1
|
Rockwell NC, Lagarias JC. Phytochrome evolution in 3D: deletion, duplication, and diversification. THE NEW PHYTOLOGIST 2020; 225:2283-2300. [PMID: 31595505 PMCID: PMC7028483 DOI: 10.1111/nph.16240] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 05/09/2023]
Abstract
Canonical plant phytochromes are master regulators of photomorphogenesis and the shade avoidance response. They are also part of a widespread superfamily of photoreceptors with diverse spectral and biochemical properties. Plant phytochromes belong to a clade including other phytochromes from glaucophyte, prasinophyte, and streptophyte algae (all members of the Archaeplastida) and those from cryptophyte algae. This is consistent with recent analyses supporting the existence of an AC (Archaeplastida + Cryptista) clade. AC phytochromes have been proposed to arise from ancestral cyanobacterial genes via endosymbiotic gene transfer (EGT), but most recent studies instead support multiple horizontal gene transfer (HGT) events to generate extant eukaryotic phytochromes. In principle, this scenario would be compared to the emerging understanding of early events in eukaryotic evolution to generate a coherent picture. Unfortunately, there is currently a major discrepancy between the evolution of phytochromes and the evolution of eukaryotes; phytochrome evolution is thus not a solved problem. We therefore examine phytochrome evolution in a broader context. Within this context, we can identify three important themes in phytochrome evolution: deletion, duplication, and diversification. These themes drive phytochrome evolution as organisms evolve in response to environmental challenges.
Collapse
|
2
|
Rockwell NC, Martin SS, Li FW, Mathews S, Lagarias JC. The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. THE NEW PHYTOLOGIST 2017; 214:1145-1157. [PMID: 28106912 PMCID: PMC5388591 DOI: 10.1111/nph.14422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/04/2016] [Indexed: 05/11/2023]
Abstract
Land plant phytochromes perceive red and far-red light to control growth and development, using the linear tetrapyrrole (bilin) chromophore phytochromobilin (PΦB). Phytochromes from streptophyte algae, sister species to land plants, instead use phycocyanobilin (PCB). PCB and PΦB are synthesized by different ferredoxin-dependent bilin reductases (FDBRs): PΦB is synthesized by HY2, whereas PCB is synthesized by PcyA. The pathway for PCB biosynthesis in streptophyte algae is unknown. We used phylogenetic analysis and heterologous reconstitution of bilin biosynthesis to investigate bilin biosynthesis in streptophyte algae. Phylogenetic results suggest that PcyA is present in chlorophytes and prasinophytes but absent in streptophytes. A system reconstituting bilin biosynthesis in Escherichia coli was modified to utilize HY2 from the streptophyte alga Klebsormidium flaccidum (KflaHY2). The resulting bilin was incorporated into model cyanobacterial photoreceptors and into phytochrome from the early-diverging streptophyte alga Mesostigma viride (MvirPHY1). All photoreceptors tested incorporate PCB rather than PΦB, indicating that KflaHY2 is sufficient for PCB synthesis without any other algal protein. MvirPHY1 exhibits a red-far-red photocycle similar to those seen in other streptophyte algal phytochromes. These results demonstrate that streptophyte algae use HY2 to synthesize PCB, consistent with the hypothesis that PΦB synthesis arose late in HY2 evolution.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Shelley S. Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Fay-Wei Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Sarah Mathews
- CSIRO National Research Collections Australia, Australian National Herbarium, Canberra, ACT, 2601, Australia
| | - J. Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
3
|
Song C, Narikawa R, Ikeuchi M, Gärtner W, Matysik J. Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization. J Phys Chem B 2015; 119:9688-95. [DOI: 10.1021/acs.jpcb.5b04655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chen Song
- Leids
Instituut voor Chemisch Onderzoek, Universiteit Leiden, P.O. Box 9502, 2300
RA Leiden, The Netherlands
- Institut
für Analytische Chemie, Universität Leipzig, Johannisallee
29, D-04103 Leipzig, Germany
| | - Rei Narikawa
- Department
of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku,
Shizuoka 422-8529, Japan
- Graduate
School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- Precursory
Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Masahiko Ikeuchi
- Department
of Biological Science, Faculty of Science, Shizuoka University, Ohya, Suruga-ku,
Shizuoka 422-8529, Japan
- Core Research
for Evolutional Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34−36, D-45470 Mülheim an der Ruhr, Germany
| | - Jörg Matysik
- Leids
Instituut voor Chemisch Onderzoek, Universiteit Leiden, P.O. Box 9502, 2300
RA Leiden, The Netherlands
- Institut
für Analytische Chemie, Universität Leipzig, Johannisallee
29, D-04103 Leipzig, Germany
| |
Collapse
|
4
|
Rockwell NC, Martin SS, Lim S, Lagarias JC, Ames JB. Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Protonated Bilin Ring System in Both Photostates. Biochemistry 2015; 54:2581-600. [DOI: 10.1021/bi501548t] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan C. Rockwell
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - Shelley S. Martin
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sunghyuk Lim
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - J. Clark Lagarias
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| | - James B. Ames
- Department of Molecular
and Cellular Biology and ‡Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
5
|
Rockwell NC, Lagarias JC, Bhattacharya D. Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Front Ecol Evol 2014; 2. [PMID: 25729749 DOI: 10.3389/fevo.2014.00066] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The origin of the photosynthetic organelle in eukaryotes, the plastid, changed forever the evolutionary trajectory of life on our planet. Plastids are highly specialized compartments derived from a putative single cyanobacterial primary endosymbiosis that occurred in the common ancestor of the supergroup Archaeplastida that comprises the Viridiplantae (green algae and plants), red algae, and glaucophyte algae. These lineages include critical primary producers of freshwater and terrestrial ecosystems, progenitors of which provided plastids through secondary endosymbiosis to other algae such as diatoms and dinoflagellates that are critical to marine ecosystems. Despite its broad importance and the success of algal and plant lineages, the phagotrophic origin of the plastid imposed an interesting challenge on the predatory eukaryotic ancestor of the Archaeplastida. By engulfing an oxygenic photosynthetic cell, the host lineage imposed an oxidative stress upon itself in the presence of light. Adaptations to meet this challenge were thus likely to have occurred early on during the transition from a predatory phagotroph to an obligate phototroph (or mixotroph). Modern algae have recently been shown to employ linear tetrapyrroles (bilins) to respond to oxidative stress under high light. Here we explore the early events in plastid evolution and the possible ancient roles of bilins in responding to light and oxygen.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Debashish Bhattacharya
- Department of Ecology, Evolution, and Natural Resources; Institute of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08903
| |
Collapse
|
6
|
Kula M, Rys M, Skoczowski A. Far-red light (720 or 740 nm) improves growth and changes the chemical composition ofChlorella vulgaris. Eng Life Sci 2014. [DOI: 10.1002/elsc.201400057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Monika Kula
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences Cracow Poland
| | - Magdalena Rys
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences Cracow Poland
| | | |
Collapse
|
7
|
|
8
|
Hanstein C, Grolig F, Wagner G. Immunolocalization of Cytosolic Phytochrome in the Green AlgaMougeotia*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1992.tb00267.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Abstract
Plant phytochromes are photoswitchable red/far-red photoreceptors that allow competition with neighboring plants for photosynthetically active red light. In aquatic environments, red and far-red light are rapidly attenuated with depth; therefore, photosynthetic species must use shorter wavelengths of light. Nevertheless, phytochrome-related proteins are found in recently sequenced genomes of many eukaryotic algae from aquatic environments. We examined the photosensory properties of seven phytochromes from diverse algae: four prasinophyte (green algal) species, the heterokont (brown algal) Ectocarpus siliculosus, and two glaucophyte species. We demonstrate that algal phytochromes are not limited to red and far-red responses. Instead, different algal phytochromes can sense orange, green, and even blue light. Characterization of these previously undescribed photosensors using CD spectroscopy supports a structurally heterogeneous chromophore in the far-red-absorbing photostate. Our study thus demonstrates that extensive spectral tuning of phytochromes has evolved in phylogenetically distinct lineages of aquatic photosynthetic eukaryotes.
Collapse
|
10
|
Kianianmomeni A, Hallmann A. Algal photoreceptors: in vivo functions and potential applications. PLANTA 2014; 239:1-26. [PMID: 24081482 DOI: 10.1007/s00425-013-1962-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems.
Collapse
Affiliation(s)
- Arash Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, University of Bielefeld, Universitätsstr. 25, 33615, Bielefeld, Germany,
| | | |
Collapse
|
11
|
Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. Proc Natl Acad Sci U S A 2013; 110:3621-6. [PMID: 23345435 DOI: 10.1073/pnas.1222375110] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The maintenance of functional chloroplasts in photosynthetic eukaryotes requires real-time coordination of the nuclear and plastid genomes. Tetrapyrroles play a significant role in plastid-to-nucleus retrograde signaling in plants to ensure that nuclear gene expression is attuned to the needs of the chloroplast. Well-known sites of synthesis of chlorophyll for photosynthesis, plant chloroplasts also export heme and heme-derived linear tetrapyrroles (bilins), two critical metabolites respectively required for essential cellular activities and for light sensing by phytochromes. Here we establish that Chlamydomonas reinhardtii, one of many chlorophyte species that lack phytochromes, can synthesize bilins in both plastid and cytosol compartments. Genetic analyses show that both pathways contribute to iron acquisition from extracellular heme, whereas the plastid-localized pathway is essential for light-dependent greening and phototrophic growth. Our discovery of a bilin-dependent nuclear gene network implicates a widespread use of bilins as retrograde signals in oxygenic photosynthetic species. Our studies also suggest that bilins trigger critical metabolic pathways to detoxify molecular oxygen produced by photosynthesis, thereby permitting survival and phototrophic growth during the light period.
Collapse
|
12
|
Rockwell NC, Martin SS, Lagarias JC. Red/green cyanobacteriochromes: sensors of color and power. Biochemistry 2012; 51:9667-77. [PMID: 23151047 DOI: 10.1021/bi3013565] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are red/far-red photoreceptors using cysteine-linked linear tetrapyrrole (bilin) chromophores to regulate biological responses to light. Light absorption triggers photoisomerization of the bilin between the 15Z and 15E photostates. The related cyanobacteriochromes (CBCRs) extend the photosensory range of the phytochrome superfamily to shorter wavelengths of visible light. Several subfamilies of CBCRs have been described. Representatives of one such subfamily, including AnPixJ and NpR6012g4, exhibit red/green photocycles in which the 15Z photostate is red-absorbing like that of phytochrome but the 15E photoproduct is instead green-absorbing. Using recombinant expression of individual CBCR domains in Escherichia coli, we fully survey the red/green subfamily from the cyanobacterium Nostoc punctiforme. In addition to 14 new photoswitching CBCRs, one apparently photochemically inactive protein exhibiting intense red fluorescence was observed. We describe a novel orange/green photocycle in one of these CBCRs, NpF2164g7. Dark reversion varied in this panel of CBCRs; some examples were stable as the 15E photoproduct for days, while others reverted to the 15Z dark state in minutes or even seconds. In the case of NpF2164g7, dark reversion was so rapid that reverse photoconversion of the green-absorbing photoproduct was not significant in restoring the dark state, resulting in a broadband response to light. Our results demonstrate that red/green CBCRs can thus act as sensors for the color or intensity of the ambient light environment.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
13
|
Liu S, Häder D. ISOLATION AND CHARACTERIZATION OF PROTEINS FROM THE PUTATIVE PHOTORECEPTOR FOR POSITIVE PHOTOTAXIS IN THE DINOFLAGELLATE,Peridinium gatunenseNYGAARD. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1994.tb05005.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shi‐Mei Liu
- Institut für Botanik und Pharmazeutische Biologie, Friedrich‐Alexander Universität, Staudstr. 5, 91058 Erlangen, Germany
| | - Donat‐P. Häder
- Institut für Botanik und Pharmazeutische Biologie, Friedrich‐Alexander Universität, Staudstr. 5, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Noack S, Lamparter T. Light modulation of histidine-kinase activity in bacterial phytochromes monitored by size exclusion chromatography, crosslinking, and limited proteolysis. Methods Enzymol 2008; 423:203-21. [PMID: 17609133 DOI: 10.1016/s0076-6879(07)23009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Phytochromes are photoreceptors that have been found in plants, bacteria, and fungi. Most bacterial and fungal phytochromes are histidine kinases and, for several bacterial phytochromes, light regulation of kinase activity has been demonstrated. Typical histidine kinases are homodimeric proteins in which one subunit phosphorylates the substrate histidine residue of the other subunit; dimerization is an intrinsic property of the histidine kinase itself. Truncated phytochromes which lack the histidine kinase can also form dimers, but the interaction between subunits is modulated by light. This light-dependent dimerization can give a clue to the intramolecular signal transduction of phytochromes which modulates the histidine kinase activity. Size exclusion chromatography, limited proteolysis, and protein crosslinking can be used to study light-induced conformational changes and the interaction of subunits within the homodimer.
Collapse
Affiliation(s)
- Steffi Noack
- Freie Universität Berlin, Pflanzenphysiologie, Berlin, Germany
| | | |
Collapse
|
15
|
Jorissen HJMM, Braslavsky SE, Wagner G, Gärtner W. Heterologous Expression and Characterization of Recombinant Phytochrome from the Green Alga Mougeotia scalaris¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760457heacor2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
|
17
|
López-Figueroa F. Red, green and blue light photoreceptors controlling chlorophylla, biliprotein and total protein synthesis in the red algaChondrus crispus. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/00071619100650351] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
|
19
|
Durnford DG. Structure and Regulation of Algal Light-Harvesting Complex Genes. PHOTOSYNTHESIS IN ALGAE 2003. [DOI: 10.1007/978-94-007-1038-2_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
|
21
|
Jorissen HJMM, Braslavsky SE, Wagner G, Gärtner W. Heterologous expression and characterization of recombinant phytochrome from the green alga Mougeotia scalaris. Photochem Photobiol 2002; 76:457-61. [PMID: 12405156 DOI: 10.1562/0031-8655(2002)076<0457:heacor>2.0.co;2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The full-length apoprotein (124 kDa) and the chromophore-binding N-terminal half (66 kDa) of the phytochrome of the unicellular green alga Mougeotia scalaris have been heterologously expressed in the methylotrophic yeast Pichia pastoris. Assembly with the tetrapyrrole phycocyanobilin (PCB) yielded absorption maxima (for the full-length protein) at 646 and 720 nm for red- and far-red absorbing forms of phytochrome (Pr and Pfr), respectively, whereas the maxima of the N-terminal 66 kDa domain are slightly blueshifted (639 and 714 nm, Pr and Pfr, respectively). Comparison with an action spectrum reported earlier gives evidence that in Mougeotia, as formerly reported for the green alga Mesotaenium caldariorum, PCB constitutes the genuine chromophore. The full-length protein, when converted into its Pfr form and kept in the dark, reverted rapidly into the Pr form (lifetimes of 1 and 24 min, ambient temperature), whereas the truncated chromopeptide (66 kDa construct) was more stable and converted into Pr with time constants of 18 and 250 min. Also, time-resolved analysis of the light-induced Pfr formation revealed clear differences between both recombinant chromoproteins in the various steps involved. The full-length phytochrome showed slower kinetics in the long milliseconds-to-seconds time domain (with dominant Pfr formation processes of ca 130 and 800 ms), whereas for the truncated phytochrome the major component of Pfr formation had a lifetime of 32 ms.
Collapse
Affiliation(s)
- H J M M Jorissen
- Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
22
|
Hanzawa H, Shinomura T, Inomata K, Kakiuchi T, Kinoshita H, Wada K, Furuya M. Structural requirement of bilin chromophore for the photosensory specificity of phytochromes A and B. Proc Natl Acad Sci U S A 2002; 99:4725-9. [PMID: 11930018 PMCID: PMC123715 DOI: 10.1073/pnas.062713399] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are an important class of chromoproteins that regulate many cellular and developmental responses to light in plants. The model plant species Arabidopsis thaliana possesses five phytochromes, which mediate distinct and overlapping responses to light. Photobiological analyses have established that, under continuous irradiation, phytochrome A is primarily responsible for plant's sensitivity to far-red light, whereas the other phytochromes respond mainly to red light. The present study reports that the far-red light sensitivity of phytochrome A depends on the structure of the linear tetrapyrrole (bilin) prosthetic group. By reconstitution of holophytochrome in vivo through feeding various synthetic bilins to chromophore-deficient mutants of Arabidopsis, the requirement for a double bond on the bilin D-ring for rescuing phytochrome A function has been established. In contrast, we show that phytochrome B function can be rescued with various bilin analogs with saturated D-ring substituents.
Collapse
Affiliation(s)
- Hiroko Hanzawa
- Hitachi Advanced Research Laboratory, Hatoyama, Saitama 350-0395, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Chapter 26 Light-controlled chloroplast movement. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1568-461x(01)80030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
|
24
|
Eichenberg K, Bäurle I, Paulo N, Sharrock RA, Rüdiger W, Schäfer E. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. FEBS Lett 2000; 470:107-12. [PMID: 10734217 DOI: 10.1016/s0014-5793(00)01301-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The red/far-red light absorbing phytochromes play a major role as sensor proteins in photomorphogenesis of plants. In Arabidopsis the phytochromes belong to a small gene family of five members, phytochrome A (phyA) to E (phyE). Knowledge of the dynamic properties of the phytochrome molecules is the basis of phytochrome signal transduction research. Beside photoconversion and destruction, dark reversion is a molecular property of some phytochromes. A possible role of dark reversion is the termination of signal transduction. Since Arabidopsis is a model plant for biological and genetic research, we focussed on spectroscopic characterization of Arabidopsis phytochromes, expressed in yeast. For the first time, we were able to determine the relative absorption maxima and minima for a phytochrome C (phyC) as 661/725 nm and for a phyE as 670/724 nm. The spectral characteristics of phyC and E are strictly different from those of phyA and B. Furthermore, we show that both phyC and phyE apoprotein chromophore adducts undergo a strong dark reversion. Difference spectra, monitored with phycocyanobilin and phytochromobilin as the apoprotein's chromophore, and in vivo dark reversion of the Arabidopsis phytochrome apoprotein phycocyanobilin adducts are discussed with respect to their physiological function.
Collapse
Affiliation(s)
- K Eichenberg
- Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Zhao KH, Deng MG, Zheng M, Zhou M, Parbel A, Storf M, Meyer M, Strohmann B, Scheer H. Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon. FEBS Lett 2000; 469:9-13. [PMID: 10708746 DOI: 10.1016/s0014-5793(00)01245-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure of phycoviolobilin, the photoactive chromophore of alpha-phycoerythrocyanin, is incompatible with a chromophore ligation to the apoprotein via SH-addition (cysteine) to a Delta3, 3(1)-double bond of the phycobilin. The two putative phycoerythrocyanin lyase genes of Mastigocladus laminosus, pecE and pecF, were overexpressed in Escherichia coli. Their action has been studied on the addition reaction of phycocyanobilin to apo-alpha-phycoerythrocyanin (PecA). In the absence of the components of alpha-PEC-phycoviolobilin lyase PecE and PecF, or in the presence of only one of them, phycocyanobilin binds covalently to PecA forming a fluorescent chromoprotein with a red-shifted absorption (lambda(max)=641 nm) and low photoactivity (<10%). In the presence of both PecE and PecF, a chromoprotein forms which by its absorption (lambda(max)=565 nm) and high photoreversible photochromism (100% type I) has been identified as integral alpha-phycoerythrocyanin. We conclude that PecE and PecF jointly catalyze not only the addition of phycocyanobilin to PecA, but also its isomerization to the native phycoviolobilin chromophore.
Collapse
Affiliation(s)
- K H Zhao
- College of Life Sciences, Wuhan University, Wuhan, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Zeidler M, Lamparter T, Hughes J, Hartmann E, Remberg A, Braslavsky S, Schaffner K, Gärtner W. Recombinant phytochrome of the moss Ceratodon purpureus: heterologous expression and kinetic analysis of Pr-->Pfr conversion. Photochem Photobiol 1998; 68:857-63. [PMID: 9867036 DOI: 10.1111/j.1751-1097.1998.tb05296.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phytochrome-encoding gene Cerpu;PHY;2 (CP2) of the moss Ceratodon purpureus was heterologously expressed in Saccharomyces cerevisiae as a polyhistidine-tagged apoprotein and assembled with phytochromobilin (P phi B) and phycocyanobilin (PCB). Nickel-affinity chromatography yielded a protein fraction containing approximately 80% phytochrome. The holoproteins showed photoreversibility with both chromophores. Difference spectra gave maxima at 644/716 nm (red-absorbing phytochrome [Pr]/far-red-absorbing phytochrome [Pfr]) for the PCB adduct, and 659/724 nm for the P phi B-adduct, the latter in close agreement with values for phytochrome extracted from Ceratodon itself, implying that P phi B is the native chromophore in this moss species. Immunoblots stained with the antiphytochrome antibody APC1 showed that the recombinant phytochrome had the same molecular size as phytochrome from Ceratodon extracts. Further, the mobility of recombinant CP2 holophytochrome on native size-exclusion chromatography was similar to that of native oat phytochrome, implying that CP2 forms a dimer. Kinetics of absorbance changes during the Pr-->Pfr photoconversion of the PCB adduct, monitored between 620 and 740 nm in the microsecond range, revealed the rapid formation of a red-shifted intermediate (I700), decaying with a time constant of approximately 110 microseconds. This is similar to the behavior of phytochromes from higher plants when assembled with the same chromophore. When following the formation of the Pfr state, two major processes were identified (with time constants of 3 and 18 ms) that are followed by slow reactions in the range of 166 ms and 8 s, respectively, albeit with very small amplitudes.
Collapse
Affiliation(s)
- M Zeidler
- Institut für Pflanzenphysiologie der FU Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pearson GA. A model for signal transduction during gamete release in the fucoid alga pelvetia compressa. PLANT PHYSIOLOGY 1998; 118:305-13. [PMID: 9733550 PMCID: PMC34869 DOI: 10.1104/pp.118.1.305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fucoid algae release gametes into seawater following an inductive light period (potentiation), and gamete expulsion from potentiated receptacles of Pelvetia compressa began about 2 min after a light-to-dark transition. Agitation of the medium reversed potentiation, with an exponential time course completed in about 3 h. Light regulated two signaling pathways during potentiation and gamete expulsion: a photosynthetic pathway and a photosynthesis-independent pathway in which red light was active but blue light was not. Uptake of K+ appears to have an important role in potentiation, because a 50% inhibition of potentiation occurred in the presence of the tetraethylammonium ion, a K+-channel blocker. A central role of anion channels in the maintenance of potentiation is suggested by the premature release of gametes in the light when receptacles were incubated with inhibitors of slow-type anion channels. An inhibitor of tyrosine kinases, tyrphostin A63, also inhibited potentiation. A model for gamete release from P. compressa is presented that proposes that illumination results in the accumulation of ions (e.g. K+) throughout the cells of the receptacle during potentiation, which then move into the extracellular matrix during gamete expulsion to generate osmomechanical force, resulting in gamete release.
Collapse
Affiliation(s)
- GA Pearson
- Department of Plant Biology and Pathology, University of Maine, Orono, Maine 04469-5722, USA
| |
Collapse
|
29
|
Perez R, Stevenson F, Johnson J, Morgan M, Erickson K, Hubbard NE, Morand L, Rudich S, Katznelson S, German JB. Sodium butyrate upregulates Kupffer cell PGE2 production and modulates immune function. J Surg Res 1998; 78:1-6. [PMID: 9733608 DOI: 10.1006/jsre.1998.5316] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immunosuppressive effect of portal venous blood transfusions in organ transplantation has been well established and may be mediated by increased Kupffer cell production of the immunosuppressive arachidonic acid metabolite prostaglandin E2 (PGE2). In this study, butyrate, a short-chain fatty acid known to enhance gene transcription, is hypothesized to enhance Kupffer cell PGE2 production by altering cyclooxygenase or phospholipase A2 (PLA2) activity, thus augmenting the immunosuppressive effect of portal venous transfusion. Lewis rats were given a portal venous transfusion of Wistar-Firth blood or saline 1 h prior to Kupffer cell harvest. The in vitro effects of butyrate on Kupffer cell PGE2 production, cyclooxygenase, and PLA2 activity were assessed. Kupffer cell tumor necrosis factor-alpha (TNFalpha) production was also assessed due to its sensitivity to PGE2 and its proinflamatory effects. Kupffer cells from portally transfused animals produced significantly more PGE2 than saline-transfused controls. Addition of butyrate to the culture medium further increased PGE2 production by as much as sevenfold in Kupffer cells of portally transfused animals. Other short-chain fatty acids, propionate and hexanoate, did not increase PGE2 production. Butyrate added to Kupffer cells from transfused animals slightly upregulated inducible cyclooxygenase (COX-2) mRNA levels as measured by both Northern blot and reverse-transcriptase polymerase chain reaction and increased PLA2 activity fivefold as measured by Western blot. Kupffer cell immune function was also affected by in vitro butyrate treatment with a significant decrease in the production of TNFalpha. Thus, butyrate may be a useful immunoregulatory agent in organ transplantation protocols which seek to enhance transcription of immunosuppressive molecules.
Collapse
Affiliation(s)
- R Perez
- Department of Surgery, University of California, Davis, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lamparter T, Mittmann F, Gärtner W, Börner T, Hartmann E, Hughes J. Characterization of recombinant phytochrome from the cyanobacterium Synechocystis. Proc Natl Acad Sci U S A 1997; 94:11792-7. [PMID: 9342316 PMCID: PMC23587 DOI: 10.1073/pnas.94.22.11792] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The complete sequence of the Synechocystis chromosome has revealed a phytochrome-like sequence that yielded an authentic phytochrome when overexpressed in Escherichia coli. In this paper we describe this recombinant Synechocystis phytochrome in more detail. Islands of strong similarity to plant phytochromes were found throughout the cyanobacterial sequence whereas C-terminal homologies identify it as a likely sensory histidine kinase, a family to which plant phytochromes are related. An approximately 300 residue portion that is important for plant phytochrome function is missing from the Synechocystis sequence, immediately in front of the putative kinase region. The recombinant apoprotein is soluble and can easily be purified to homogeneity by affinity chromatography. Phycocyanobilin and similar tetrapyrroles are covalently attached within seconds, an autocatalytic process followed by slow conformational changes culminating in red-absorbing phytochrome formation. Spectral absorbance characteristics are remarkably similar to those of plant phytochromes, although the conformation of the chromophore is likely to be more helical in the Synechocystis phytochrome. According to size-exclusion chromatography the native recombinant apoproteins and holoproteins elute predominantly as 115- and 170-kDa species, respectively. Both tend to form dimers in vitro and aggregate under low salt conditions. Nevertheless, the purity and solubility of the recombinant gene product make it a most attractive model for molecular studies of phytochrome, including x-ray crystallography.
Collapse
Affiliation(s)
- T Lamparter
- Institut für Pflanzenphysiologie und Mikrobiologie, Freie Universität, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Wu SH, McDowell MT, Lagarias JC. Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum. J Biol Chem 1997; 272:25700-5. [PMID: 9325294 DOI: 10.1074/jbc.272.41.25700] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Compared with phytochromes isolated from etiolated higher plant tissues and a number of lower plant species, the absorption spectrum of phytochrome isolated from the unicellular green alga Mesotaenium caldariorum is blue-shifted (Kidd, D. G., and Lagarias, J. C. (1990) J. Biol. Chem. 265, 7029-7035). The present studies were undertaken to determine whether this blue shift is due to a chromophore other than phytochromobilin or reflects a different protein environment for the phytochromobilin prosthetic group. Using reversed phase high performance liquid chromatography, we show that soluble protein extracts prepared from algal chloroplasts contain the enzyme activities for ferredoxin-dependent conversions of biliverdin IXalpha to (3Z)-phytochromobilin and (3Z)-phytochromobilin to (3Z)-phycocyanobilin. In vitro assembly of recombinant algal apophytochrome was undertaken with (3E)-phytochromobilin and (3E)-phycocyanobilin. The difference spectrum of the (3E)-phycocyanobilin adduct was indistinguishable from that of phytochrome isolated from dark-adapted algal cells, while the (3E)-phytochromobilin adduct displayed red-shifted absorption maxima relative to purified algal phytochrome. These studies indicate that phycocyanobilin is the immediate precursor of the green algal phytochrome chromophore and that phytochromobilin is an intermediate in its biosynthesis in Mesotaenium.
Collapse
Affiliation(s)
- S H Wu
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
32
|
|
33
|
Herrmann H, Kraml M. Time-dependent formation of Pfr-mediated signals for the interaction with blue light in Mesotaenium chloroplast orientation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1997. [DOI: 10.1016/s1011-1344(96)07336-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Winands A, Wagner G. Phytochrome of the green alga Mougeotia: cDNA sequence, autoregulation and phylogenetic position. PLANT MOLECULAR BIOLOGY 1996; 32:589-597. [PMID: 8980511 DOI: 10.1007/bf00020200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cDNA clone encoding phytochrome (apoprotein) of the zygnematophycean green alga Mougeotia scalaris has been isolated and sequenced. The clone consisted of 3372 bp, encoded 1124 amino acids, and showed strainspecific nucleotide exchanges for M. scalaris, originating from different habitats. No indication was found of multiple phytochrome genes in Mougeotia. The 5' non-coding region of the Mougeotia PHY cDNA harbours a striking stem-loop structure. Homologies with higher-plant phytochromes were 52-53% for PHYA and 57-59% for PHYB. Highest homology scores were found with lower-plant phytochromes, for example 67% for Selaginella (Lycopodiopsida), 64% for Physcomitrella (Bryopsida) and 73% for Mesotaenium (Zygnematophyceae). In an unrooted phylogenetic tree, the position of Mougeotia PHY appeared most distant to all other known PHYs. The amino acids Gly-Val in the chromophore-binding domain (-Arg-Gly-Val-His-Gly-Cys-) were characteristic of the zygnematophycean PHYs known to date. There was no indication of a transmembrane region in Mougeotia phytochrome in particular, but a carboxyl-terminal 16-mer three-fold repeat in both, Mougeotia and Mesotaenium PHYs may represent a microtubule-binding domain. Unexpected for a non-angiosperm phytochrome, its expression was autoregulated in Mougeotia in a red/far-red reversible manner: under Pr conditions, phytochrome mRNA levels were tenfold higher than under Pfr conditions.
Collapse
Affiliation(s)
- A Winands
- Membran- und Bewegungsphysiologie, Fachbereich Biologie Botanik, Justus-Liebig-Universität, Giessen, Germany
| | | |
Collapse
|
35
|
Lagarias DM, Wu SH, Lagarias JC. Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. PLANT MOLECULAR BIOLOGY 1995; 29:1127-1142. [PMID: 8616213 DOI: 10.1007/bf00020457] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The phytochrome photoreceptor in the green alga Mesotaenium caldariorum is encoded by a small family of highly related genes. DNA sequence analysis of two of the algal phytochrome genes indicates an atypical gene structure with numerous long introns. The two genes, termed mesphy1a and mesphy1b, encode polypeptides which differ by one amino acid in the region of overlap that was sequenced. RT-PCR studies have established the intron-exon junctions of both genes and show that both are expressed. RNA blot analysis indicates a single transcript of ca. 4.1 kb in length. The deduced amino acid sequence of the mesphy1b gene reveals that the photoreceptor consists of 1142 amino acids, with an overall structure similar to other phytochromes. Phylogenetic analyses indicate that the algal phytochrome falls into a distinct subfamily with other lower plant phytochromes. Profile analysis of an internal repeat found within the central hinge region of the phytochrome polypeptide indicates an evolutionary relatedness to the photoactive yellow protein from the purple bacterium Ectothiorhodospira halophila, to several bacterial sensor kinase family members, and to a family of eukaryotic regulatory proteins which includes the period clock (per) and single-minded (sim) gene products of Drosophila. Since mutations which alter phytochrome activity cluster within the region delimited by these direct repeats (P.H. Quail et al., Science 268 (1995): 675-680), this conserved motif may play an important role in the signal transducing function of these disparate protein families.
Collapse
Affiliation(s)
- D M Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | |
Collapse
|
36
|
Häder DP, Lebert M. Analysis of photoreceptor proteins of microorganisms by gradient gel electrophoresis and other biochemical separation methods. Electrophoresis 1994; 15:1051-61. [PMID: 7859707 DOI: 10.1002/elps.11501501157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Photoreceptor proteins for photoorientation in microorganisms are usually membrane bound and can be isolated by standard biochemical methods. Three examples are shown: the flagellates Euglena gracilis, Peridinum gatunense and the slime mold Dictyostelium discoideum. The photoreceptor of Euglena is attached to the basis of the flagellum and is composed of at least four chromoproteins which can be separated by gradient sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) fast protein liquid chromatography (FPLC) and isoelectric focusing (IEF); it contains pterins and a flavin as chromophoric groups. The photoreceptor of Peridinium absorbs in the red wavelength band. Though not yet identified in detail, multiple receptors are probably involved, as indicated by fluorescence spectroscopy. Dictyostelium shows positive and negative phototaxis in its amoebal form and exclusively positive phototaxis in its pseudoplasmodial form. It is still open to discussion whether the two stages use separate photoreceptors. From amoebae two photoreceptor pigments have been isolated, showing an absorption which resembles the action spectrum, one membrane bound with a molecular mass of 45 kDa and one cytoplasmic fraction with a molecular mass of 27 kDa.
Collapse
Affiliation(s)
- D P Häder
- Institut für Botanik und Pharmazeutische Biologie, Friedrich-Alexander-Universität, Erlangen, Germany
| | | |
Collapse
|
37
|
|
38
|
|
39
|
Regulation of Intracellular Movements in Plant Cells by Environmental Stimuli. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0074-7696(08)60429-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
40
|
Hanelt S, Braun B, Marx S, Schneider-Poetsch HA. Phytochrome evolution: a phylogenetic tree with the first complete sequence of phytochrome from a cryptogamic plant (Selaginella martensii spring). Photochem Photobiol 1992; 56:751-8. [PMID: 1475321 DOI: 10.1111/j.1751-1097.1992.tb02230.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have sequenced cDNA and genomic clones coding for phytochrome of the fern Selaginella. On the amino acid level, this phytochrome shares sequence homologies with phytochromes of higher plants which range between 62 (phytochrome B of Arabidopsis) and 55 (56)% [phytochrome C of Arabidopsis (Avena)]. Introns in the Selaginella gene are short and occupy positions known from phytochrome sequences of higher plants. A rooted phylogenetic tree based on mutation distances puts Selaginella phytochrome closest to the hypothetical ancestor. A similar tree arises if the tree is constructed with partial sequences (about 200 amino acids) around the chromophore attachment site. An extension of this tree by sequences of other cryptogamic plants (Mougeotia, Ceratodon, Psilotum) shows all these sequences including those of the phytochromes B and C of Arabidopsis on a branch, well separated from the branch formed by phytochromes known to accumulate in etiolated plants. The rooted phytochrome phylogenetic tree, however, is difficult to reconcile with the fossil record.
Collapse
Affiliation(s)
- S Hanelt
- Botanisches Institut der Universität zu Köln, Germany
| | | | | | | |
Collapse
|
41
|
Schneider-Poetsch HA. Signal transduction by phytochrome: phytochromes have a module related to the transmitter modules of bacterial sensor proteins. Photochem Photobiol 1992; 56:839-46. [PMID: 1475327 DOI: 10.1111/j.1751-1097.1992.tb02241.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A C-terminal section of phytochromes turned out to share sequence homologies with the full length of the transmitter modules (about 250 amino acids) of bacterial sensor proteins. Coinciding hydrophobic clusters within the homologous domains imply that the overall folding of the two different types of peptides is similar. Hence, phytochromes appear to possess the structural prerequisites to transmit signals in a way bacterial sensor proteins do. The bacterial sensor proteins are known to be environmental stimuli-regulated kinases belonging to two-component systems. After sensing a stimulus by the N-terminal part of the sensor protein, conformational alterations confer the signal to its (mostly) C-terminal transmitter module which in turn is transitionally autophosphorylated at a conserved histidine. From the histidine the phosphate is transferred to the receiver module of a system-specific regulator protein which eventually acts on transcription or enzyme activity. The histidine is not conserved in phytochromes. Instead, a conserved tyrosine is found spatially very close to the histidine position. This tyrosine might play the role of histidine, and kinase function might be associated with this part of phytochrome. In spite of this divergence, the structural similarities point to a common evolutionary origin of the phytochrome and bacterial modules.
Collapse
|
42
|
|
43
|
|
44
|
|
45
|
|