1
|
Plant Organelle Genome Replication. PLANTS 2019; 8:plants8100358. [PMID: 31546578 PMCID: PMC6843274 DOI: 10.3390/plants8100358] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022]
Abstract
Mitochondria and chloroplasts perform essential functions in respiration, ATP production, and photosynthesis, and both organelles contain genomes that encode only some of the proteins that are required for these functions. The proteins and mechanisms for organelle DNA replication are very similar to bacterial or phage systems. The minimal replisome may consist of DNA polymerase, a primase/helicase, and a single-stranded DNA binding protein (SSB), similar to that found in bacteriophage T7. In Arabidopsis, there are two genes for organellar DNA polymerases and multiple potential genes for SSB, but there is only one known primase/helicase protein to date. Genome copy number varies widely between type and age of plant tissues. Replication mechanisms are only poorly understood at present, and may involve multiple processes, including recombination-dependent replication (RDR) in plant mitochondria and perhaps also in chloroplasts. There are still important questions remaining as to how the genomes are maintained in new organelles, and how genome copy number is determined. This review summarizes our current understanding of these processes.
Collapse
|
2
|
Oldenburg DJ, Bendich AJ. DNA maintenance in plastids and mitochondria of plants. FRONTIERS IN PLANT SCIENCE 2015; 6:883. [PMID: 26579143 PMCID: PMC4624840 DOI: 10.3389/fpls.2015.00883] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/05/2015] [Indexed: 05/02/2023]
Abstract
The DNA molecules in plastids and mitochondria of plants have been studied for over 40 years. Here, we review the data on the circular or linear form, replication, repair, and persistence of the organellar DNA (orgDNA) in plants. The bacterial origin of orgDNA appears to have profoundly influenced ideas about the properties of chromosomal DNA molecules in these organelles to the point of dismissing data inconsistent with ideas from the 1970s. When found at all, circular genome-sized molecules comprise a few percent of orgDNA. In cells active in orgDNA replication, most orgDNA is found as linear and branched-linear forms larger than the size of the genome, likely a consequence of a virus-like DNA replication mechanism. In contrast to the stable chromosomal DNA molecules in bacteria and the plant nucleus, the molecular integrity of orgDNA declines during leaf development at a rate that varies among plant species. This decline is attributed to degradation of damaged-but-not-repaired molecules, with a proposed repair cost-saving benefit most evident in grasses. All orgDNA maintenance activities are proposed to occur on the nucleoid tethered to organellar membranes by developmentally-regulated proteins.
Collapse
|
3
|
|
4
|
Leung SK, Wong JTY. The replication of plastid minicircles involves rolling circle intermediates. Nucleic Acids Res 2009; 37:1991-2002. [PMID: 19208639 PMCID: PMC2665238 DOI: 10.1093/nar/gkp063] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plastid genomes of peridinin-containing dinoflagellates are unique in that its genes are found on multiple circular DNA molecules known as ‘minicircles’ of ∼2–3 kb in size, carrying from one to three genes. The non-coding regions (NCRs) of these minicircles share a conserved core region (250–500 bp) that are AT-rich and have several inverted or direct repeats. Southern blot analysis using an NCR probe, after resolving a dinoflagellate whole DNA extract in pulsed-field gel electrophoresis (PFGE), revealed additional positive bands (APBs) of 6–8 kb in size. APBs preferentially diminished from cells treated with the DNA-replication inhibitor aphidicolin, when compared with 2–3 kb minicircles, implicating they are not large minicircles. The APBs are also exonuclease III-sensitive, implicating the presence of linear DNA. These properties and the migration pattern of the APBs in a 2D-gel electrophoresis were in agreement with a rolling circle type of replication, rather than the bubble-forming type. Atomic force microscopy of 6–8 kb DNA separated by PFGE revealed DNA intermediates with rolling circle shapes. Accumulating data thus supports the involvement of rolling circle intermediates in the replication of the minicircles.
Collapse
Affiliation(s)
- Siu Kai Leung
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, PR China
| | | |
Collapse
|
5
|
Temporal and spatial coordination of cells with their plastid component. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 193:125-64. [PMID: 10494622 DOI: 10.1016/s0074-7696(08)61780-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Careful coordination of cell multiplication with plastid multiplication and partition at cytokinesis is required to maintain the universal presence of plastids in the major photosynthetic lines of evolution. However, no cell cycle control points are known that might underlie this coordination. We review common properties, and their variants, of plastids and plastid DNA in germline, multiplying, and mature cells of phyla capable of photosynthesis. These suggest a basic level of control dictated perhaps by the same mechanisms that coordinate cell size with the nuclear ploidy level. No protein synthesis within the plastid appears to be necessary for this system to operate successfully at the level that maintains the presence of plastids in cells. A second, and superimposed, level of controls dictates expansion of the plastid in both size and number in response to signals associated with differentiation and with the environment. We also compare the germane properties of plastids with those of mitochondria. With the advent of genomics and new cell and molecular techniques, the players in these control mechanisms should now be identifiable.
Collapse
|
6
|
Hedrick LA, Heinhorst S, White MA, Cannon GC. Analysis of soybean chloroplast DNA replication by two-dimensional gel electrophoresis. PLANT MOLECULAR BIOLOGY 1993; 23:779-92. [PMID: 8251631 DOI: 10.1007/bf00021533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chloroplast DNA replication was studied in the green, autotrophic suspension culture line SB-1 of Glycine max. Three regions (restriction fragments Sac I 14.5, Pvu II 4.1 and Pvu II 14.8) on the plastome were identified that displayed significantly higher template activity in in vitro DNA replication assays than all other cloned restriction fragments of the organelle genome, suggesting that these clones contain sequences that are able to direct initiation of DNA replication in vitro. In order to confirm that the potential in vitro origin sites are functional in vivo as well, replication intermediates were analyzed by two-dimensional gel electrophoresis using cloned restriction fragments as probes. The two Pvu II fragments that supported deoxynucleotide incorporation in vitro apparently do not contain a functional in vivo replication origin since replication intermediates from these areas of the plastome represent only fork structures. The Sac I 14.5 chloroplast DNA fragment, on the other hand, showed intermediates consistent with a replication bubble originating within its borders, which is indicative of an active in vivo origin. Closer examination of cloned Sac I 14.5 sub-fragments confirmed high template activity in vitro for two, S/B 5 and S/B 3, which also seem to contain origin sites utilized in vivo as determined by two-dimensional gel electrophoresis. The types of replication intermediate patterns obtained for these sub-fragments are consistent with the double D-loop model for chloroplast DNA replication with both origins being located in the large unique region of the plastome [17, 18]. This is the first report of a chloroplast DNA replication origin in higher plants that has been directly tested for in vivo function.
Collapse
Affiliation(s)
- L A Hedrick
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg 39406-5043
| | | | | | | |
Collapse
|
7
|
Abstract
Chloroplasts contain multiple copies of a DNA molecule (the plastome) that encodes many of the gene products required to perform photosynthesis. The plastome is replicated by nuclear-encoded proteins and its copy number seems to be highly regulated by the cell in a tissue-specific and developmental manner. Our understanding of the biochemical mechanism by which the plastome is replicated and the molecular basis for its regulation is limited. In this commentary we review our present understanding of chloroplast DNA replication and examine current efforts to elucidate its mechanism at a molecular level.
Collapse
|
8
|
Takeda Y, Hirokawa H, Nagata T. The replication origin of proplastid DNA in cultured cells of tobacco. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:191-8. [PMID: 1557025 DOI: 10.1007/bf00279996] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
When tobacco suspension culture line BY2 cells in stationary phase are transferred into fresh medium, replication of proplastid DNA proceeds for 24 h in the absence of nuclear DNA replication. Replicative intermediates of the proplastid DNA concentrated by benzoylated, naphthoylated DEAE cellulose chromatography, were radioactively labelled and hybridized to several sets of restriction endonuclease fragments of tobacco chloroplast DNA. The intermediates hybridized preferentially to restriction fragments in the two large inverted repeats. Mapping of D-loops and of restriction fragment lengths by electron microscopy permitted the localization of the replication origin, which was close to the 23S rRNA gene in the inverted repeats. The replication origins in both segments of the inverted repeat in tobacco proplastid DNA were active in vivo.
Collapse
Affiliation(s)
- Y Takeda
- Institute for Biochemical Regulation, School of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
9
|
Chiu WL, Sears BB. Electron microscopic localization of replication origins in Oenothera chloroplast DNA. MOLECULAR & GENERAL GENETICS : MGG 1992; 232:33-9. [PMID: 1552900 DOI: 10.1007/bf00299134] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The origins of chloroplast DNA (cpDNA) replication were mapped in two plastome types of Oenothera in order to determine whether variation in the origin of cpDNA replication could account for the different transmission abilities associated with these plastomes. Two pairs of displacement loop (D-loop) initiation sites were observed on closed circular cpDNA molecules by electron microscopy. Each pair of D-loops was mapped to the inverted repeats of the Oenothera cpDNA by the analysis of restriction fragments. The starting points of the two adjacent D-loops are approximately 4 kb apart, bracketing the 16S rRNA gene. Although there are small DNA length variations near one of the D-loop initiation sites, no apparent differences in the number and the location of replication origins were observed between plastomes with the highest (type I) and lowest (type IV) transmission efficiencies.
Collapse
Affiliation(s)
- W L Chiu
- Department of Botany and Plant Pathology, Michigan State University, East Lansing 48824
| | | |
Collapse
|
10
|
Nagata T, Nemoto Y, Hasezawa S. Tobacco BY-2 Cell Line as the “HeLa” Cell in the Cell Biology of Higher Plants. INTERNATIONAL REVIEW OF CYTOLOGY 1992. [DOI: 10.1016/s0074-7696(08)62452-3] [Citation(s) in RCA: 736] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
|
12
|
Characterization of DNA synthesis and chloroplast DNA replication initiation in a Petunia hybrida chloroplast lysate system. Curr Genet 1987. [DOI: 10.1007/bf00405760] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
|
14
|
Genetic Organization of the Chloroplast. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/s0074-7696(08)61372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Location and nucleotide sequence of a tobacco chlorophlast DNA segment capable of replication in yeast. ACTA ACUST UNITED AC 1984. [DOI: 10.1007/bf00332714] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Rochaix JD, van Dillewijn J, Rahire M. Construction and characterization of autonomously replicating plasmids in the green unicellular alga Chlamydomonas reinhardii. Cell 1984; 36:925-31. [PMID: 6323027 DOI: 10.1016/0092-8674(84)90042-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plasmids that replicate autonomously in Chlamydomonas reinhardii were constructed by inserting random DNA fragments from this alga into a plasmid containing the yeast ARG4 locus. Arginine prototrophy was used as a selective marker. The presence of free plasmids in the DNA of the transformants was demonstrated by hybridization with a specific plasmid probe and by recovering these plasmids in E. coli after transformation. Four of them were characterized. Their inserts of 415, 257, 153, and 102 bp all hybridize to chloroplast DNA and were localized on the physical map of the chloroplast genome. One of these plasmids also promotes autonomous replication in yeast. Sequence analysis of the inserts of the plasmids reveals several short direct and inverted repeats and two semiconserved AT-rich elements of 19 and 12 bp that may play a role in promoting autonomous replication in C. reinhardii.
Collapse
|
17
|
Uchimiya H, Ohtani T, Ohgawara T, Harada H, Sugita M, Sugiura M. Molecular cloning of tobacco chromosomal and chloroplast DNA segments capable of replication in yeast. ACTA ACUST UNITED AC 1983. [DOI: 10.1007/bf00327638] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
|
19
|
Heizmann P, Ravel-Chapuis P, Nigon V. Minicircular DNA having sequence homologies with chloroplast DNA in a bleached mutant of Euglena gracilis. Curr Genet 1982; 6:119-22. [DOI: 10.1007/bf00435210] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/1982] [Indexed: 10/26/2022]
|
20
|
Ravel-Chapuis P, Heizmann P, Nigon V. Electron microscopic localization of the replication origin of Euglena gracilis chloroplast DNA. Nature 1982. [DOI: 10.1038/300078a0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Sala F, Amileni AR, Parisi B, Spadari S. A gamma-like DNA polymerase in spinach chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 112:211-7. [PMID: 7460920 DOI: 10.1111/j.1432-1033.1980.tb07196.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A DNA polymerase has been extracted from spinach chloroplasts and purified by chromatography on DEAE-cellulose and hydroxyapatite. A great similarity between the purified chloroplast polymerase and the mammalian mitochondrial DNA polymerase gamma was found by several criteria: preference for the synthetic primer-template (dT)12-18 . poly(rA), optimal requirement for Mn2+ (0.1-1.0 mM), KCl (100 mM) and pH (8-9), high relative molecular mass (approximately 105,000), resistance to aphidicolin and inhibition by N-ethylmaleimide. Some peculiar features of the chloroplast DNA polymerase have, however, been noticed. The mammalian DNA polymerase gamma has been suggested to be responsible for the replication of mitochondrial DNA. Thus, both the presence of a gamma-like DNA polymerase in chloroplasts and the similarities between the chloroplast and the mitochondrial DNA (absence of a nucleosomal structure an presence of displacement loops) lead to the suggestion that chloroplast DNA is also replicated by a gamma-like DNA polymerase and that the gamma polymerases present in eukaryotes are, therefore, involved in a strand-displacement DNA synthesis. An alpha-like DNA polymerase activity, present and predominant in crude leaf extracts, was practically absent from purified chloroplast preparations.
Collapse
|
22
|
Gene 4 protein of bacteriophage T7. Characterization of the product synthesized by the T7 DNA polymerase and gene 4 protein in the absence of ribonucleoside 5'-triphosphates. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)38248-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
VEDEL FERNAND, QUETIER FRANCIS, BAYEN MARCEL. Specific cleavage of chloroplast DNA from higher plants by EcoRI restriction nuclease. Nature 1976. [DOI: 10.1038/263440a0] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|