1
|
Durán-Cristiano SC, de Diego-García L, Martín-Gil A, Carracedo G. The Role of the Ubiquitin System in Eye Diseases. Life (Basel) 2025; 15:504. [PMID: 40141848 PMCID: PMC11943997 DOI: 10.3390/life15030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental process that regulates various biological functions, including immune response, cell cycle, oxidative stress, migration, and cellular proliferation. This system is responsible for the degradation of proteins, while proteasomes play a significant role in mechanisms involved in health and human diseases. The participation of the UPS in immune response is particularly relevant, leading to the involvement of immunoproteasomes. This specialized proteasome is involved in the processing and presentation of antigenic peptides, making it crucial for proper immune function. Moreover, the impact of the UPS is considered essential in understanding several diseases, such as neurodegenerative disorders, infections, and vascular diseases. The dysregulation of the UPS may contribute to the pathogenesis of these conditions, highlighting its importance as a potential therapeutic target. Interestingly, the UPS is also related to ocular structures, playing a role in visual perception and ocular homeostasis. This involvement in the regulation of various ocular processes suggests its potential impact on both anterior and posterior eye pathologies. This review aims to discuss the general considerations of the UPS and provide information about its participation in anterior and posterior eye pathologies. By understanding its role in ocular health and disease, researchers and clinicians may explore novel therapeutic strategies targeting the UPS for the treatment of various eye conditions. In conclusion, the UPS is a crucial player in biological processes, with far-reaching implications in health and disease, including the anterior and posterior segments of the eye. Further research in this field may lead to the development of innovative therapies and a better understanding of the complex mechanisms underlying various eye disorders.
Collapse
Affiliation(s)
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Alba Martín-Gil
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain; (A.M.-G.); (G.C.)
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain; (A.M.-G.); (G.C.)
| |
Collapse
|
2
|
Maffeo B, Cilloni D. The Ubiquitin-Conjugating Enzyme E2 O (UBE2O) and Its Therapeutic Potential in Human Leukemias and Solid Tumors. Cancers (Basel) 2024; 16:3064. [PMID: 39272922 PMCID: PMC11394522 DOI: 10.3390/cancers16173064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Protein degradation is a biological phenomenon essential for cellular homeostasis and survival. Selective protein degradation is performed by the ubiquitination system which selectively targets proteins that need to be eliminated and leads them to proteasome degradation. In this narrative review, we focus on the ubiquitin-conjugating enzyme E2 O (UBE2O) and highlight the role of UBE2O in many biological and physiological processes. We further discuss UBE2O's implications in various human diseases, particularly in leukemias and solid cancers. Ultimately, our review aims to highlight the potential role of UBE2O as a therapeutic target and offers new perspectives for developing targeted treatments for human cancers.
Collapse
Affiliation(s)
- Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
3
|
Tarasov A, Rakhmatullin I, Blokhin D, Klochkov A, Il'yasov K, Klochkov V. (Gd3+) Complexation with oligopeptide (SFVG) and Amyloid Peptide (Aβ13–23) in Aqueous Solution by NMR spectroscopy. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
4
|
Fry M. Question-driven stepwise experimental discoveries in biochemistry: two case studies. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:12. [PMID: 35320436 DOI: 10.1007/s40656-022-00491-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Philosophers of science diverge on the question what drives the growth of scientific knowledge. Most of the twentieth century was dominated by the notion that theories propel that growth whereas experiments play secondary roles of operating within the theoretical framework or testing theoretical predictions. New experimentalism, a school of thought pioneered by Ian Hacking in the early 1980s, challenged this view by arguing that theory-free exploratory experimentation may in many cases effectively probe nature and potentially spawn higher evidence-based theories. Because theories are often powerless to envisage workings of complex biological systems, theory-independent experimentation is common in the life sciences. Some such experiments are triggered by compelling observation, others are prompted by innovative techniques or instruments, whereas different investigations query big data to identify regularities and underlying organizing principles. A distinct fourth type of experiments is motivated by a major question. Here I describe two question-guided experimental discoveries in biochemistry: the cyclic adenosine monophosphate mediator of hormone action and the ubiquitin-mediated system of protein degradation. Lacking underlying theories, antecedent data bases, or new techniques, the sole guides of the two discoveries were respective substantial questions. Both research projects were similarly instigated by theory-free exploratory experimentation and continued in alternating phases of results-based interim working hypotheses, their examination by experiment, provisional hypotheses again, and so on. These two cases designate theory-free, question-guided, stepwise biochemical investigations as a distinct subtype of the new experimentalism mode of scientific enquiry.
Collapse
Affiliation(s)
- Michael Fry
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
5
|
Rani E, Talebi P, Cao W, Huttula M, Singh H. Harnessing photo/electro-catalytic activity via nano-junctions in ternary nanocomposites for clean energy. NANOSCALE 2020; 12:23461-23479. [PMID: 33211053 DOI: 10.1039/d0nr05782g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Though solar energy availability is predicted for centuries, the diurnal and asymmetrical nature of the sun across the globe presents significant challenges in terms of harvesting sunlight. Photo/electro-catalysis, currently believed to be the bottleneck, promises a potential solution to these challenges along with a green and sustainable environment. This review aims to provide the current highlights on the application of inorganic-semiconductor-based ternary nanocomposites for H2 production and pollutant removal. Various engineering strategies employing integration of 2D materials, 1D nanorods, and/or 0D nanoparticles with inorganic semiconductors to create multiple nano-junctions have been developed for the excellent photocatalytic activity. Following a succinct description of the latest progress in photocatalysts, a discussion on the importance of ternary electrocatalysts in the field of next-generation supercapacitors has been included. Finally, the authors' perspectives are considered briefly, including future developments and critical technical challenges in the ever-growing field of photo/electro-catalysis.
Collapse
Affiliation(s)
- Ekta Rani
- Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland.
| | | | | | | | | |
Collapse
|
6
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|
7
|
Sancheti SP, Urvashi, Shah MP, Patil NT. Ternary Catalysis: A Stepping Stone toward Multicatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04000] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shashank P. Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Urvashi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Mosami P. Shah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, 462 066, India
| |
Collapse
|
8
|
Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med 2019; 133:130-143. [PMID: 30268886 PMCID: PMC6368883 DOI: 10.1016/j.freeradbiomed.2018.09.043] [Citation(s) in RCA: 736] [Impact Index Per Article: 122.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
The term ferroptosis was coined in 2012 to describe an iron-dependent regulated form of cell death caused by the accumulation of lipid-based reactive oxygen species; this type of cell death was found to have molecular characteristics distinct from other forms of regulated cell death. Features of ferroptosis have been observed periodically over the last several decades, but these molecular features were not recognized as evidence of a distinct form of cell death until recently. Here, we describe the history of observations consistent with the current definition of ferroptosis, as well as the advances that contributed to the emergence of the concept of ferroptosis. We also discuss recent implications and applications of manipulations of the ferroptotic death pathway.
Collapse
Affiliation(s)
- Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:65-110. [PMID: 30712675 DOI: 10.1016/bs.ircmb.2018.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitination is a prevalent post-translation modification system that is involved in almost all aspects of eukaryotic biology. It involves the attachment of ubiquitin, a small, highly conserved protein to selected substrates. The most notable function of ubiquitin is the targeting of modified proteins to the multi-proteolytic 26S proteasome complex for degradation. The ubiquitin proteasome system (UPS) regulates the abundance of numerous enzymes, structural and regulatory proteins ensuring proper cellular function. Plants utilize the UPS to facilitate cellular changes required to respond to and tolerate adverse growth conditions. In this review, the regulatory role of the UPS in responses to abiotic stress is discussed, particularly the function of ubiquitin-dependent degradation in the suppression, activation and attenuation or termination of stress signaling.
Collapse
|
10
|
Ramadan K, Dikic I. Editorial: Ubiquitin and Ubiquitin-Relative SUMO in DNA Damage Response. Front Genet 2017; 8:188. [PMID: 29230235 PMCID: PMC5711768 DOI: 10.3389/fgene.2017.00188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/10/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kristijan Ramadan
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology (MRC), Oxford University, Oxford, United Kingdom
| | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University, Frankfurt, Germany.,Molecular Signaling Unit, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Goru SK, Pandey A, Gaikwad AB. E3 ubiquitin ligases as novel targets for inflammatory diseases. Pharmacol Res 2016; 106:1-9. [PMID: 26875639 DOI: 10.1016/j.phrs.2016.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 11/29/2022]
Abstract
Ubiquitination is one of the post translational modifications which decide the fate of various proteins in the cells, by either directing them towards proteasomal degradation or participation in several cell signalling pathways. Recently, the role of ubiquitination has been unravelled in pathogenesis and progression of various diseases, where inflammation is critical, like obesity, insulin resistance, atherosclerosis, angiotensin-II induced cardiac inflammation and asthma. E3 ligases are known to be instrumental in regulation of the inflammatory cascade. This review focuses on the role of different E3 ligases in the development of inflammatory diseases and thus may help us to target these E3 ligases in future drug discovery to prevent inflammation.
Collapse
Affiliation(s)
- Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
12
|
Abstract
Ion channel proteins are regulated by different types of posttranslational modifications. The focus of this review is the regulation of voltage-gated sodium channels (Navs) upon their ubiquitylation. The amiloride-sensitive epithelial sodium channel (ENaC) was the first ion channel shown to be regulated upon ubiquitylation. This modification results from the binding of ubiquitin ligase from the Nedd4 family to a protein-protein interaction domain, known as the PY motif, in the ENaC subunits. Many of the Navs have similar PY motifs, which have been demonstrated to be targets of Nedd4-dependent ubiquitylation, tagging them for internalization from the cell surface. The role of Nedd4-dependent regulation of the Nav membrane density in physiology and disease remains poorly understood. Two recent studies have provided evidence that Nedd4-2 is downregulated in dorsal root ganglion (DRG) neurons in both rat and mouse models of nerve injury-induced neuropathic pain. Using two different mouse models, one with a specific knockout of Nedd4-2 in sensory neurons and another where Nedd4-2 was overexpressed with the use of viral vectors, it was demonstrated that the neuropathy-linked neuronal hyperexcitability was the result of Nav1.7 and Nav1.8 overexpression due to Nedd4-2 downregulation. These studies provided the first in vivo evidence of the role of Nedd4-2-dependent regulation of Nav channels in a disease state. This ubiquitylation pathway may be involved in the development of symptoms and diseases linked to Nav-dependent hyperexcitability, such as pain, cardiac arrhythmias, epilepsy, migraine, and myotonias.
Collapse
Affiliation(s)
- Cédric J Laedermann
- Department of Clinical Research, University of Bern, Murtenstrasse, 35, 3010, Bern, Switzerland,
| | | | | |
Collapse
|
13
|
Tracing the history of the ubiquitin proteolytic system: The pioneering article. Biochem Biophys Res Commun 2009; 387:1-10. [DOI: 10.1016/j.bbrc.2009.06.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 11/20/2022]
|
14
|
Russo A, Fratto ME, Bazan V, Schiró V, Agnese V, Cicero G, Vincenzi B, Tonini G, Santini D. Targeting apoptosis in solid tumors: the role of bortezomib from preclinical to clinical evidence. Expert Opin Ther Targets 2007; 11:1571-86. [DOI: 10.1517/14728222.11.12.1571] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|