substitutions in the alpha 2(I) chain.
Collapse
Affiliation(s)
- A M Lund
- Department of Clinical Genetics, Rigshopitalet 4062, Copenhagen
| | | | | |
Collapse
|
7
|
Nakamura J, Baba S, Koyama Y, Nakamura Y. Detection of known missense mutation ofhMLH1 in a hereditary non-polyposis colorectal cancer family using DNA extracts from mouthwash samples. Int J Clin Oncol 1998. [DOI: 10.1007/bf02490097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Nuytinck L, Dalgleish R, Spotila L, Renard JP, Van Regemorter N, De Paepe A. Substitution of glycine-661 by serine in the alpha1(I) and alpha2(I) chains of type I collagen results in different clinical and biochemical phenotypes. Hum Genet 1996; 97:324-9. [PMID: 8786074 DOI: 10.1007/bf02185764] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have characterised a point mutation causing the substitution of serine for glycine at position 661 of the alpha1(I) chain of type I collagen in a child with a severe form of osteogenesis imperfecta. An identical glycine substitution in the alpha2(I) chain was previously detected in a woman with post-menopausal osteoporosis. Two of her sons were heterozygous for the mutation and the third son was homozygous as a result of uniparental isodisomy. Biochemical profiles of the type I collagen heterotrimers were studied in each of the patients and compared with a control. Medium and cell-layer collagens were overmodified in all patients. Overmodification was obvious in the patient with the alpha 1(I) mutation but mild in the patients with the alpha 2(I) mutation, being slightly less evident in the heterozygote than in the homozygote. Investigation of the melting curves of the mutant collagen trimers in all three patients showed the same slight decrease in thermal stability and, hence, a lack of correlation with phenotypic severity. In contrast, the degree of overmodification of the collagen alpha chains was correlated with the phenotypic severity. The clinical observations in these patients illustrate the possibly predominant role of mutations in the collagen alpha1(I) chains over the same mutations in the alpha2(I) chains in determining the clinical outcome.
Collapse
Affiliation(s)
- L Nuytinck
- Centre for Medical Genetics, University Hospital Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Substitution of an aspartic acid for glycine 700 in the alpha 2(I) chain of type I collagen in a recurrent lethal type II osteogenesis imperfecta dramatically affects the mineralization of bone. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36689-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Two additional cases of osteogenesis imperfecta with substitutions for glycine in the alpha 2(I) collagen chain. A regional model relating mutation location with phenotype. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74583-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Incorporation of type I collagen molecules that contain a mutant alpha 2(I) chain (Gly580–>Asp) into bone matrix in a lethal case of osteogenesis imperfecta. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50063-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|