1
|
Han YW, Mizuuchi K. Phage Mu transposition immunity: protein pattern formation along DNA by a diffusion-ratchet mechanism. Mol Cell 2010; 39:48-58. [PMID: 20603074 PMCID: PMC2908525 DOI: 10.1016/j.molcel.2010.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/09/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
Abstract
DNA transposons integrate into host chromosomes with limited target sequence specificity. Without mechanisms to avoid insertion into themselves, transposons risk self-destruction. Phage Mu avoids this problem by transposition immunity, involving MuA-transposase and MuB ATP-dependent DNA-binding protein. MuB-bound DNA acts as an efficient transposition target, but MuA clusters bound to Mu DNA ends activate the MuB-ATPase and dissociate MuB from their neighborhood before target site commitment, making the regions near Mu ends a poor target. This MuA-cluster-MuB interaction requires formation of DNA loops between the MuA- and the MuB-bound DNA sites. At early times, MuB clusters are disassembled via loops with smaller average size, and at later times, MuA clusters find distantly located MuB clusters by forming loops with larger average sizes. We demonstrate that iterative loop formation/disruption cycles with intervening diffusional steps result in larger DNA loops, leading to preferential insertion of the transposon at sites distant from the transposon ends.
Collapse
Affiliation(s)
- Yong-Woon Han
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
2
|
Ge J, Lou Z, Harshey RM. Immunity of replicating Mu to self-integration: a novel mechanism employing MuB protein. Mob DNA 2010; 1:8. [PMID: 20226074 PMCID: PMC2837660 DOI: 10.1186/1759-8753-1-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 02/01/2010] [Indexed: 01/11/2023] Open
Abstract
We describe a new immunity mechanism that protects actively replicating/transposing Mu from self-integration. We show that this mechanism is distinct from the established cis-immunity mechanism, which operates by removal of MuB protein from DNA adjacent to Mu ends. MuB normally promotes integration into DNA to which it is bound, hence its removal prevents use of this DNA as target. Contrary to what might be expected from a cis-immunity mechanism, strong binding of MuB was observed throughout the Mu genome. We also show that the cis-immunity mechanism is apparently functional outside Mu ends, but that the level of protection offered by this mechanism is insufficient to explain the protection seen inside Mu. Thus, both strong binding of MuB inside and poor immunity outside Mu testify to a mechanism of immunity distinct from cis-immunity, which we call 'Mu genome immunity'. MuB has the potential to coat the Mu genome and prevent auto-integration as previously observed in vitro on synthetic A/T-only DNA, where strong MuB binding occluded the entire bound region from Mu insertions. The existence of two rival immunity mechanisms within and outside the Mu genome, both employing MuB, suggests that the replicating Mu genome must be segregated into an independent chromosomal domain. We propose a model for how formation of a 'Mu domain' may be aided by specific Mu sequences and nucleoid-associated proteins, promoting polymerization of MuB on the genome to form a barrier against self-integration.
Collapse
Affiliation(s)
- Jun Ge
- Section of Molecular Genetics and Microbiology and Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | |
Collapse
|
3
|
Dissecting the roles of MuB in Mu transposition: ATP regulation of DNA binding is not essential for target delivery. Proc Natl Acad Sci U S A 2008; 105:12101-7. [PMID: 18719126 DOI: 10.1073/pnas.0805868105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collaboration between MuA transposase and its activator protein, MuB, is essential for properly regulated transposition. MuB activates MuA catalytic activity, selects target DNA, and stimulates transposition into the selected target site. Selection of appropriate target DNA requires ATP hydrolysis by the MuB ATPase. By fusing MuB to a site-specific DNA-binding protein, the Arc repressor, we generated a MuB variant that could select target DNA independently of ATP. This Arc-MuB fusion protein allowed us to test whether ATP binding and hydrolysis by MuB are necessary for stimulation of transposition into selected DNA, a process termed target delivery. We find that with the fusion proteins, MuB-dependent target delivery occurs efficiently under conditions where ATP hydrolysis is prevented by mutation or use of ADP. In contrast, no delivery was detected in the absence of nucleotide. These data indicate that the ATP- and MuA-regulated DNA-binding activity of MuB is not essential for target delivery but that activation of MuA by MuB strictly requires nucleotide-bound MuB. Furthermore, we find that the fusion protein directs transposition to regions of the DNA within 40-750 bp of its own binding site. Taken together, these results suggest that target delivery by MuB occurs as a consequence of the ability of MuB to stimulate MuA while simultaneously tethering MuA to a selected target DNA. This tethered-activator model provides an attractive explanation for other examples of protein-stimulated control of target site selection.
Collapse
|
4
|
Lemberg KM, Schweidenback CTH, Baker TA. The dynamic Mu transpososome: MuB activation prevents disintegration. J Mol Biol 2007; 374:1158-71. [PMID: 17988683 PMCID: PMC2237893 DOI: 10.1016/j.jmb.2007.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/20/2022]
Abstract
DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration versus disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the "joining" configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and may provide a mechanism to antagonize formation of single-end transposition products.
Collapse
Affiliation(s)
- Kathryn M Lemberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
5
|
Williams TL, Baker TA. Reorganization of the Mu transpososome active sites during a cooperative transition between DNA cleavage and joining. J Biol Chem 2003; 279:5135-45. [PMID: 14585843 DOI: 10.1074/jbc.m308156200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transposition of mobile genetic elements proceeds through a series of DNA phosphoryl transfer reactions, with multiple reaction steps catalyzed by the same set of active site residues. Mu transposase repeatedly utilizes the same active site DDE residues to cleave and join a single DNA strand at each transposon end to a new, distant DNA location (the target DNA). To better understand how DNA is manipulated within the Mu transposase-DNA complex during recombination, the impact of the DNA immediately adjacent to the Mu DNA ends (the flanking DNA) on the progress of transposition was investigated. We show that, in the absence of the MuB activator, the 3 '-flanking strand can slow one or more steps between DNA cleavage and joining. The presence of this flanking DNA strand in just one active site slows the joining step in both active sites. Further evidence suggests that this slow step is not due to a change in the affinity of the transpososome for the target DNA. Finally, we demonstrate that MuB activates transposition by stimulating the reaction step between cleavage and joining that is otherwise slowed by this flanking DNA strand. Based on these results, we propose that the 3 '-flanking DNA strand must be removed from, or shifted within, both active sites after the cleavage step; this movement is coupled to a conformational change within the transpososome that properly positions the target DNA simultaneously within both active sites and thereby permits joining.
Collapse
Affiliation(s)
- Tanya L Williams
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
6
|
Coros CJ, Sekino Y, Baker TA, Chaconas G. Effect of mutations in the C-terminal domain of Mu B on DNA binding and interactions with Mu A transposase. J Biol Chem 2003; 278:31210-7. [PMID: 12791691 DOI: 10.1074/jbc.m303693200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage Mu transposition requires two phage-encoded proteins, the transposase, Mu A, and an accessory protein, Mu B. Mu B is an ATP-dependent DNA-binding protein that is required for target capture and target immunity and is an allosteric activator of transpososome function. The recent NMR structure of the C-terminal domain of Mu B (Mu B223-312) revealed that there is a patch of positively charged residues on the solvent-exposed surface. This patch may be responsible for the nonspecific DNA binding activity displayed by the purified Mu B223-312 peptide. We show that mutations of three lysine residues within this patch completely abolish nonspecific DNA binding of the C-terminal peptide (Mu B223- 312). To determine how this DNA binding activity affects transposition we mutated these lysine residues in the full-length protein. The full-length protein carrying all three mutations was deficient in both strand transfer and allosteric activation of transpososome function but retained ATPase activity. Peptide binding studies also revealed that this patch of basic residues within the C-terminal domain of Mu B is within a region of the protein that interacts directly with Mu A. Thus, we conclude that this protein segment contributes to both DNA binding and protein-protein contacts with the Mu transposase.
Collapse
Affiliation(s)
- Colin J Coros
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|
7
|
Tourand Y, Kobryn K, Chaconas G. Sequence-specific recognition but position-dependent cleavage of two distinct telomeres by the Borrelia burgdorferi telomere resolvase, ResT. Mol Microbiol 2003; 48:901-11. [PMID: 12753185 DOI: 10.1046/j.1365-2958.2003.03485.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unusual feature of bacteria in the genus Borrelia (causative agents of Lyme disease and relapsing fever) is a segmented genome consisting of multiple linear DNA molecules with covalently closed hairpin ends, known as telomeres. The hairpin telomeres are generated by a DNA breakage and reunion process (telomere resolution) promoted by ResT, an enzyme using an active site related to that of tyrosine recombinases and type IB topoisomerases. In this study, we define the minimal sequence requirements for a functional telomere and identify specific basepairs that appear to be important for telomere resolution. In addition, we show that the two naturally occurring and distinct telomere spacings found in B. burgdorferi can both be efficiently processed by ResT. This flexibility for substrate utilization by ResT supports the argument for a single telomere resolvase in Borrelia. Furthermore, although telomere recognition requires sequence specificity in part of the substrate, DNA cleavage is instead position dependent and occurs at a fixed distance from the axis of symmetry and the conserved sequence of box 3 in the different replicated telomere substrates. This positional dependence for DNA cleavage has not been observed previously for a tyrosine recombinase.
Collapse
Affiliation(s)
- Yvonne Tourand
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
8
|
Abstract
Assembly of the Mu transpososome is dependent on specific binding sites for the MuA transposase near the ends of the phage genome. MuA also contacts terminal nucleotides but only upon transpososome assembly, and base-specific recognition of the terminal nucleotides is critical for assembly. We show that Mu ends lacking the terminal 5 bp can form transpososomes, while longer DNA substrates with mutated terminal nucleotides cannot. The impact of the mutations can be suppressed by base mismatches near the end of Mu. Deletion of the flanking strands or mutation of the terminal nucleotides has differential effects on the cleavage and strand transfer reactions. These results show that the terminal nucleotides control the assembly and activation of transpososomes by influencing conformational changes around the active site.
Collapse
Affiliation(s)
- Katsuhiko Yanagihara
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
9
|
Kobryn K, Watson MA, Allison RG, Chaconas G. The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment. Mol Cell 2002; 10:659-69. [PMID: 12408832 DOI: 10.1016/s1097-2765(02)00596-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Mu DNA transposition reaction proceeds through a three-site synaptic complex (LER), including the two Mu ends and the transpositional enhancer. We show that the LER contains highly stressed DNA regions in the enhancer and in the L1 transposase binding site. We propose that the L1 site acts as the keystone for assembly of a catalytically competent transpososome. Delivery of L1 through HU-mediated bending completes LER assembly, provides the trigger for necessary conformational transitions in transpososome formation, and allows target capture to occur. Relief of the stress at L1 and the enhancer may help drive Mu A tetramerization and engagement of the Mu ends by the transposase active site.
Collapse
Affiliation(s)
- Kerri Kobryn
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
10
|
Greene EC, Mizuuchi K. Dynamics of a protein polymer: the assembly and disassembly pathways of the MuB transposition target complex. EMBO J 2002; 21:1477-86. [PMID: 11889053 PMCID: PMC125918 DOI: 10.1093/emboj/21.6.1477] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MuB assembles into a polymer on DNA in the presence of ATP and is directly involved in the selection of an appropriate site on the Escherichia coli chromosome for the insertion of the bacteriophage Mu genome. We have developed an assay using fluorescently tagged proteins to monitor the polymeric state of MuB via fluorescence resonance energy transfer. We show that polymer assembly is initiated by the formation of an ATP-MuB complex. MuB then self-associates into a protomer before binding to DNA. Upon binding to DNA, a dramatic increase in energy transfer is observed, suggesting a conformational change within MuB. Polymer disassembly is much slower than assembly and is greatly stimulated by the MuA transposase. Additionally, MuB is readily exchanged between polymers, and ATP hydrolysis is directly coupled to polymer disassembly. Our data support a model in which a combination of rapid polymer assembly, MuA-mediated disassembly, followed by rapid reassembly of the polymer allows MuB to sample multiple DNA targets until an appropriate site is located for the insertion of the bacteriophage genome.
Collapse
Affiliation(s)
| | - Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
Corresponding author e-mail:
| |
Collapse
|
11
|
Abstract
A notable feature of transposable elements--segments of DNA that can move from one position to another in genomes--is that they are highly prevalent, despite the fact that their translocation can result in mutation. The bacterial transposon Tn7 uses an elaborate system of target-site selection pathways that favours the dispersal of Tn7 in diverse hosts as well as minimizing its negative effects.
Collapse
Affiliation(s)
- J E Peters
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
12
|
Coros CJ, Chaconas G. Effect of mutations in the Mu-host junction region on transpososome assembly. J Mol Biol 2001; 310:299-309. [PMID: 11428891 DOI: 10.1006/jmbi.2001.4772] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mu transposition occurs through a series of higher-order nucleoprotein complexes called transpososomes. The region where the Mu DNA joins the host DNA plays an integral role in the assembly of these transpososomes. We have created a series of point mutations at the Mu-host junction and characterized their effect on the Mu in vitro strand transfer reaction. Analysis of these mutant constructs revealed an inhibition in transpososome assembly at the point in the reaction pathway when the junction region is engaged by the transposase active site (i.e. the transition from LER to type 0). We found that the degree of inhibition was dependent upon the particular base-pair change at each position and whether the substitution occurred at the left or right transposon end. The MuB transposition protein, an allosteric effector of MuA, was shown to suppress all of the inhibitory Mu-host junction mutants. Most of the mutant constructs were also suppressed, to varying degrees, by the substitution of Mg(2+) with Mn(2+). Analysis of the mutant constructs has revealed hierarchical nucleotide preferences at positions -1 through +3 for transpososome assembly and suggests the possibility that specific metal ion-DNA base interactions are involved in DNA recognition and transpososome assembly.
Collapse
Affiliation(s)
- C J Coros
- The Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | |
Collapse
|
13
|
Roldan LA, Baker TA. Differential role of the Mu B protein in phage Mu integration vs. replication: mechanistic insights into two transposition pathways. Mol Microbiol 2001; 40:141-55. [PMID: 11298282 DOI: 10.1046/j.1365-2958.2001.02364.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Mu B protein is an ATP-dependent DNA-binding protein and an allosteric activator of the Mu transposase. As a result of these activities, Mu B is instrumental in efficient transposition and target-site choice. We analysed in vivo the role of Mu B in the two different recombination reactions performed by phage Mu: non-replicative transposition, the pathway used during integration, and replicative transposition, the pathway used during lytic growth. Utilizing a sensitive PCR-based assay for Mu transposition, we found that Mu B is not required for integration, but enhances the rate and extent of the process. Furthermore, three different mutant versions of Mu B, Mu BC99Y, Mu BK106A, and Mu B1-294, stimulate integration to a similar level as the wild-type protein. In contrast, these mutant proteins fail to support Mu growth. This deficiency is attributable to a defect in formation of an essential intermediate for replicative transposition. Biochemical analysis of the Mu B mutant proteins reveals common features: the mutants retain the ability to stimulate transposase, but are defective in DNA binding and target DNA delivery. These data indicate that activation of transposase by Mu B is sufficient for robust non-replicative transposition. Efficient replicative transposition, however, demands that the Mu B protein not only activate transposase, but also bind and deliver the target DNA.
Collapse
Affiliation(s)
- L A Roldan
- Department of Biology and the Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 68-523 Cambridge, MA 02139, USA
| | | |
Collapse
|
14
|
Stellwagen AE, Craig NL. Analysis of gain-of-function mutants of an ATP-dependent regulator of Tn7 transposition. J Mol Biol 2001; 305:633-42. [PMID: 11152618 DOI: 10.1006/jmbi.2000.4317] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial transposon Tn7 is distinguished by its unusual discrimination among targets, being particularly attracted to certain target DNA and actively avoiding other DNA. Tn7 transposition is mediated by the interaction of two alternative transposon-encoded target selection proteins, TnsD and TnsE, with a common core transposition machinery composed of the transposase (TnsAB) and an ATP-dependent DNA-binding protein TnsC. No transposition is observed with wild-type TnsABC. Here, we analyze the properties of two gain-of-function TnsC mutants that allow transposition in the absence of TnsD or TnsE. We find that these TnsC mutants have altered interactions with ATP and DNA that can account for their gain-of-function phenotype. We also show that TnsC is an ATPase and that it directly interacts with the TnsAB transposase. This work provides strong support to the view that TnsC and its ATP state are central to the control of Tn7 transposition.
Collapse
Affiliation(s)
- A E Stellwagen
- Howard Hughes Medical Institute, Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
15
|
Manna D, Higgins NP. Phage Mu transposition immunity reflects supercoil domain structure of the chromosome. Mol Microbiol 1999; 32:595-606. [PMID: 10320581 DOI: 10.1046/j.1365-2958.1999.01377.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transposition immunity is the negative influence that the presence of one transposon sequence has on the probability of a second identical element inserting in the same site or in sites nearby. A transposition-defective Mu derivative (MudJr1) produced transposition immunity in both directions from one insertion point in the Salmonella typhimurium chromosome. To control for the sequence preference of Mu transposition proteins, Tn10 elements were introduced as targets at various distances from an immunity-conferring MudJr1 element. Mu transposition into a Tn10 target was not detectable when the distance of separation from MudJr1 was 5 kb, and transposition was unencumbered when the separation was 25 kb. Between 5 kb and 25 kb, immunity decayed gradually with distance. Immunity decayed more sharply in a gyrase mutant than in a wild-type strain. We propose that Mu transposition immunity senses the domain structure of bacterial chromosomes.
Collapse
Affiliation(s)
- D Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
16
|
Stellwagen AE, Craig NL. Mobile DNA elements: controlling transposition with ATP-dependent molecular switches. Trends Biochem Sci 1998; 23:486-90. [PMID: 9868372 DOI: 10.1016/s0968-0004(98)01325-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Nucleotide-binding proteins are often used as molecular switches to control the assembly or activity of macromolecular machines. Recent work has revealed that such molecular switches also regulate the spread of some mobile DNA elements. Bacteriophage Mu and the bacterial transposon Tn7 each use an ATP-dependent molecular switch to select a new site for insertion and to coordinate the assembly of the transposition machinery at that site. Strong parallels between these ATP-dependent transposition proteins and other well-characterized molecular switches, such as Ras and EF-Tu, have emerged.
Collapse
Affiliation(s)
- A E Stellwagen
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
17
|
Krementsova E, Giffin MJ, Pincus D, Baker TA. Mutational analysis of the Mu transposase. Contributions of two distinct regions of domain II to recombination. J Biol Chem 1998; 273:31358-65. [PMID: 9813045 DOI: 10.1074/jbc.273.47.31358] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mu transposase is a member of a protein family that includes many transposases and the retroviral integrases. These recombinases catalyze the DNA cleavage and joining reactions essential for transpositional recombination. Here we demonstrate that, consistent with structural predictions, aspartate 336 of Mu transposase is required for catalysis of both DNA cleavage and DNA joining. This residue, although located 55 rather than 35 residues NH2-terminal of the essential glutamate, is undoubtedly the analog of the second aspartate of the Asp-Asp-35-Glu motif found in other family members. The core domain of Mu transposase consists of two subdomains: the NH2-terminal subdomain (IIA) contains the conserved Asp-Asp-Glu motif residues, whereas the smaller COOH-terminal subdomain (IIB) contains a large positively charged region exposed on its surface. To probe the function of domain IIB, we constructed mutant proteins carrying deletion or substitution mutations within this region. The activity of the deletion proteins revealed that domains IIA and IIB can be provided by different subunits in the transposase tetramer. Substitution mutations at two pairs of exposed lysine residues within the positively charged surface of domain IIB render transposase defective in transposition at a reaction step after DNA cleavage but prior to DNA joining. The severity of this defect depends on the structure of the DNA flanking the cleavage site. Thus, these data suggest that domain IIB is involved in manipulating the DNA near the cleavage site and that this function is important during the transition between the DNA cleavage and the DNA joining steps of recombination.
Collapse
Affiliation(s)
- E Krementsova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
18
|
Naigamwalla DZ, Coros CJ, Wu Z, Chaconas G. Mutations in domain III alpha of the Mu transposase: evidence suggesting an active site component which interacts with the Mu-host junction. J Mol Biol 1998; 282:265-74. [PMID: 9735286 DOI: 10.1006/jmbi.1998.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of point mutations was constructed in domain IIIalpha of the Mu A protein. The mutant transposases were purified and assayed for their ability to promote various aspects of the in vitro Mu DNA strand transfer reaction. All mutants with discernable phenotypes were inhibited in stable synapsis (Type 0 or Type 1 complex formation). In contrast, these mutant proteins were capable of LER formation (a transient early reaction intermediate in which the Mu left and right ends have been synapsed with the enhancer), at levels comparable to wild-type transposase. These proteins therefore comprise a novel class of transposase mutants, which are specifically inhibited in stable transpososome assembly. The defect in these proteins was also uniformly suppressed by either Mn2+, or the Mu B protein in the presence of ATP and target DNA. Striking phenotypic similarities were recognized between the domain IIIalpha transposase mutant characteristics noted above, and those for substrate mutants carrying a terminal base-pair substitution at the point of cleavage on the donor molecule. This phenotypic congruence suggests that the alterations in either protein or DNA are exerting an effect on the same step of the reaction i.e., engagement of the terminal nucleotide by the active site. We suggest that domain IIIalpha of the transposase comprises the substrate binding pocket of the active site which interacts with the Mu-host junction.
Collapse
Affiliation(s)
- D Z Naigamwalla
- Department of Biochemistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | |
Collapse
|
19
|
Millner A, Chaconas G. Disruption of target DNA binding in Mu DNA transposition by alteration of position 99 in the Mu B protein. J Mol Biol 1998; 275:233-43. [PMID: 9466906 DOI: 10.1006/jmbi.1997.1446] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Target DNA binding by the Mu B protein is an important step in phage Mu transposition; however, the region of Mu B involved in target binding and the mechanism of the interaction are unknown. Previous studies have demonstrated that modification of Mu B with the sulfhydryl-specific reagent N-ethylmaleimide can selectively inhibit target DNA binding. We now show that individual mutation of the three cysteines in Mu B to serine results in proteins which are active in intermolecular strand transfer, but demonstrate variable levels of N-ethylmaleimide resistance. The data indicate that cysteine 99 is the primary site of modification affecting target DNA binding, with a minor contribution resulting from the derivatization of cysteine 129. These findings are confirmed by the construction of Mu B mutants containing a bulky side-chain at the individual cysteine to mimic the N-ethylmaleimide modified protein. The C99Y protein shows a complete loss in target-dependent strand transfer activity under standard reaction conditions and C129Y displays partial activity. The effect of the tyrosine substitutions is specific for target interaction as both mutants show wild-type activity in their ability to stimulate the Mu transposase to perform donor cleavage and intramolecular strand transfer. Finally, a target dissociation assay has shown that the C99Y-DNA complex generated in the presence of ATP-gamma-S has a drastically reduced half-life as previously found for N-ethylmaleimide treated wild-type Mu B. Modification of cysteine 99 is proposed to block target DNA binding by causing steric interference near the DNA binding pocket.
Collapse
Affiliation(s)
- A Millner
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
20
|
Levchenko I, Yamauchi M, Baker TA. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev 1997; 11:1561-72. [PMID: 9203582 DOI: 10.1101/gad.11.12.1561] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transposition of phage Mu is catalyzed by an extremely stable transposase-DNA complex. Once recombination is complete, the Escherichia coli ClpX protein, a member of the Clp/Hsp100 chaperone family, initiates disassembly of the complex for phage DNA replication to commence. To understand how the transition between recombination and replication is controlled, we investigated how transposase-DNA complexes are recognized by ClpX. We find that a 10-amino-acid peptide from the carboxy-terminal domain of transposase is required for its recognition by ClpX. This short, positively charged peptide is also sufficient to convert a heterologous protein into a ClpX substrate. The region of transposase that interacts with the transposition activator, MuB protein, is also defined further and found to overlap with that recognized by ClpX. As a consequence, MuB inhibits disassembly of several transposase-DNA complexes that are intermediates in recombination. This ability of MuB to block access to transposase suggests a mechanism for restricting ClpX-mediated remodeling to the proper stage during replicative transposition. We propose that overlap of sequences involved in subunit interactions and those that target a protein for remodeling or destruction may be a useful design for proteins that function in pathways where remodeling or degradation must be regulated.
Collapse
Affiliation(s)
- I Levchenko
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
21
|
Wu Z, Chaconas G. The Mu transposase tetramer is inactive in unassisted strand transfer: an auto-allosteric effect of Mu A promotes the reaction in the absence of Mu B. J Mol Biol 1997; 267:132-41. [PMID: 9096212 DOI: 10.1006/jmbi.1996.0854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A tetramer of the Mu transposase is the structural and functional core in all three stable higher-order nucleoprotein complexes (Type 0, Type 1 and Type 2 transpososomes) generated in a defined in vitro strand transfer reaction. Although functional in donor cleavage, we report here that contrary to previous belief, the Mu A tetramer is incapable of unassisted strand transfer. The Mu B protein is required to stimulate the tetramer for intermolecular strand transfer. In the absence of Mu B protein we show that additional Mu A molecules must be added to the core tetramer to stimulate intramolecular strand transfer. Mapping experiments indicate that domain II of the assisting Mu A mediates functional interactions with the core tetramer. The recipient site for Mu A stimulated strand transfer on the A tetramer is likely in domain II and is clearly different from the domain IIIb site used by the Mu B protein. The Mu accessory end binding sites and the Mu enhancer are not required in the Mu A assisted strand transfer, suggesting that helper A molecules in solution can interact with the core tetramer to stimulate the reaction. Finally, we argue that the strand transfer activity and protein sites for target interaction reside within the core tetramer; hence the role of the stimulatory A molecules appears to be limited to that of an auto-allosteric effector.
Collapse
Affiliation(s)
- Z Wu
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
22
|
Affiliation(s)
- B D Lavoie
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
23
|
Abstract
Mu transposition is promoted by an extremely stable complex containing a tetramer of the transposase (MuA) bound to the recombining DNA. Here we purify the Escherichia coli ClpX protein, a member of a family of multimeric ATPases present in prokaryotes and eukaryotes (the Clp family), on the basis of its ability to remove the transposase from the DNA after recombination. Previously, ClpX has been shown to function with the ClpP peptidase in protein turnover. However, neither ClpP nor any other protease is required for disassembly of the transposase. The released MuA is not modified extensively, degraded, or irreversibly denatured, and is able to perform another round of recombination in vitro. We conclude that ClpX catalyzes the ATP-dependent release of MuA by promoting a transient conformational change in the protein and, therefore, can be considered a molecular chaperone. ClpX is important at the transition between the recombination and DNA replication steps of transposition in vitro; this function probably corresponds to the essential contribution of ClpX for Mu growth. Deletion analysis reveals that the sequence at the carboxyl terminus of MuA is important for disassembly by ClpX and can target MuA for degradation by ClpXP in vitro. These data contribute to the emerging picture that members of the Clp family are chaperones specifically suited for disaggregating proteins and are able to function with or without a collaborating protease.
Collapse
Affiliation(s)
- I Levchenko
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
24
|
Rice P, Mizuuchi K. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 1995; 82:209-20. [PMID: 7628012 DOI: 10.1016/0092-8674(95)90308-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The crystal structure of the core domain of bacteriophage Mu transposase, MuA, has been determined at 2.4 A resolution. The first of two subdomains contains the active site and, despite very limited sequence homology, exhibits a striking similarity to the core domain of HIV-1 integrase, which carries out a similar set of biochemical reactions. It also exhibits more limited similarity to other nucleases, RNase H and RuvC. The second, a beta barrel, connects to the first subdomain through several contacts. Three independent determinations of the monomer structure from two crystal forms all show the active site held in a similar, apparently inactive configuration. The enzymatic activity of MuA is known to be activated by formation of a DNA-bound tetramer of the protein. We propose that the connections between the two subdomains may be involved in the cross-talk between the active site and the other domains of the transposase that controls the activity of the protein.
Collapse
Affiliation(s)
- P Rice
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0540, USA
| | | |
Collapse
|
25
|
|
26
|
Wu Z, Chaconas G. Characterization of a region in phage Mu transposase that is involved in interaction with the Mu B protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61981-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Baker TA, Kremenstova E, Luo L. Complete transposition requires four active monomers in the mu transposase tetramer. Genes Dev 1994; 8:2416-28. [PMID: 7958906 DOI: 10.1101/gad.8.20.2416] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A tetramer of Mu transposase (MuA) cleaves and joins multiple DNA strands to promote transposition. Derivatives of MuA altered at two acidic residues that are conserved among transposases and retroviral integrases form tetramers but are defective in both cleavage and joining. These mutant proteins were used to analyze the contribution of individual monomers to the activity of the tetramer. The performance of different protein combinations demonstrates that not all monomers need to be catalytically competent for the complex to promote an individual cleavage or joining reaction. Furthermore, the results indicate that each pair of essential residues is probably donated to the active complex by a single monomer. Although stable, tetramers composed of a mixture of mutant and wild-type MuA generate products cleaved at only one end and with only one end joined to the target DNA. The abundance of these abortive products and the ratios of the two proteins in complexes stalled at different steps indicate that the complete reaction requires the activity of all four monomers. Thus, each subunit of MuA appears to use the conserved acidic amino acids to promote one DNA cleavage or one DNA joining reaction.
Collapse
Affiliation(s)
- T A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge
| | | | | |
Collapse
|
28
|
Wang X, Higgins NP. 'Muprints' of the lac operon demonstrate physiological control over the randomness of in vivo transposition. Mol Microbiol 1994; 12:665-77. [PMID: 7934890 DOI: 10.1111/j.1365-2958.1994.tb01054.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A method called Muprinting has been developed that uses PCR to generate a detailed picture of the bacteriophage Mu transposition sites in chosen domains of the bacterial chromosome. Muprinting experiments in Escherichia coli show that the frequency of phage integration changes dramatically near two repressor binding sites in the lac operon. When the lac operon was repressed, hotspots for Mu transposition were found near the O1 and O2 operators that are proposed to make a repression loop. When cells were grown in lactose, Mu transposition near these operators was greatly diminished. Striking changes in transposition frequencies were limited to the control region and were not found in a region of the lacZ gene lying beyond the O2 operator. Muprints of the bgl operon showed a different pattern; hotspots for Mu transposition detected in sequences upstream of the bglC promoter when the operon was silenced changed when the operon became activated by mutation. By targeting transposition to the regulatory regions around non-expressed genes, Mu may demonstrate a self-restraint mechanism that allows the virus to move through its host genome without disrupting the functions that contribute to a healthy cell physiology.
Collapse
Affiliation(s)
- X Wang
- Department of Biochemistry, University of Alabama at Birmingham 35294
| | | |
Collapse
|
29
|
|
30
|
van Drunen CM, van Zuylen C, Mientjes EJ, Goosen N, van de Putte P. Inhibition of bacteriophage Mu transposition by Mu repressor and Fis. Mol Microbiol 1993; 10:293-8. [PMID: 7934820 DOI: 10.1111/j.1365-2958.1993.tb01955.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this paper we show that the Escherichia coli protein Fis has a regulatory function in Mu transposition in the presence of Mu repressor. Fis can lower the transposition frequency of a mini-Mu 3-80-fold, but only if the Mu repressor is expressed simultaneously. In this novel type of regulation of transposition by the concerted action of Fis and repressor, the IAS, the internal activating sequence, is also involved as deletion of this site lead to the loss of the Fis effect. As the IAS contains strong repressor binding sites these are probably the target for the repressor in the observed negative regulation by Fis and repressor. However, the role of Fis and repressor is not only to inactivate the IAS, since a 4 bp insertion in the IAS, which changes the spacing of the repressor-binding site, abolishes the enhancing function of the IAS but leaves the repressor-Fis effect intact. A likely target for Fis in this regulation is a strong Fis-binding site, which is located adjacent to the L2 transposase-binding site. However, when this Fis-binding sequence was substituted by a random sequence and Fis no longer showed specific binding to this site, the Fis effect was still observed. Although it is still possible that Fis can function by binding to this non-specific site in a particular complex, it seems more likely that Fis is directly or indirectly involved in determining the level of the repressor.
Collapse
Affiliation(s)
- C M van Drunen
- Department of Biochemistry, Gorlaeus Laboratoria, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Abstract
Recent analysis of the mechanism and regulation of transposition by bacteriophage Mu has emphasized the importance of controlled assembly of specific protein-DNA complexes. Both the Mu transposase and the Mu repressor engage in multiple protein-protein and protein-DNA interactions that modulate the outcome of a phage infection.
Collapse
Affiliation(s)
- T A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
32
|
Baker TA, Mizuuchi M, Savilahti H, Mizuuchi K. Division of labor among monomers within the Mu transposase tetramer. Cell 1993; 74:723-33. [PMID: 8395353 DOI: 10.1016/0092-8674(93)90519-v] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A single tetramer of Mu transposase (MuA) pairs the recombination sites, cleaves the donor DNA, and joins these ends to a target DNA by strand transfer. Analysis of C-terminal deletion derivatives of MuA reveals that a 30 amino acid region between residues 575 and 605 is critical for these three steps. Although inactive on its own, a deletion protein lacking this region assembles with the wild-type protein. These mixed tetramers carry out donor cleavage but do not promote strand transfer, even when the donor cleavage stage is bypassed. These data suggest that the active center of the transposase is composed of the C-terminus of four MuA monomers; one dimer carries out donor cleavage while all four monomers contribute to strand transfer.
Collapse
Affiliation(s)
- T A Baker
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
33
|
Role of the A protein-binding sites in the in vitro transposition of mu DNA. A complex circuit of interactions involving the mu ends and the transpositional enhancer. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)88651-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Abstract
The past year has seen a number of important advances in our understanding of the mechanisms of DNA transposition. The molecular details of the protein-protein, protein-DNA and chemical-reaction steps in several transposition systems have been revealed and have highlighted remarkable uniformity in some areas, ranging from bacterial to retroviral mechanisms.
Collapse
|
35
|
Mizuuchi M, Baker TA, Mizuuchi K. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 1992; 70:303-11. [PMID: 1322248 DOI: 10.1016/0092-8674(92)90104-k] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Discovery and characterization of a new intermediate in Mu DNA transposition allowed assembly of the transposition machinery to be separated from the chemical steps of recombination. This stable intermediate, which accumulates in the presence of Ca2+, consists of the two ends of the Mu DNA synapsed by a tetramer of the Mu transposase. Within this stable synaptic complex (SSC), the recombination sites are engaged but not yet cleaved. Thus, the SSC is structurally related to both the cleaved donor and strand transfer complexes, but precedes them on the transposition pathway. Once the active protein-DNA complex is constructed, it is conserved throughout transposition. The participation of internal sequence elements and accessory factors exclusively during SSC assembly allows recombination to be controlled prior to the irreversible chemical steps.
Collapse
Affiliation(s)
- M Mizuuchi
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
36
|
Surette MG, Chaconas G. The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage. Cell 1992; 68:1101-8. [PMID: 1312394 DOI: 10.1016/0092-8674(92)90081-m] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The phage Mu transpositional enhancer has been previously shown to stimulate the initial rate of the Mu DNA strand transfer reaction by a factor of 100. We now show that the Mu enhancer can function in trans on an unlinked DNA molecule. This activity is greatly facilitated by the presence of a free DNA end proximal to the enhancer element. Function of the enhancer in trans does not alter either the requirement for donor DNA supercoiling or for the two Mu ends to be in their proper orientation on the donor plasmid. An important consequence of these findings is that we have been able to evaluate directly the step in the transposition reaction for which the enhancer is required. We show that the role of the enhancer is limited to promoting productive synapsis; efficient strand cleavage can occur in the absence of the enhancer.
Collapse
Affiliation(s)
- M G Surette
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | |
Collapse
|