1
|
Timmins J, Gordon E, Caria S, Leonard G, Acajjaoui S, Kuo MS, Monchois V, McSweeney S. Structural and mutational analyses of Deinococcus radiodurans UvrA2 provide insight into DNA binding and damage recognition by UvrAs. Structure 2009; 17:547-58. [PMID: 19368888 DOI: 10.1016/j.str.2009.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 02/03/2009] [Accepted: 02/04/2009] [Indexed: 10/20/2022]
Abstract
UvrA proteins are key actors in DNA damage repair and play an essential role in prokaryotic nucleotide excision repair (NER), a pathway that is unique in its ability to remove a broad spectrum of DNA lesions. Understanding the DNA binding and damage recognition activities of the UvrA family is a critical component for establishing the molecular basis of this process. Here we report the structure of the class II UvrA2 from Deinococcus radiodurans in two crystal forms. These structures, coupled with mutational analyses and comparison with the crystal structure of class I UvrA from Bacillus stearothermophilus, suggest a previously unsuspected role for the identified insertion domains of UvrAs in both DNA binding and damage recognition. Taken together, the available information suggests a model for how UvrA interacts with DNA and thus sheds new light on the molecular mechanisms underlying the role of UvrA in the early steps of NER.
Collapse
Affiliation(s)
- Joanna Timmins
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Croteau DL, DellaVecchia MJ, Perera L, Van Houten B. Cooperative damage recognition by UvrA and UvrB: identification of UvrA residues that mediate DNA binding. DNA Repair (Amst) 2008; 7:392-404. [PMID: 18248777 DOI: 10.1016/j.dnarep.2007.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 11/07/2007] [Accepted: 11/12/2007] [Indexed: 11/24/2022]
Abstract
Nucleotide excision repair (NER) is responsible for the recognition and removal of numerous structurally unrelated DNA lesions. In prokaryotes, the proteins UvrA, UvrB and UvrC orchestrate the recognition and excision of aberrant lesions from DNA. Despite the progress we have made in understanding the NER pathway, it remains unclear how the UvrA dimer interacts with DNA to facilitate DNA damage recognition. The purpose of this study was to define amino acid residues in UvrA that provide binding energy to DNA. Based on conservation among approximately 300 UvrA sequences and 3D-modeling, two positively charged residues, Lys680 and Arg691, were predicted to be important for DNA binding. Mutagenesis and biochemical analysis of Bacillus caldontenax UvrA variant proteins containing site directed mutations at these residues demonstrate that Lys680 and Arg691 make a significant contribution toward the DNA binding affinity of UvrA. Replacing these side chains with alanine or negatively charged residues decreased UvrA binding 3-37-fold. Survival studies indicated that these mutant proteins complemented a WP2 uvrA(-) strain of bacteria 10-100% of WT UvrA levels. Further analysis by DNase I footprinting of the double UvrA mutant revealed that the UvrA DNA binding defects caused a slower rate of transfer of DNA to UvrB. Consequently, the mutants initiated the oligonucleotide incision assay nearly as well as WT UvrA thus explaining the observed mild phenotype in the survival assay. Based on our findings we propose a model of how UvrA binds to DNA.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
3
|
Pakotiprapha D, Inuzuka Y, Bowman BR, Moolenaar GF, Goosen N, Jeruzalmi D, Verdine GL. Crystal structure of Bacillus stearothermophilus UvrA provides insight into ATP-modulated dimerization, UvrB interaction, and DNA binding. Mol Cell 2007; 29:122-33. [PMID: 18158267 DOI: 10.1016/j.molcel.2007.10.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 09/05/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
The nucleotide excision repair pathway corrects many structurally unrelated DNA lesions. Damage recognition in bacteria is performed by UvrA, a member of the ABC ATPase superfamily whose functional form is a dimer with four nucleotide-binding domains (NBDs), two per protomer. In the 3.2 A structure of UvrA from Bacillus stearothermophilus, we observe that the nucleotide-binding sites are formed in an intramolecular fashion and are not at the dimer interface as is typically found in other ABC ATPases. UvrA also harbors two unique domains; we show that one of these is required for interaction with UvrB, its partner in lesion recognition. In addition, UvrA contains three zinc modules, the number and ligand sphere of which differ from previously published models. Structural analysis, biochemical experiments, surface electrostatics, and sequence conservation form the basis for models of ATP-modulated dimerization, UvrA-UvrB interaction, and DNA binding during the search for lesions.
Collapse
Affiliation(s)
- Danaya Pakotiprapha
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Shen CH, Chiang YC, Hsu CH, Yang MK. Identification and characterization of two uvrA genes of Xanthomonas axonopodis pathovar citri. Mol Genet Genomics 2006; 277:149-60. [PMID: 17146667 DOI: 10.1007/s00438-006-0180-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Accepted: 10/04/2006] [Indexed: 11/25/2022]
Abstract
Two uvrA-like genes, designated uvrA1 and uvrA2, that may be involved in nucleotide excision repair in Xanthomonas axonopodis pv. citri (X. a. pv. citri) strain XW47 were characterized. The uvrA1 gene was found to be 2,964 bp in length capable of encoding a protein of 987 amino acids. The uvrA2 gene was determined to be 2,529 bp with a coding potential of 842 amino acids. These two proteins share 71 and 39% identity, respectively, in amino acid sequence with the UvrA protein of Escherichia coli. Analyses of the deduced amino acid sequence revealed that UvrA1 and UvrA2 have structures characteristic of UvrA proteins, including the Walker A and Walker B motifs, zinc finger DNA binding domains, and helix-turn-helix motif with a polyglycine hinge region. The uvrA1 or uvrA2 mutant, constructed by gene replacement, was more sensitive to DNA-damaging agents methylmethane sulfonate (MMS), mitomycin C (MMC), or ultraviolet (UV) than the wild type. The uvrA1 mutant was four orders of magnitude more sensitive to UV irradiation and two orders of magnitude more sensitive to MMS than the uvrA2 mutant. The uvrA1uvrA2 double mutant was one order of magnitude more sensitive to MMS, MMC, or UV than the uvrA1 single mutant. These results suggest that UvrA1 plays a more important role than UvrA2 in DNA repair in X. a. pv. citri. Both uvrA1 and uvrA2 genes were found to be constitutively expressed in the wild type and lexA1 or lexA2 mutant of X. a. pv. citri, and treatment of these cells with sublethal dose of MMC did not alter the expression of these two genes. Results of electrophoresis mobility shift assays revealed that LexA1 or LexA2 does not bind to either the uvrA1 or the uvrA2 promoter. These results suggest that uvrA expression in X. a. pv. citri is not regulated by the SOS response system.
Collapse
Affiliation(s)
- Che-Hung Shen
- Department of Life Science, Fu Jen University, 510 Chun-Chen Road, Taipei, 242, Taiwan, ROC
| | | | | | | |
Collapse
|
5
|
Croteau DL, DellaVecchia MJ, Wang H, Bienstock RJ, Melton MA, Van Houten B. The C-terminal zinc finger of UvrA does not bind DNA directly but regulates damage-specific DNA binding. J Biol Chem 2006; 281:26370-81. [PMID: 16829526 PMCID: PMC2396232 DOI: 10.1074/jbc.m603093200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In prokaryotic nucleotide excision repair, UvrA recognizes DNA perturbations and recruits UvrB for the recognition and processing steps in the reaction. One of the most remarkable aspects of UvrA is that it can recognize a wide range of DNA lesions that differ in chemistry and structure. However, how UvrA interacts with DNA is unknown. To examine the role that the UvrA C-terminal zinc finger domain plays in DNA binding, an eleven amino acid deletion was constructed (ZnG UvrA). Biochemical characterization of the ZnG UvrA protein was carried out using UvrABC DNA incision, DNA binding and ATPase assays. Although ZnG UvrA was able to bind dsDNA slightly better than wild-type UvrA, the ZnG UvrA mutant only supported 50-75% of wild type incision. Surprisingly, the ZnG UvrA mutant, while retaining its ability to bind dsDNA, did not support damage-specific binding. Furthermore, this mutant protein only provided 10% of wild-type Bca UvrA complementation for UV survival of an uvrA deletion strain. In addition, ZnG UvrA failed to stimulate the UvrB DNA damage-associated ATPase activity. Electrophoretic mobility shift analysis was used to monitor UvrB loading onto damaged DNA with wild-type UvrA or ZnG UvrA. The ZnG UvrA protein showed a 30-60% reduction in UvrB loading as compared with the amount of UvrB loaded by wild-type UvrA. These data demonstrate that the C-terminal zinc finger of UvrA is required for regulation of damage-specific DNA binding.
Collapse
Affiliation(s)
- Deborah L Croteau
- Laboratory of Molecular Genetics, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
6
|
Truglio JJ, Croteau DL, Van Houten B, Kisker C. Prokaryotic nucleotide excision repair: the UvrABC system. Chem Rev 2006; 106:233-52. [PMID: 16464004 DOI: 10.1021/cr040471u] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James J Truglio
- Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-5115, USA
| | | | | | | |
Collapse
|
7
|
Reardon JT, Sancar A. Nucleotide Excision Repair. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:183-235. [PMID: 16096029 DOI: 10.1016/s0079-6603(04)79004-2] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joyce T Reardon
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
8
|
Kulkarni AS, Khalap N, Joshi VP. Haemophilus influenzae UvrA: overexpression, purification, and in cell complementation. Protein Expr Purif 2004; 37:462-7. [PMID: 15358371 DOI: 10.1016/j.pep.2004.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 06/22/2004] [Indexed: 11/24/2022]
Abstract
UvrA protein is a major component of ABC endonuclease complex involved in nucleotide excision repair (NER) mechanism. Although NER system is best characterized in Escherichia coli, not much information is available in Haemophilus influenzae. However, based on amino acid homology, uvrA ORF has been identified on H. influenzae genome [gene identification No. HI0249, Science 269 (1995) 496]. H. influenzae Rd uvrA ORF was cloned and overexpressed in E. coli. The expressed UvrA protein was purified using a two-step column chromatography protocol to a single band of expected molecular weight (104 kDa) and characterized for its ATPase and DNA binding activity. In addition, when H. influenzae uvrA was introduced in E. coli uvrA mutant strain AB1886, its UV resistance was restored to near wild type level.
Collapse
Affiliation(s)
- Amit S Kulkarni
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | |
Collapse
|
9
|
Grossman L. Nucleotide excision repair: Dick Setlow: how he influenced my scientific life. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2001; 38:144-152. [PMID: 11746748 DOI: 10.1002/em.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- L Grossman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
10
|
Abstract
Nucleotide excision repair (NER) is found throughout nature, in eubacteria, eukaryotes and archaea. In human cells it is the main pathway for the removal of damage caused by UV light, but it also acts on a wide variety of other bulky helix-distorting lesions caused by chemical mutagens. An ongoing challenge is to understand how a site of DNA damage is located during NER and distinguished from non-damaged sites. This article reviews information on damage recognition in mammalian cells and the bacterium Escherichia coli. In mammalian cells the XPC-hHR23B, XPA, RPA and TFIIH factors may all have a role in damage recognition. XPC-hHR23B has the strongest affinity for damaged DNA in some assays, as does the similar budding yeast complex Rad4-Rad23. There is current discussion as to whether XPC or XPA acts first in the repair process to recognise damage or distortions. TFIIH may play a role in distinguishing the damaged strand from the non-damaged one, if translocation along a DNA strand by the TFIIH DNA helicases is interrupted by encountering a lesion. The recognition and incision steps of human NER use 15 to 18 polypeptides, whereas E. coli requires only three proteins to obtain a similar result. Despite this, many remarkable similarities in the NER mechanism have emerged between eukaryotes and bacteria. These include use of a distortion-recognition factor, a strand separating helicase to create an open preincision complex, participation of structure-specific endonucleases and the lack of a need for certain factors when a region containing damage is already sufficiently distorted.
Collapse
Affiliation(s)
- D P Batty
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, UK
| | | |
Collapse
|
11
|
Furuya K, Hutchinson CR. The DrrC protein of Streptomyces peucetius, a UvrA-like protein, is a DNA-binding protein whose gene is induced by daunorubicin. FEMS Microbiol Lett 1998; 168:243-9. [PMID: 9835035 DOI: 10.1111/j.1574-6968.1998.tb13280.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DrrC, a daunorubicin resistance protein with a strong sequence similarity to the UvrA protein involved in excision repair of DNA, is induced by daunorubicin in Streptomyces peucetius and behaves like an ATP-dependent, DNA binding protein in vitro. The refolded protein obtained from expression of the drrC gene in Escherichia coli was used to conduct gel retardation assays. DrrC bound a DNA segment containing the promoter region of a daunorubicin production gene only in the presence of ATP and daunorubicin. This result suggests that DrrC is a novel type of drug self-resistance protein with DNA binding properties like those of UvrA. Western blotting analysis with a polyclonal antiserum generated against His-tagged DrrC showed that the appearance of DrrC in S. peucetius is coincident with the onset of daunorubicin production and that the drrC gene is induced by daunorubicin. These data also showed that the DnrN and DnrI regulatory proteins are required for drrC expression. The level of DrrA, another daunorubicin resistance protein that resembles ATP-dependent bacterial antiporters, was regulated in the same way as that of DrrC.
Collapse
Affiliation(s)
- K Furuya
- School of Pharmacy, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
12
|
Kovalsky OI, Lin CG, Grossman L. Selection of monoclonal antibodies for probing of functional intermediates in incision of UV-irradiated DNA by Uvr(A)BC endonuclease from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:91-101. [PMID: 9545548 DOI: 10.1016/s0167-4781(98)00002-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monoclonal antibodies (mAbs) were generated that recognize UvrA and UvrB proteins. These proteins are components of the Uvr(A)BC endonuclease, which initiates nucleotide excision repair in Escherichia coli. mAbs, which can be used for probing of structural intermediates of Uvr(A)BC endonuclease functioning, were selected for their ability to: (i) recognize different epitopes; (ii) have a high-affinity for native antigenic protein; (iii) preserve functionality of the Uvr protein in immunocomplex. The adherence of anti-Uvr mAbs with these criteria was verified by additivity and competition tests, and by their influence on the ATPase activities of UvrA and UvrB*, the functionally active proteolytic fragment of UvrB. Two out of twelve anti-UvrA and seven out of thirteen anti-UvrB/anti-UvrB* hybridoma lines were shown to satisfy these criteria. Recognition of UvrA and UvrB deletion mutant proteins by mAbs was used to map their epitopes. Epitopes of A2D1 and A2B1 mAbs were mapped to regions of amino acids 230-281 and 560-680 of UvrA, respectively. Epitopes of anti-UvrB/UvrB* mAbs were assigned to the following amino acid regions of UvrB: B2A1, 8-61; B2C5 and B*2E3, 171-278; B2E2, 631-673; B3C1, 1-7 and/or 62-170; B*2B9, 473-630; B*3E11, 379-472. The ability of selected mAbs to neutralize the incision function of Uvr(A)BC was analyzed. The results are discussed in terms of the applicability of these mAbs to probe the structures of intermediates in the functioning of Uvr(A)BC.
Collapse
Affiliation(s)
- O I Kovalsky
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
13
|
Fang J, Li X, Smiley E, Francke U, Mecham RP, Bonadio J. Mouse latent TGF-beta binding protein-2: molecular cloning and developmental expression. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1354:219-30. [PMID: 9427531 DOI: 10.1016/s0167-4781(97)00104-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular cloning and developmental expression of mouse LTBP-2 are presented here. We established the identity of the cDNA by sequence comparison (80% identity with human LTBP-2) and by chromosome localization (mouse chromosome 12, band D, a region of conserved synteny with the human LTBP-2 gene). In contrast to LTBP-1 and LTBP-3, mouse LTBP-2 apparently is a more modular protein, with proline/glycine-rich sequences always alternating with clusters of cysteine-rich structural motifs. We found for the first time that LTBP-2 gene expression in mouse embryos was restricted to cartilage perichondrium and blood vessels, a somewhat surprising result since other LTBP genes are widely expressed in rodent tissues. Therefore, mouse LTBP-2 may play a critical role in the assembly of latent TGF-beta complexes in developing elastic tissues such as cartilage and blood vessel.
Collapse
Affiliation(s)
- J Fang
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0417, USA
| | | | | | | | | | | |
Collapse
|
14
|
Narumi I, Cherdchu K, Kitayama S, Watanabe H. The Deinococcus radiodurans uvr A gene: identification of mutation sites in two mitomycin-sensitive strains and the first discovery of insertion sequence element from deinobacteria. Gene X 1997; 198:115-26. [PMID: 9370272 DOI: 10.1016/s0378-1119(97)00301-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Deinococcus radiodurans (Dr) possesses a prominent ability to repair the DNA injury induced by various DNA-damaging agents including mitomycin C (MC), ultraviolet light (UV) and ionizing radiation. DNA damage resistance was restored in MC sensitive (MC(S)) mutants 2621 and 3021 by transforming with DNAs of four cosmid clones derived from the gene library of strain KD8301, which showed wild type (wt) phenotype to DNA-damaging agents. Gene affected by mutation (mtcA or mtcB) in both mutants was cloned and its nucleotide (nt) sequence was determined. The deduced amino acid (aa) sequence of the gene product consists of 1016 aa and shares homology with many bacterial UvrA proteins. The mutation sites of both mutants were identified by analyzing the polymerase chain reaction (PCR) fragments derived from the genomic DNA of the mutants. A 144-base pair (bp) deletion including the start codon for the uvrA gene was observed in DNA of the mutant 3021, causing a defect in the gene. On the other hand, an insertion sequence (IS) element intervened in the uvrA gene of the mutant 2621, suggesting the insertional inactivation of the gene. The IS element comprises 1322-bp long, flanked by 19-bp inverted terminal repeats (ITR), and generated a 6-bp target duplication (TD). Two open reading frames (ORFs) were found in the IS element. The deduced aa sequences of large and small ORFs show homology to a putative transposase found in IS4 of Escherichia coli (Ec) and to a resolvase found in ISXc5 of Xanthomonas campestris (Xc), respectively. This is the first discovery of IS element in deinobacteria, and the IS element was designated IS2621.
Collapse
Affiliation(s)
- I Narumi
- Biotechnology Laboratory, Takasaki Radiation Chemistry Research Establishment, Japan Atomic Energy Research Institute, Gunma.
| | | | | | | |
Collapse
|
15
|
Agostini HJ, Carroll JD, Minton KW. Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 1996; 178:6759-65. [PMID: 8955293 PMCID: PMC178572 DOI: 10.1128/jb.178.23.6759-6765.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.
Collapse
Affiliation(s)
- H J Agostini
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
16
|
de la Morena ML, Hendrixson DR, St Geme JW. Isolation and characterization of the Haemophilus influenzae uvrA gene. Gene X 1996; 177:23-8. [PMID: 8921840 DOI: 10.1016/0378-1119(96)00264-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The uvrA gene Haemophilus influenzae (Hi) was cloned and sequenced. Analysis of the deduced amino acid sequence revealed 81% identity and 90% similarity with the Escherichia coli UvrA protein. Consistent with a role of Hi uvrA in DNA repair, a Hi uvrA mutant exhibited increased sensitivity of UV irradiation. Furthermore, Hi uvrA was able to complement a mutation in the E. coli uvrA locus.
Collapse
Affiliation(s)
- M L de la Morena
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
17
|
Abstract
Transcription when coupled to nucleotide excision repair specifies the location in active genes where preferential DNA repair is to take place. During DNA damage-induced recruitment of RNA polymerase (RNAP), there is a physical association of the beta subunit of Escherichia coli RNAP and the UvrA component of the repair apparatus (G. C. Lin and L. Grossman, submitted for publication). This molecular affinity is reflected in the ability of the RNAP to increase, in a promoter-dependent manner, DNA supercoiling by the UvrAB complex. In the presence of the RNAP, the UvrAB complex is able to bind to promoter regions and to translocate in a 5' to 3' direction along the non-transcribed strand. As a consequence of this helicase-catalyzed translocation, preferential incision of DNA damaged sites occurs downstream on the transcribed strand. Because of the helicase directionality, the initial binding of the UvrAB complex to the transcribed strand would inevitably lead to its collision with the RNAP. These results imply that the RNAP-induced DNA structure in the vicinity of the transcription start site signals a landing or entry site for the UvrAB complex on DNA.
Collapse
Affiliation(s)
- B Ahn
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
18
|
The use of monoclonal antibodies for studying intermediates in DNA repair by the Escherichia coli Uvr(A)BC endonuclease. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
19
|
Liu SC, Liu YX, Webster DA, Stark BC. Sequence of the region downstream of the Vitreoscilla hemoglobin gene: vgb is not part of a multigene operon. Appl Microbiol Biotechnol 1994; 42:304-8. [PMID: 7765771 DOI: 10.1007/bf00902733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The 1668 base pairs (bp) downstream of the Vitreoscilla hemoglobin gene were sequenced in the hope of finding related genes that might be part of an operon. Instead, a sequence was found that constituted an open reading frame (ORF) of 569 amino acids (apparently the carboxy-terminal part of a larger ORF), in the direction opposite to the hemoglobin gene. This sequence was found to have 64% similarity with the 1685 bp at the 3' end of the Escherichia coli uvrA gene. The inferred amino acid sequence of the Vitreoscilla DNA has 69% similarity with the corresponding sequence of the E. coli uvrA protein, with similarities of 90, 100, and 85% in the helix-turn-helix, C-terminal ATP binding, and C-terminal zinc finger domains, respectively. The distance between the 3' ends of the Vitreoscilla hemoglobin and uvrA genes is 63 bp.
Collapse
Affiliation(s)
- S C Liu
- Department of Chemical and Biological Sciences, Illinois Institute of Technology, Chicago 60616
| | | | | | | |
Collapse
|
20
|
Affiliation(s)
- L Grossman
- Department of Biochemistry, Johns Hopkins University, School of Hygiene and Public Health, Baltimore, Maryland 21205
| |
Collapse
|
21
|
Wang J, Mueller K, Grossman L. A mutational study of the C-terminal zinc-finger motif of the Escherichia coli UvrA protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34126-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Protić M, Levine AS. Detection of DNA damage-recognition proteins using the band-shift assay and southwestern hybridization. Electrophoresis 1993; 14:682-92. [PMID: 8404810 DOI: 10.1002/elps.11501401109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe electrophoresis and biochemical conditions that allow detection of damaged DNA-binding proteins in cell extracts. In addition, we present an overview of the damage-recognition DNA-binding proteins from eukaryotic cells and discuss their hypothetical role in DNA repair.
Collapse
Affiliation(s)
- M Protić
- Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
23
|
Thiagalingam S, Grossman L. The multiple roles for ATP in the Escherichia coli UvrABC endonuclease-catalyzed incision reaction. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46855-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
de Vries J, Wackernagel W. Cloning and sequencing of the Serratia marcescens gene encoding a single-stranded DNA-binding protein (SSB) and its promoter region. Gene X 1993; 127:39-45. [PMID: 8486286 DOI: 10.1016/0378-1119(93)90614-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The gene (ssb) coding for a single-stranded DNA-binding protein (SSB) was identified on a 1.2-kb EcoRI-SalI fragment cloned from chromosomal DNA of Serratia marcescens. The cloned fragment conferred increased resistance against UV and mitomycin C (MC) to ssb- mutants of Escherichia coli. The nucleotide (nt) sequence revealed that SSB consists of 175 amino acids (aa) and has an M(r) of 18,677. It shows 89% aa sequence homology with the SSB of E. coli. The nt sequence preceding the gene contains three promoters. Two of them overlap with a presumptive SOS box, and the distal one overlaps with a second SOS box that coincides with the promoter of the adjacent uvrA (gene encoding the UvrA protein). The uvrA is transcribed in a direction opposite to that of ssb. The sequence coding for the N terminus of the UvrA of S. marcescens indicates that the first 74 aa are identical to those of the E. coli protein. The results suggest that the two bacterial SSBs are members of a group which differs from the known SSBs of prokaryotic transmissible plasmids, because their aa sequence homology with these proteins is only about 60%.
Collapse
Affiliation(s)
- J de Vries
- Fachbereich Biologie, Universität Oldenburg, Germany
| | | |
Collapse
|
25
|
Mutations in the helix-turn-helix motif of the Escherichia coli UvrA protein eliminate its specificity for UV-damaged DNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53536-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Van Houten B, Snowden A. Mechanism of action of the Escherichia coli UvrABC nuclease: clues to the damage recognition problem. Bioessays 1993; 15:51-9. [PMID: 8466476 DOI: 10.1002/bies.950150108] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During the process of E. coli nucleotide excision repair, DNA damage recognition and processing are achieved by the action of the uvrA, uvrB, and uvrC gene products. The availability of highly purified proteins has lead to a detailed molecular description of E. coli nucleotide excision repair that serves as a model for similar processes in eukaryotes. An interesting aspect of this repair system is the protein complex's ability to work on a vast array of DNA lesions that differ widely in their chemical composition and molecular architecture. Here we propose a model for damage recognition in which the UvrB protein serves as the component that confers enhanced specificity to a preincision complex. We hypothesize that one major determinant for the formation of a stable preincision complex appears to be the disruption of base stacking interactions by DNA lesions.
Collapse
Affiliation(s)
- B Van Houten
- Department of Pathology, University of Vermont, Burlington 05405-0068
| | | |
Collapse
|
27
|
Thiagalingam S, Grossman L. Both ATPase sites of Escherichia coli UvrA have functional roles in nucleotide excision repair. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99176-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|