1
|
Punthasee P, Laciak AR, Cummings AH, Ruddraraju KV, Lewis SM, Hillebrand R, Singh H, Tanner JJ, Gates KS. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor–Electrophile Conjugate. Biochemistry 2017; 56:2051-2060. [DOI: 10.1021/acs.biochem.7b00151] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Puminan Punthasee
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Adrian R. Laciak
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Andrea H. Cummings
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | | | - Sarah M. Lewis
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Roman Hillebrand
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - Harkewal Singh
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
| | - John J. Tanner
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department
of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department
of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, Missouri 65211, United States
- Department
of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Lee HM, Xu W, Lawrence DS. Construction of a photoactivatable profluorescent enzyme via propinquity labeling. J Am Chem Soc 2011; 133:2331-3. [PMID: 21302921 DOI: 10.1021/ja108950q] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A strategy for the construction of a profluorescent caged enzyme is described. An active site-directed peptide-based affinity label was designed, synthesized, and employed to covalently label a nonactive site residue in the cAMP-dependent protein kinase. The modified kinase displays minimal catalytic activity and low fluorescence. Photolysis results in partial cleavage of the enzyme-bound affinity label, restoration of enzymatic activity (60-80%) and a strong fluorescent response (10-20 fold). The caged kinase displays analogous behavior in living cells, inducing a light-dependent loss of stress fibers that is characteristic of cAMP action. This strategy furnishes molecularly engineered enzymes that can be remotely controlled in time, space, and total activity.
Collapse
Affiliation(s)
- Hsien-Ming Lee
- Department of Chemistry, Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
3
|
Meares CF. The chemistry of irreversible capture. Adv Drug Deliv Rev 2008; 60:1383-8. [PMID: 18538444 DOI: 10.1016/j.addr.2008.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 04/16/2008] [Indexed: 10/22/2022]
Abstract
The specific recognition and binding of biological molecules by antibodies is fundamentally important. Natural antibodies are multivalent, having at least two identical ligand-binding sites; this permits them to bind tightly at cell surfaces, which present multiple copies of their target ligands. Antibodies that bind to soluble monovalent ligands, such as most small molecules, do not share this multivalent advantage. Nor do engineered fragments of antibodies, such as single-chain Fv proteins or Fab fragments, which generally possess only a single ligand-binding site. Engineered monovalent antibody/ligand pairs that retain the binding specificity of the antibody, but do not dissociate, are promising components of new delivery systems. These are based on a combination of genetic manipulation of the protein and chemical synthesis of appropriate ligands, examples of which are reviewed here.
Collapse
|
4
|
Miao Z, McCoy MR, Singh DD, Barrios B, Hsu OL, Cheal SM, Meares CF. Cysteinylated protein as reactive disulfide: an alternative route to affinity labeling. Bioconjug Chem 2007; 19:15-9. [PMID: 18062660 DOI: 10.1021/bc700330j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Engineering the permanent formation of a receptor-ligand complex has a number of promising applications in chemistry, biology, and medicine. Antibodies and other proteins can be excellent receptors for synthetic ligands such as probes or drugs. Because proteins possess an array of nucleophilic sites, the placement of an electrophile on the synthetic ligand to react with a nucleophile on the macromolecule is a standard practice. Previously, we have used the site-directed incorporation of cysteine nucleophiles at the periphery of an antibody's binding site, paired with the chemical design of weakly electrophilic ligands, to produce receptor-ligand pairs that conjugate specifically and permanently (Corneillie et al. (2004) Bioconjugate Chem. 15, 1392-1402 and references therein). After protein expression in Drosophila S2 cells, we found, as is frequently observed, that the engineered cysteine was reversibly blocked by disulfide linkage to a cysteine monomer (cysteinylated). Removal of the cysteine monomer requires some care because of the need to preserve other disulfide linkages in the protein. Here, we report that cysteinylation can be used to advantage by treating the cysteine monomer as a leaving group and the protein disulfide as an electrophile with special affinity for thiols. Two ligands bearing thiol side chains were synthesized and incubated with the cysteinylated antibody Fab fragment 2D12.5 G54C, with the finding that both ligands become covalently attached within a few minutes under physiological conditions. The attachment is robust even in the presence of excess thiol reagents. This rapid, specific conjugation is particularly interesting for biomedical applications.
Collapse
Affiliation(s)
- Zheng Miao
- Department of Chemistry, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Bogoyevitch MA, Barr RK, Ketterman AJ. Peptide inhibitors of protein kinases-discovery, characterisation and use. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:79-99. [PMID: 16182621 DOI: 10.1016/j.bbapap.2005.07.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 07/26/2005] [Accepted: 07/28/2005] [Indexed: 12/20/2022]
Abstract
Protein kinases are now the second largest group of drug targets, and most protein kinase inhibitors in clinical development are directed towards the ATP-binding site. However, these inhibitors must compete with high intracellular ATP concentrations and they must discriminate between the ATP-binding sites of all protein kinases as well the other proteins that also utilise ATP. It would therefore be beneficial to target sites on protein kinases other than the ATP-binding site. This review describes the discovery, characterisation and use of peptide inhibitors of protein kinases. In many cases, the development of these peptides has resulted from an understanding of the specific protein-binding partners for a particular protein kinase. In addition, novel peptide sequences have been discovered in library screening approaches and have provided new leads in the discovery and/or design of peptide inhibitors of protein kinases. These approaches are therefore providing exciting new opportunities in the development of ATP non-competitive inhibitors of protein kinases.
Collapse
Affiliation(s)
- Marie A Bogoyevitch
- Cell Signalling Laboratory, Biochemistry and Molecular Biology (M310), School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia.
| | | | | |
Collapse
|
6
|
Huang X, Begley M, Morgenstern KA, Gu Y, Rose P, Zhao H, Zhu X. Crystal structure of an inactive Akt2 kinase domain. Structure 2003; 11:21-30. [PMID: 12517337 DOI: 10.1016/s0969-2126(02)00937-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Akt/PKB represents a subfamily of three isoforms from the AGC serine/threonine kinase family. Amplification of Akt activity has been implicated in diseases that involve inappropriate cell survival, including a number of human malignancies. The structure of an inactive and unliganded Akt2 kinase domain reveals several features that distinguish it from other kinases. Most of the alpha helix C is disordered. The activation loop in this structure adopts a conformation that appears to sterically hinder the binding of both ATP and peptide substrate. In addition, an intramolecular disulfide bond is observed between two cysteines in the activation loop. Residues within the linker region between the N- and C-terminal lobes also contribute to the inactive conformation by partially occupying the ATP binding site.
Collapse
Affiliation(s)
- Xin Huang
- Amgen Cambridge Research Center, One Kendall Square, Building 1000, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Curley K, Lawrence DS. Photoactivation of a Signal Transduction Pathway in Living Cells. J Am Chem Soc 1998. [DOI: 10.1021/ja981786s] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kieran Curley
- Department of Biochemistry, The Albert Einstein College of Medicine of Yeshiva University 1300 Morris Park Avenue, Bronx, New York 10461-1602
| | - David S. Lawrence
- Department of Biochemistry, The Albert Einstein College of Medicine of Yeshiva University 1300 Morris Park Avenue, Bronx, New York 10461-1602
| |
Collapse
|
8
|
Ward NE, Gravitt KR, O'Brian CA. Covalent modification of protein kinase C isozymes by the inactivating peptide substrate analog N-biotinyl-Arg-Arg-Arg-Cys-Leu-Arg-Arg-Leu. Evidence that the biotinylated peptide is an active-site affinity label. J Biol Chem 1996; 271:24193-200. [PMID: 8798661 DOI: 10.1074/jbc.271.39.24193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We recently reported that the peptide substrate analog Arg-Lys-Arg-Cys-Leu-Arg-Arg-Leu (RKRCLRRL) irreversibly inactivates the protein kinase C (PKC) isozymes alpha, beta, and gamma in a dithiothreitol-sensitive manner by an active site-directed mechanism. We hypothesized that the inactivation mechanism entailed covalent complex formation between the PKC isozyme and the inactivator peptide. In this report, N-biotinylated analogs of RKRCLRRL that inactivate Ca2+-dependent PKC activity were designed and tested for their ability to covalently label PKC isozymes. A purified PKC isozyme mixture (alpha, beta, gamma, epsilon, zeta) was incubated with the N-biotinylated peptides and then subjected to denaturing gel electrophoresis, transferred to nitrocellulose, and probed for avidin-reactive species. The Ca2+-dependent PKC subfamily members PKC-alpha, -beta, and -gamma comigrated at 82 kDa and were distinguished by isozyme-specific immunoprecipitation. N-Biotinyl-RRRCLRRL covalently labeled all of the isozymes examined. When the isozymes were denatured prior to incubation with the N-biotinylated peptides, no labeling was observed. Inactivation of the Ca2+-dependent PKC subfamily by the N-biotinylated peptides was associated with covalent labeling of the 82-kDa PKC subspecies. The concentration dependence curves observed with N-biotinyl-RRRCLRRL were similar for inactivation and covalent labeling. The rank order of potency of three N-biotinylated peptides was the same for the inactivation and covalent labeling. Both the inactivation and covalent labeling were dithiothreitol-sensitive, and they were each subject to protection by MgATP and a peptide substrate analog. The covalent label was mapped to the catalytic domain of PKC by limited proteolysis of the modified enzyme. These results provide evidence that the N-biotinylated inactivator peptides are active-site affinity labels of PKC. The inactivator peptides most likely function by S-thiolating the active-site Cys residue conserved in PKC. This is the first report to demonstrate covalent labeling of PKC by a peptide substrate analog.
Collapse
Affiliation(s)
- N E Ward
- Department of Cell Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
9
|
Ward NE, Gravitt KR, O'Brian CA. Irreversible inactivation of protein kinase C by a peptide-substrate analog. J Biol Chem 1995; 270:8056-60. [PMID: 7713907 DOI: 10.1074/jbc.270.14.8056] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein kinase C (PKC) is a phospholipid-dependent isozyme family that plays a pivotal role in mammalian signal-transduction pathways that mediate cell growth and differentiation and pathological developments, such as the acquisition of drug resistance by cancer cells. Several peptide-substrate analogs have been shown to reversibly inhibit PKC with high potency and selectivity, but peptide-substrate analogs that antagonize PKC by forming a covalent complex with the enzyme have not been reported. The development of active site-directed irreversible inactivators of PKC could provide new insights into the catalytic mechanism and might ultimately lead to the design of novel therapeutics targeted at PKC. In this report, we show that the peptide-substrate analog Arg-Lys-Arg-Cys-Leu-Arg-Arg-Leu (RKRCLRRL) irreversibly inactivates PKC in a dithiothreitol-sensitive manner. The inactivation mechanism most consistent with our results is the formation of a covalent linkage between the inhibitor-peptide and the enzyme at its active-site. Limited proteolysis of PKC produces a catalytic-domain fragment that is independent of the phospholipid cofactor. RKRCLRRL antagonized the histone kinase activity of PKC and its catalytic-domain fragment with similar efficacies, achieving > 50% inactivation at an RKRCLRRL concentration of 10 microM. In contrast, RKRCLRRL analogs with single amino acid substitutions at Cys were non-inhibitory. The inactivated complex of the catalytic-domain fragment and RKRCLRRL was stable upon dilution, and the inactivation of PKC and the catalytic-domain fragment by RKRCLRRL was quenched by dithiothreitol, providing evidence that the enzyme and the synthetic peptide may be covalently linked in an inactivated complex by a disulfide bond. Substrates and substrate analogs protected the catalytic-domain fragment against inactivation by RKRCLRRL, providing evidence that inactivation entailed binding of RKRCLRRL at the active-site of the enzyme. S-Thiolation is the formation of mixed disulfides between proteins and low molecular weight thiols. PKC is thought to have a highly reactive Cys residue in its active-site, and Cys residues that are flanked by basic residues, as is the case in RKRCLRRL, display enhanced reactivity. Our results support an inactivation mechanism that entails S-thiolation of the active-site of PKC by RKRCLRRL. This is the first report of irreversible inactivation of PKC by an active site-directed peptide.
Collapse
Affiliation(s)
- N E Ward
- Department of Cell Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|