1
|
Choi YJ, Gibala KS, Ayele T, Deventer KV, Resendiz MJE. Biophysical properties, thermal stability and functional impact of 8-oxo-7,8-dihydroguanine on oligonucleotides of RNA-a study of duplex, hairpins and the aptamer for preQ1 as models. Nucleic Acids Res 2017; 45:2099-2111. [PMID: 28426093 PMCID: PMC5389535 DOI: 10.1093/nar/gkw885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/22/2016] [Indexed: 01/12/2023] Open
Abstract
A better understanding of the effects that oxidative lesions have on RNA is of importance to understand their role in the development/progression of disease. 8-oxo-7,8-dihydroguanine was incorporated into RNA to understand its structural and functional impact on RNA:RNA and RNA:DNA duplexes, hairpins and pseudoknots. One to three modifications were incorporated into dodecamers of RNA [AAGAGGGAUGAC] resulting in thermal destabilization (ΔTm – 10°C per lesion). Hairpins with tetraloops c-UUCG*-g* (8-10), a-ACCG-g* (11-12), c-UUG*G*-g* (13-16) and c-ACG*G*-g* (17-20) were modified and used to determine thermal stabilities, concluding that: (i) modifying the stem leads to destabilization unless adenosine is the opposing basepair of 8-oxoGua; (ii) modification at the loop is position- and sequence-dependent and varies from slight stabilization to large destabilization, in some cases leading to formation of other secondary structures (hairpin→duplex). Functional effects were established using the aptamer for preQ1 as model. Modification at G5 disrupted the stem P1 and inhibited recognition of the target molecule 7-methylamino-7-deazaguanine (preQ1). Modifying G11 results in increased thermal stability, albeit with a Kd 4-fold larger than its canonical analog. These studies show the capability of 8-oxoG to affect structure and function of RNA, resulting in distinct outcomes as a function of number and position of the lesion.
Collapse
Affiliation(s)
- Yu J Choi
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Krzysztof S Gibala
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Tewoderos Ayele
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Katherine V Deventer
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| | - Marino J E Resendiz
- Department of Chemistry, University of Colorado Denver, Science Building 1151 Arapahoe St, Denver, CO 80204, USA
| |
Collapse
|
2
|
Guan AJ, Shen MJ, Zhang EX, Li Q, Wang LX, Xu LJ, Xiang JF, Tang YL. Stabilizing G-quadruplex DNA by methylazacalix[ n ]pyridine through shape-complementary interaction. Bioorg Med Chem Lett 2016; 26:609-612. [DOI: 10.1016/j.bmcl.2015.11.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 11/26/2022]
|
3
|
Affiliation(s)
- Mi-Hyung Lee
- Department of Biochemistry, College of Medicine, Pochun CHA University, Bungdang, Korea
| | - Dongchul Suh
- Department of Biochemistry, College of Medicine, Pochun CHA University, Bungdang, Korea
| |
Collapse
|
4
|
Abstract
T(m) is defined as Temperature of melting or, more accurately, as temperature of midtransition. This term is often used for nucleic acids (DNA and RNA, oligonucleotides and polynucleotides). A thermal denaturation experiment determines the stability of the secondary structure of a DNA or RNA and aids in the choice of the sequences for antisense oligomers or PCR primers. Beyond a simple numerical value (the T(m)), a thermal denaturation experiment, in which the folded fraction of a structure is plotted vs. temperature, yields important thermodynamic information. We present the classic problems encountered during these experiments and try to demonstrate that a number of useful pieces of information can be extracted from these experimental curves.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- Laboratoire de Biophysique, INSERM UR565, CNRS UMR 5153, Muséum National d'Histoire Naturelle, 75231 Paris, France.
| | | |
Collapse
|
5
|
Abstract
The dissociation and assembly of quadruplex DNA structures (and a few quadruplex RNAs) have been characterized at several levels of rigor, ranging from gross descriptions of factors that govern each process, to semiquantitative comparisons of the relative abilities of these factors to induce stabilization or destabilization, to quantitative studies of binding energies (thermodynamics), transformational rates (kinetics), and analysis of their transition-state energies and mechanisms. This survey classifies these factors, describes the trends and focuses on their interdependencies. Quadruplex assembly is induced most efficiently by added K(+) and elevating the strand concentration; however, Na(+), NH(4)(+), Sr(2+), and Pb(2+) are also very effective stabilizers. Quadruplex dissociation is typically accomplished by thermal denaturation, "melting"; however, when the quadruplex and monovalent cation concentrations are low enough, or the temperature is sufficiently high, several divalent cations, e.g., Ca(2+), Co(2+), Mn(2+), Zn(2+), Ni(2+) and Mg(2+) can induce dissociation. Stabilization also depends on the type of structure adopted by the strand (or strands) in question. Variants include intramolecular, two- and four-stranded quadruplexes. Other important variables include strand sequence, the size of intervening loops and pH, especially when cytosines are present, base methylation, and the replacement of backbone phosphates with phosphorothioates. Competitive equilibria can also modulate the formation of quadruplex DNAs. For example, reactions leading to Watson-Crick (WC) duplex and hairpin DNAs, triplex DNAs, and even other types of quadruplexes can compete with quadruplex association reactions for strands. Others include nonprotein catalysts, small molecules such as aromatic dyes, metalloporphyrins, and carbohydrates (osmolytes). Other nucleic acid strands have been found to drive quadruplex formation. To help reinforce the implications of each piece of information, each functional conclusion drawn from each cited piece of thermodynamic or kinetic data has been summarized briefly in a standardized table entry.
Collapse
Affiliation(s)
- C C Hardin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA.
| | | | | |
Collapse
|
6
|
Abstract
The sequence organisation of the telomeric regions is extremely similar for all eukaryotes examined to date. Subtelomeric areas may contain large sequence arrays of middle repetitive, complex elements that sometimes have similarities to retrotransposons. In between and within these complex sequences are short, satellite-like repeats. These areas contain very few genes and are thought to be organised into a heterochromatin-like domain. The terminal regions almost invariably consist of short, direct repeats. These repeats usually contain clusters of 2-4 G residues and the strand that contains these clusters (the G strand) always forms the extreme 3'-end of the chromosome. Thus, most telomeric repeats are clearly related to each other which in turn suggests a common evolutionary origin. A number of different structures can be formed by single-stranded telomeric G strand repeats and, as has been suggested recently, by the G strand. Since the main mechanism for the maintenance of telomeric repeats predicts the occurrence of single-stranded extensions of the G strand, the propensity of G-rich DNA to fold into alternative DNA structures may have implications for telomere biology.
Collapse
Affiliation(s)
- R J Wellinger
- Faculté de Médecine, Department de Microbiologie et Infectiologie, Université de Sherbrooke, QC, Canada
| | | |
Collapse
|
7
|
Mukerji I, Shiber MC, Fresco JR, Spiro TG. A UV resonance Raman study of hairpin dimer helices of d(A-G)10 at neutral pH containing intercalated dA residues and alternating dG tetrads. Nucleic Acids Res 1996; 24:5013-20. [PMID: 9016674 PMCID: PMC146345 DOI: 10.1093/nar/24.24.5013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The structure of the oligonucleotide d(A-G)10 in 0.6 M Na+, pH 7.0 has been investigated with UV resonance Raman (UVRR) spectroscopy. Variable wavelength excitation was used to distinguish the spectral contributions of dG and dA residues. Both classes of residues show UVRR hyperchromism with increasing temperature, reflecting unstacking of the bases. The dG residues melt relatively cooperatively with a Tm of approximately 42 degrees C. Unstacking is non-cooperative for the dA residues, increasing linearly between 4 and 80 degrees C. G-tetrads at low temperature are indicated by UVRR frequency shifts of modes associated with C6=O and C2-NH2 of the dG residues, and of vibrations involving N7, all sites of H-bonding. However, there are no indications of interbase H-bonds for the dA residues, showing they do not form H-bonded tetrads. Most of the bases are oriented anti about the glycosyl bond, but at 4 degrees C a fraction of the residues are syn. These results, together with the findings by Shiber et al. [Shiber,M.C., Braswell,E.H., Klump,H. and Fresco,J.R. (1996) Nucleic Acids Res. 24, 5004-5012] that d(A-G)10 under comparable conditions has the molecular weight of a dimer, support a model in which two hairpins interact to form a helical structure with G-tetrads and intercalated dA residues.
Collapse
Affiliation(s)
- I Mukerji
- Department of Chemistry, Princeton University, NJ 08544-1014, USA
| | | | | | | |
Collapse
|
8
|
Kandimalla ER, Manning A, Agrawal S. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes. J Biomol Struct Dyn 1996; 14:79-90. [PMID: 8877564 DOI: 10.1080/07391102.1996.10508931] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oligodeoxyribonucleotides containing both Watson-Crick and Hoogsteen hydrogen bonding domains joined by a nucleotide loop (FTFOs) are studied for their binding affinity and specificity to the DNA and RNA single-stranded targets. Thermal denaturation studies reveal that FTFOs have high binding affinity for their targets than do antisense (duplex forming) and antigene (triplex forming) oligonucleotides, because of involvement of both the Watson-Crick and Hoogsteen domains in the interaction. Studies with FTFOs containing different sizes and sequences of loops show that 4-6 bases long loops are optimum for binding; loop sequence does not have a dramatic effect on binding. The FTFOs have greater sequence specificity than do antisense and antigene oligonucleotides because they read the target sequence twice. SI-, PI- and mung bean nuclease protection assays show that the DNA FTFO forms a stable triplex with the DNA target strand, but a weak or no triplex with the RNA target strand. Gel mobility shift assay is used to determine binding of FTFOs to DNA and RNA targets. The circular dichroism (CD) spectrum of the foldback triplex formed with the DNA target strand resembles the B-DNA spectrum, suggesting that the triplex has a B-type of conformation.
Collapse
|
9
|
Pilch DS, Plum GE, Breslauer KJ. The thermodynamics of DNA structures that contain lesions or guanine tetrads. Curr Opin Struct Biol 1995; 5:334-42. [PMID: 7583632 DOI: 10.1016/0959-440x(95)80095-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
It is becoming increasingly apparent that energetic as well as structural information is required to develop a complete appreciation of the critical interrelationships between structure, energetics, and biological function. Motivated by this recognition, we have reviewed in this article the current state of the thermodynamic databases associated with lesion-containing DNA duplexes and DNA quadruplexes, while highlighting important considerations concerning the methods used to obtain the requisite data.
Collapse
Affiliation(s)
- D S Pilch
- Department of Chemistry, Rutgers State University of New Jersey, Piscataway 08855-0939, USA
| | | | | |
Collapse
|
10
|
Kandimalla ER, Agrawal S. Single-strand-targeted triplex formation: stability, specificity and RNase H activation properties. Gene 1994; 149:115-21. [PMID: 7525410 DOI: 10.1016/0378-1119(94)90419-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Single-stranded (ss) oligodeoxyribonucleotides (oligos) containing both Watson-Crick and Hoogsteen hydrogen bonding domains joined by either a 5-nucleotide loop or a flexible hexaethylene-glycol linker, called foldback triplex-forming oligos (FTFOs), are designed and studied for their binding affinity and specificity to their ss DNA/RNA targets. Thermal denaturation studies revealed an increased affinity of FTFOs, due to addition of a Hoogsteen hydrogen bonding domain at the binding site, as the Watson-Crick domain forms a double helix with the target, when compared to conventional antisense and antigene oligos. DNase I hydrolysis and electrophoretic mobility shift analysis confirmed the formation of foldback triplexes relative to conventional double- and triple-stranded structures. The FTFOs showed increased sequence specificity mainly arising from their ability to recognize the target sequence twice, first by Watson-Crick base pairing and a second time by Hoogsteen base pairing. An FTFO with DNA components in both duplex- and triplex-forming domains showed preference for a DNA homopurine target strand.
Collapse
|
11
|
Mohanty D, Bansal M. Conformational polymorphism in telomeric structures: loop orientation and interloop pairing in d(G4TnG4). Biopolymers 1994; 34:1187-211. [PMID: 7948732 DOI: 10.1002/bip.360340908] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequence repeats constituting the telomeric regions of chromosomes are known to adopt a variety of unusual structures, consisting of a G tetraplex stem and short stretches of thymines or thymines and adenines forming loops over the stem. Detailed model building and molecular mechanics studies have been carried out for these telomeric sequences to elucidate different types of loop orientations and possible conformations of thymines in the loop. The model building studies indicate that a minimum of two thymines have to be interspersed between guanine stretches to form folded-back structures with loops across adjacent strands in a G tetraplex (both over the small as well as large groove), while the minimum number of thymines required to build a loop across the diagonal strands in a G tetraplex is three. For two repeat sequences, these hairpins, resulting from different types of folding, can dimerize in three distinct ways--i.e., with loops across adjacent strands and on same side, with loops across adjacent strands and on opposite sides, and with loops across diagonal strands and on opposite sides--to form hairpin dimer structures. Energy minimization studies indicate that all possible hairpin dimers have very similar total energy values, though different structures are stabilized by different types of interactions. When the two loops are on the same side, in the hairpin dimer structures of d(G4TnG4), the thymines form favorably stacked tetrads in the loop region and there is interloop hydrogen bonding involving two hydrogen bonds for each thymine-thymine pair. Our molecular mechanics calculations on various folded-back as well as parallel tetraplex structures of these telomeric sequences provide a theoretical rationale for the experimentally observed feature that the presence of intervening thymine stretches stabilizes folded-back structures, while isolated stretches of guanines adopt a parallel tetraplex structure.
Collapse
Affiliation(s)
- D Mohanty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore
| | | |
Collapse
|
12
|
|
13
|
Abstract
The tertiary structure of a single-stranded DNA containing the sequence of Oxytricha telomere DNA has been determined. This DNA adopts a compact tertiary structure that consists of four base-paired tetrads of guanine residues which are connected by three loops. The tetrads show significant deviations from planarity, and two of the loops exhibit significant loop-loop interactions. The structure of this telomere contains syn-thymine residues, which are in the loops, as well as an intraloop pyrimidine-pyrimidine base pair between residues that are separated by a single residue. The tertiary structure of the telomere DNA is consistent with prior results that showed that two thymines distant in sequence could be photo-cross-linked. The overall folding pattern of this telomere DNA is similar to that previously determined for a DNA aptamer, which binds to and inhibits thrombin, though the details of the two structures are quite distinct.
Collapse
Affiliation(s)
- K Y Wang
- Chemistry Department, Wesleyan University, Middletown, Connecticut 06459
| | | | | |
Collapse
|
14
|
Pearson A, Rich A, Krieger M. Polynucleotide binding to macrophage scavenger receptors depends on the formation of base-quartet-stabilized four-stranded helices. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53729-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|