1
|
Yaylacı EA, Onem Ozbilen E, Aslan BT, Polat T. Investigation of the Relationship Between ACTN3 rs1815739 Polymorphism and Openbite Cases: A Prospective Study. Orthod Craniofac Res 2025; 28:365-370. [PMID: 39692277 DOI: 10.1111/ocr.12886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/20/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE The aim of this study was to examine whether ACTN3 rs1815739 polymorphism, which causes the deficiency of the alpha-actinin-3 muscle protein, is related to the formation of open bite malocclusion. MATERIALS AND METHODS Fifty-eight participants (18.5 ± 3.6 years old) with anterior open bite (n = 29) and normal overbite (n = 29) who presented to Marmara University, Department of Orthodontics for treatment were included in the study. Initial cephalometric radiographs were used for the diagnosis of malocclusion. The case group was divided into three subgroups according to degree of open bite. For DNA isolation, oral epithelial cells were collected with buccal swabs (Van Allen Way, Carlsbad, USA), and the real-time PCR method was used for the genotyping of all polymorphisms. The results were statistically analysed, and the threshold for statistical significance was set at p < 0.05. RESULTS The frequencies of RR, RX and XX genotypes of ACTN3 rs1815739 polymorphism were found as 6 (20.7%), 14 (48.3%) and 9 (31.0%) in the control group and 8 (8%), 9 (31.0%) and 12 (41.4%) in the case group, respectively. There was no statistically significant difference between the groups in terms of the presence of the examined polymorphism (p > 0.05). However, the intra-group evaluation of case group revealed a significant difference in the prevalence of XX genotype (83.3%) for the subgroup with an open bite of -5 mm or above. CONCLUSION Although no significant difference was observed between the case and control groups, a possible association was identified between ACTN3 rs1815739 polymorphism and an increased severity of open bite malocclusion.
Collapse
Affiliation(s)
- Elif Aslıhan Yaylacı
- Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Elvan Onem Ozbilen
- Department of Orthodontics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Beste Tacal Aslan
- Department of Medical Biology and Genetics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Tolga Polat
- Department of Medical Biology and Genetics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
2
|
Hayes JB, Bainbridge AM, Burnette DT. Alpha-actinin-1 stabilizes focal adhesions to facilitate sarcomere assembly in cardiac myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645933. [PMID: 40196508 PMCID: PMC11974845 DOI: 10.1101/2025.03.28.645933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cardiac sarcomere assembly is a highly orchestrated process requiring integration between intracellular contractile components and extracellular adhesions. While α-actinin-2 (ACTN2) is well known for its structural role at Z-discs, the function of the "non-muscle" paralog α-actinin-1 (ACTN1) in cardiomyocytes remains unclear. Using human induced pluripotent stem cell-derived cardiac myocytes (hiCMs), we demonstrate that ACTN1 is essential for sarcomere assembly. siRNA-mediated depletion of ACTN1 disrupted Z-line formation and impaired sarcomere organization, defects that were rescued by exogenous ACTN1 but not ACTN2, revealing non-redundant functions. Unlike ACTN2, ACTN1 localized predominantly to focal adhesions and was required for adhesion maturation, as evidenced by reduced adhesion size and number following ACTN1 depletion. Live-cell imaging of vinculin dynamics showed decreased stability of adhesion-associated vinculin in ACTN1-deficient cells, whereas paxillin dynamics were unaffected. These results suggest that ACTN1 stabilizes focal adhesions to promote effective force transmission during sarcomere assembly.
Collapse
Affiliation(s)
- James B Hayes
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| | - Anna M Bainbridge
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
- University of Tennessee, Knoxville, TN, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| |
Collapse
|
3
|
Shiratsuchi D, Taniguchi Y, Kiuchi Y, Akaida S, Makizako H. Association of alpha-actinin-3 genotype with muscle mass and physical function in community-dwelling older adults. Eur Geriatr Med 2025; 16:15-22. [PMID: 39424763 PMCID: PMC11850411 DOI: 10.1007/s41999-024-01080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE Polymorphisms (rs1815739; R577X) in the gene encoding alpha-actinin-3 (ACTN3) are thought to be associated with body composition and physical function in older people and athletes. RR homozygotes are associated with greater expression of ACTN3 protein in muscle than the X-allele carriers. We aimed to investigate the association between ACTN3 R577X polymorphism and appendicular skeletal muscle mass, walking speed, and muscle strength in older adults. METHODS A cross-sectional analysis was performed on 265 community-dwelling older adults (mean age 74.0 ± 5.8 years, 63.4% female) who provided data on ACTN3 gene polymorphisms and completed surveys in the Tarumizu study conducted between 2018 and 2019. Genetic polymorphisms were categorized as RR homozygous and X allele. Muscle mass was assessed using the appendicular skeletal muscle mass index (ASMI), and physical function was assessed based on walking speed and relative muscle strength. Those in the bottom 25% for each sex were considered "low" and the association with ACTN3 genotype was examined. RESULTS Considering ACTN3 polymorphism, 72 participants were RR homozygotes (27.2%) and 193 were X-allele carriers (72.8%). After adjusting for potential confounders, RR homozygosity was associated with not having low muscle mass (odds ratio 0.39, 95% confidence interval 0.19-0.82, p = 0.013) but not with low walking speed and muscle strength. CONCLUSION The association between ACTN3 genotype and physical function in community-dwelling older adults is not clear; however, it is considered to be associated with muscle mass.
Collapse
Affiliation(s)
- Daijo Shiratsuchi
- Graduate School of Health Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshiaki Taniguchi
- Department of Rehabilitation, Faculty of Nursing and Welfare, Kyushu University of Nursing and Social Welfare, 888 Tominoo, Tamana, Kumamoto, 865-0062, Japan
| | - Yuto Kiuchi
- Graduate School of Health Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Preventive Gerontology, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan
| | - Shoma Akaida
- Graduate School of Health Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hyuma Makizako
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
4
|
Ren X, Shi Y, Xiao B, Su X, Shi H, He G, Chen P, Wu D, Shi Y. Gene Doping Detection From the Perspective of 3D Genome. Drug Test Anal 2025. [PMID: 39757126 DOI: 10.1002/dta.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Since the early 20th century, the concept of doping was first introduced. To achieve better athletic performance, chemical substances were used. By the mid-20th century, it became gradually recognized that the illegal use of doping substances can seriously endangered athletes' health and compromised the fairness of sports competitions. Over the past 30 years, the World Anti-Doping Agency (WADA) has established corresponding rules and regulations to prohibit athletes from using doping substances or restrict the use of certain drugs, and isotope, chromatography, and mass spectrometry techniques were accredited to detect doping substances. With the development of gene editing technology, many genetic diseases have been effectively treated, but enabled by the same technology, doping has also the potential to pose a threat to sports in the form of gene doping. WADA has explicitly indicated gene doping in the Prohibited List as a prohibited method (M3) and approved qPCR detection. However, gene doping can easily evade detection, if the target genes' upstream regulatory elements are considered, the task became more challenging. Hi-C experiment driven 3D genome technology, through perspectives such as topologically associating domain (TAD) and chromatin loop, provides a more comprehensive and in-depth understanding of gene regulation and expression, thereby better preventing the potential use of 3D genome level gene doping. In this work, we will explore gene doping from a different perspective by analyzing recent studies on gene doping and explore related genes under 3D genome.
Collapse
Affiliation(s)
- Xinyuan Ren
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Bo Xiao
- Faculty of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianbin Su
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Yi Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Abudurezake A, Kakehi S, Umemura F, Kaga H, Someya Y, Tabata H, Yoshizawa Y, Naito H, Tajima T, Ito N, Otsuka H, Shi H, Sugimoto M, Sakamoto S, Muroga Y, Wakabayashi H, Kawamori R, Watada H, Tamura Y. Masseter Muscle Volume, Sarcopenia, and Muscle Determinants: Insights from ACTN3 Polymorphism in Elderly Japanese in the Bunkyo Health Study. Arch Med Res 2025; 56:103095. [PMID: 39405919 DOI: 10.1016/j.arcmed.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 01/25/2025]
Abstract
AIM Sarcopenia has been with a decrease in masseter muscle (MM) thickness in high-risk older populations. However, the relationship between sarcopenia and determinants of MM volume (MMV) in the general elderly population remains unclear. METHOD In a cross-sectional study of 1,484 older adults in Tokyo, we evaluated MMV using 3D MRI scanning, appendicular skeletal muscle mass (ASMM), handgrip strength, dietary intake, smoking, insulin-like growth factor 1 (IGF-1) levels, and the ACTN3 R577X polymorphism. Participants were divided into quintiles based on MMV (Q1-5). RESULTS Participants in our study had a mean age of 73.0 ± 5.3 years and their MMV (Men: 35.3 ± 7.8 mL, Women: 25.0 ± 5.1 mL) was significantly higher in men than in women. A significant association between MMV and sarcopenia was observed, with the lowest quintile (Q1) showing a higher risk compared to the highest quintile (Q5) in both sexes. Body mass index (BMI) and age were independent determinants of ASMM in both sexes, whereas BMI, but interestingly not age, was a determinant of MMV. Moreover, IGF-1 was positively correlated with MMV in both sexes; smoking was negatively correlated with MMV in women. The ACTN3 577XX genotype was only associated with smaller MMV in men. CONCLUSION Low MMV increased the risk of sarcopenia, particularly in men. BMI and age strongly influenced ASMM, while MMV was only weakly associated with BMI and not with age. Notably, IGF-1 level was positively associated with MMV only, and ACTN3 genotype was associated to reduced MMV only in men.
Collapse
Affiliation(s)
- Abulaiti Abudurezake
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Saori Kakehi
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan.
| | - Futaba Umemura
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hideyoshi Kaga
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Yuki Someya
- Graduate School of Health and Sports Science, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hiroki Tabata
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Yasuyo Yoshizawa
- Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hitoshi Naito
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Tsubasa Tajima
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Naoaki Ito
- Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hikaru Otsuka
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Huicong Shi
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Mari Sugimoto
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Shota Sakamoto
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Yukiko Muroga
- Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Ryuzo Kawamori
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan
| | - Hirotaka Watada
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Graduate School of Health and Sports Science, Juntendo University, Bunkyo, Tokyo, Japan
| | - Yoshifumi Tamura
- Sportology Center, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Department of Sports Medicine and Sportology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Metabolism and Endocrinology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Center for Healthy Life Expectancy, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Bunkyo, Tokyo, Japan
| |
Collapse
|
6
|
Guilherme JPLF, Oliveira EM. Increased prevalence of the null allele of the p.Arg577Ter variant in the ACTN3 gene in Brazilian long-distance athletes: A retrospective study. Ann Hum Genet 2024; 88:414-422. [PMID: 38949054 DOI: 10.1111/ahg.12571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION The phenotypic consequences of the p.Arg577Ter variant in the α-actinin-3 (ACTN3) gene are suggestive of a trade-off between performance traits for speed and endurance sports. Although there is a consistent association of the c.1729C allele (aka R allele) with strength/power traits, there is still a debate on whether the null allele (c.1729T allele; aka X allele) influences endurance performance. The present study aimed to test the association of the ACTN3 p.Arg577Ter variant with long-distance endurance athlete status, using previously published data with the Brazilian population. METHODS Genotypic data from 203 long-distance athletes and 1724 controls were analysed in a case-control approach. RESULTS The frequency of the X allele was significantly higher in long-distance athletes than in the control group (51.5% vs. 41.4%; p = 0.000095). The R/X and X/X genotypes were overrepresented in the athlete group. Individuals with the R/X genotype instead of the R/R genotype had a 1.6 increase in the odds of being a long-distance athlete (p = 0.012), whereas individuals with the X/X genotype instead of the R/R genotype had a 2.2 increase in the odds of being a long-distance athlete (p = 0.00017). CONCLUSION The X allele, mainly the X/X genotype, was associated with long-distance athlete status in Brazilians.
Collapse
Affiliation(s)
- João Paulo Limongi França Guilherme
- Laboratory of Biochemistry and Molecular Biology of Exercise, Department of Biodynamics of Human Movement, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, Department of Biodynamics of Human Movement, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ranta-Aho J, Johari M, Udd B. Current advance on distal myopathy genetics. Curr Opin Neurol 2024; 37:515-522. [PMID: 39017652 PMCID: PMC11377054 DOI: 10.1097/wco.0000000000001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
PURPOSE OF REVIEW Distal myopathies are a clinically heterogenous group of rare, genetic muscle diseases, that present with weakness in hands and/or feet at onset. Some of these diseases remain accentuated in the distal muscles whereas others may later progress to the proximal muscles. In this review, the latest findings related to genetic and clinical features of distal myopathies are summarized. RECENT FINDINGS Variants in SMPX , DNAJB2, and HSPB6 have been identified as a novel cause of late-onset distal myopathy and neuromyopathy. In oculopharyngodistal myopathies, repeat expansions were identified in two novel disease-causing genes, RILPL1 and ABCD3. In multisystem proteinopathies, variants in HNRNPA1 and TARDBP , genes previously associated with amyotrophic lateral sclerosis, have been shown to cause late-onset distal myopathy without ALS. In ACTN2 -related distal myopathy, the first recessive forms of the disease have been described, adding it to the growing list of genes were both dominant and recessive forms of myopathy are present. SUMMARY The identification of novel distal myopathy genes and pathogenic variants contribute to our ability to provide a final molecular diagnosis to a larger number of patients and increase our overall understanding of distal myopathy genetics and pathology.
Collapse
Affiliation(s)
- Johanna Ranta-Aho
- Folkhälsan Research Center
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mridul Johari
- Folkhälsan Research Center
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Bjarne Udd
- Folkhälsan Research Center
- Tampere Neuromuscular Center, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
8
|
Ranta‐aho J, Felice KJ, Jonson PH, Sarparanta J, Yvorel C, Harzallah I, Touraine R, Pais L, Austin‐Tse CA, Ganesh VS, O'Leary MC, Rehm HL, Hehir MK, Subramony S, Wu Q, Udd B, Savarese M. Protein-extending ACTN2 frameshift variants cause variable myopathy phenotypes by protein aggregation. Ann Clin Transl Neurol 2024; 11:2392-2405. [PMID: 39095936 PMCID: PMC11537131 DOI: 10.1002/acn3.52154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE The objective of the study is to characterize the pathomechanisms underlying actininopathies. Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begin in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2, have been shown to cause distal myopathy. ACTN2, a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered; however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2-related diseases, actininopathies, persists. METHODS Functional characterization in C2C12 cell model of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant and recessive actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. RESULTS The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do form alpha-actinin-2 aggregates. INTERPRETATION The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus, we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.
Collapse
Affiliation(s)
- Johanna Ranta‐aho
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Kevin J. Felice
- Department of Neuromuscular MedicineHospital for Special Care2150 Corbin AvenueNew BritainConnecticut06053USA
| | - Per Harald Jonson
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Jaakko Sarparanta
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| | - Cédric Yvorel
- Cardiology DepartmentHôpital NordHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Ines Harzallah
- Genetic DepartmentHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Renaud Touraine
- Genetic DepartmentHôpital Nord, CHU de Saint EtienneAvenue Albert RaimondSaint Priest‐en‐Jarez42270France
| | - Lynn Pais
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Division of Genetics and Genomics, Boston Children's HospitalHarvard Medical School2 Brookline PlaceBostonMassachusetts02445USA
| | - Christina A. Austin‐Tse
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Center for Genomic MedicineMassachusetts General HospitalHarvard Medical School55 Fruit StreetBostonMassachusetts02114USA
| | - Vijay S. Ganesh
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Department of NeurologyBrigham and Women's Hospital60 Fenwood RoadBostonMassachusetts02115USA
| | - Melanie C. O'Leary
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
| | - Heidi L. Rehm
- Program in Medical and Population GeneticsBroad Institute of MIT and Harvard105 BroadwayCambridgeMassachusetts02142USA
- Center for Genomic MedicineMassachusetts General HospitalHarvard Medical School55 Fruit StreetBostonMassachusetts02114USA
| | - Michael K. Hehir
- Department of NeurologyLarner College of Medicine at the University of Vermont149 Beaumont AvenueBurlingtonVermont05405USA
| | - Sub Subramony
- Department of NeurologyUniversity of Florida College of Medicine1505 SW Archer RoadGainesvilleFlorida32610USA
| | - Qian Wu
- Department of PathologyUniversity of Connecticut School of Medicine263 Farmington AvenueFarmingtonConnecticut06030USA
| | - Bjarne Udd
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Tampere Neuromuscular CenterTampere University and Tampere University HospitalBiokatu 8Tampere33520Finland
| | - Marco Savarese
- Folkhälsan Research CenterHaartmaninkatu 800290HelsinkiFinland
- Department of Medical Genetics, MedicumUniversity of HelsinkiHaartmaninkatu 8Helsinki00290Finland
| |
Collapse
|
9
|
Wang K, Wang Y, Wan H, Wang J, Hu L, Huang S, Sheng M, Wu J, Han X, Yu Y, Chen P, Chen F. Actn2 defects accelerates H9c2 hypertrophy via ERK phosphorylation under chronic stress. Genes Genomics 2024; 46:1013-1022. [PMID: 38990270 DOI: 10.1007/s13258-024-01536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND In humans, ACTN2 mutations are identified as highly relevant to a range of cardiomyopathies such as DCM and HCM, while their association with sudden cardiac death has been observed in forensic cases. Although ACTN2 has been shown to regulate sarcomere Z-disc organization, a causal relationship between ACTN2 dysregulation and cardiomyopathies under chronic stress has not yet been investigated. OBJECTIVE In this work, we explored the relationship between Actn2 dysregulation and cardiomyopathies under dexamethasone treatment. METHODS Previous cases of ACTN2 mutations were collected and the conservative analysis was carried out by MEGA 11, the possible impact on the stability and function of ACTN2 affected by these mutations was predicted by Polyphen-2. ACTN2 was suppressed by siRNA in H9c2 cells under dexamethasone treatment to mimic the chronic stress in vitro. Then the cardiac hypertrophic molecular biomarkers were elevated, and the potential pathways were explored by transcriptome analysis. RESULTS Actn2 suppression impaired calcium uptake and increased hypertrophy in H9c2 cells under dexamethasone treatment. Concomitantly, hypertrophic molecular biomarkers were also elevated in Actn2-suppressed cells. Further transcriptome analysis and Western blotting data suggested that Actn2 suppression led to the excessive activation of the MAPK pathway and ERK cascade. In vitro pharmaceutical intervention with ERK inhibitors could partially reverse the morphological changes and inhibit the excessive cardiac hypertrophic molecular biomarkers in H9c2 cells. CONCLUSION Our study revealed a functional role of ACTN2 under chronic stress, loss of ACTN2 function accelerated H9c2 hypertrophy through ERK signaling. A commercial drug, Ibudilast, was identified to reverse cell hypertrophy in vitro.
Collapse
Affiliation(s)
- Kang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Ye Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Hua Wan
- Department of Health Management, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Li Hu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Shuainan Huang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mingchen Sheng
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jiayi Wu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Xing Han
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Peng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
10
|
Chae JH, Eom SH, Lee SK, Jung JH, Kim CH. Association between Complex ACTN3 and ACE Gene Polymorphisms and Elite Endurance Sports in Koreans: A Case-Control Study. Genes (Basel) 2024; 15:1110. [PMID: 39336701 PMCID: PMC11431688 DOI: 10.3390/genes15091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
ACTN3 R577X and ACE I/D polymorphisms are associated with endurance exercise ability. This case-control study explored the association of ACTN3 and ACE gene polymorphisms with elite pure endurance in Korean athletes, hypothesizing that individuals with both ACTN3 XX and ACE II genotypes would exhibit superior endurance. We recruited 934 elite athletes (713 males, 221 females) and selected 45 pure endurance athletes (36 males, 9 females) requiring "≥90% aerobic energy metabolism during sports events", in addition to 679 healthy non-athlete Koreans (361 males, 318 females) as controls. Genomic DNA was extracted and genotyped for ACTN3 R577X and ACE I/D polymorphisms. ACE ID (p = 0.090) and ACTN3 RX+XX (p = 0.029) genotype distributions were significantly different between the two groups. Complex ACTN3-ACE genotypes also exhibited significant differences (p = 0.014), with dominant complex genotypes positively affecting endurance (p = 0.039). The presence of RX+II or XX+II was associated with a 1.763-fold higher likelihood of possessing a superior endurance capacity than that seen in healthy controls (90% CI = 1.037-3.089). Our findings propose an association of combined ACTN3 RX+XX and ACE II genotypes with enhanced endurance performance in elite Korean athletes. While causality remains to be confirmed, our study highlights the potential of ACTN3-ACE polymorphisms in predicting elite endurance.
Collapse
Affiliation(s)
- Ji Heon Chae
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Seon-Ho Eom
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| | - Sang-Ki Lee
- Department of Physical Education, Korea National Sports University, Seoul 05541, Republic of Korea;
| | - Joo-Ha Jung
- Center for Sport Science in Chungnam, Asan 31580, Republic of Korea
| | - Chul-Hyun Kim
- Department of Sports Medicine, Soonchunhyang University, Asan 31538, Republic of Korea; (J.H.C.); (S.-H.E.)
| |
Collapse
|
11
|
Alsouri S, Ambrose A, Mougios N, Paglilla N, Mayr F, Choi K, Loeber J, Chapuy B, Haeupl B, Opazo F, Oellerich T, Gold M, Engelke M. Actinin-4 controls survival signaling in B cells by limiting the lateral mobility of B-cell antigen receptors. Eur J Immunol 2024; 54:e2350774. [PMID: 38299456 DOI: 10.1002/eji.202350774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
The structure and dynamics of F-actin networks in the cortical area of B cells control the signal efficiency of B-cell antigen receptors (BCRs). Although antigen-induced signaling has been studied extensively, the role of cortical F-actin in antigen-independent tonic BCR signaling is less well understood. Because these signals are essential for the survival of B cells and are consequently exploited by several B-cell lymphomas, we assessed how the cortical F-actin structure influences tonic BCR signal transduction. We employed genetic variants of a primary cell-like B-cell line that can be rendered quiescent to show that cross-linking of actin filaments by α-actinin-4 (ACTN4), but not ACTN1, is required to preserve the dense architecture of F-actin in the cortical area of B cells. The reduced cortical F-actin density in the absence of ACTN4 resulted in increased lateral BCR diffusion. Surprisingly, this was associated with reduced tonic activation of BCR-proximal effector proteins, extracellular signal-regulated kinase, and pro-survival pathways. Accordingly, ACTN4-deficient B-cell lines and primary human B cells exhibit augmented apoptosis. Hence, our findings reveal that cortical F-actin architecture regulates antigen-independent tonic BCR survival signals in human B cells.
Collapse
Affiliation(s)
- Saed Alsouri
- Institute for Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Ashley Ambrose
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - Nikolaos Mougios
- Center for Biostructural Imaging of Neurodegeneration (BIN), Goettingen, Germany
- Institute of Neuro- and Sensory Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Nadia Paglilla
- Institute for Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Florian Mayr
- Institute for Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| | - Kate Choi
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Jens Loeber
- Department of Hematology, Oncology and Cancer Immunology, Charité - University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Björn Chapuy
- Department of Hematology, Oncology and Cancer Immunology, Charité - University Medical Center Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Björn Haeupl
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration (BIN), Goettingen, Germany
- Institute of Neuro- and Sensory Physiology, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas Oellerich
- Frankfurt Cancer Institute, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Michael Engelke
- Institute for Cellular and Molecular Immunology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
12
|
Ranta-Aho J, Felice KJ, Jonson PH, Sarparanta J, Palmio J, Tasca G, Sabatelli M, Yvorel C, Harzallah I, Touraine R, Pais L, Austin-Tse CA, Ganesh V, O'Leary MC, Rehm HL, Hehir MK, Subramony S, Wu Q, Udd B, Savarese M. Rare ACTN2 Frameshift Variants Resulting in Protein Extension Cause Distal Myopathy and Hypertrophic Cardiomyopathy through Protein Aggregation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.23298671. [PMID: 38293186 PMCID: PMC10827258 DOI: 10.1101/2024.01.17.23298671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Distal myopathies are a group of rare, inherited muscular disorders characterized by progressive loss of muscle fibers that begins in the distal parts of arms and legs. Recently, variants in a new disease gene, ACTN2 , have been shown to cause distal myopathy. ACTN2 , a gene previously only associated with cardiomyopathies, encodes alpha-actinin-2, a protein expressed in both cardiac and skeletal sarcomeres. The primary function of alpha-actinin-2 is to link actin and titin to the sarcomere Z-disk. New ACTN2 variants are continuously discovered, however, the clinical significance of many variants remains unknown. Thus, lack of clear genotype-phenotype correlations in ACTN2 -related diseases, actininopathies, persists. Objective The objective of the study is to characterize the pathomechanisms underlying actininopathies. Methods Functional characterization in C2C12 cell models of several ACTN2 variants is conducted, including frameshift and missense variants associated with dominant actininopathies. We assess the genotype-phenotype correlations of actininopathies using clinical data from several patients carrying these variants. Results The results show that the missense variants associated with a recessive form of actininopathy do not cause detectable alpha-actinin-2 aggregates in the cell model. Conversely, dominant frameshift variants causing a protein extension do produce alpha-actinin-2 aggregates. Interpretation The results suggest that alpha-actinin-2 aggregation is the disease mechanism underlying some dominant actininopathies, and thus we recommend that protein-extending frameshift variants in ACTN2 should be classified as pathogenic. However, this mechanism is likely elicited by only a limited number of variants. Alternative functional characterization methods should be explored to further investigate other molecular mechanisms underlying actininopathies.
Collapse
|
13
|
Murtagh CF, Hall ECR, Brownlee TE, Drust B, Williams AG, Erskine RM. The Genetic Association with Athlete Status, Physical Performance, and Injury Risk in Soccer. Int J Sports Med 2023; 44:941-960. [PMID: 37253386 DOI: 10.1055/a-2103-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this review was to critically appraise the literature concerning the genetic association with athlete status, physical performance, and injury risk in soccer. The objectives were to provide guidance on which genetic markers could potentially be used as part of future practice in soccer and to provide direction for future research in this area. The most compelling evidence identified six genetic polymorphisms to be associated with soccer athlete status (ACE I/D; ACTN3 rs1815739; AGT rs699; MCT1 rs1049434; NOS3 rs2070744; PPARA rs4253778), six with physical performance (ACTN3 rs1815739; AMPD1 rs17602729; BDNF rs6265; COL2A1 rs2070739; COL5A1 rs12722; NOS3 rs2070744), and seven with injury risk (ACTN3 rs1815739; CCL2 rs2857656; COL1A1 rs1800012; COL5A1 rs12722; EMILIN1 rs2289360; IL6 rs1800795; MMP3 rs679620). As well as replication by independent groups, large-scale genome-wide association studies are required to identify new genetic markers. Future research should also investigate the physiological mechanisms associating these polymorphisms with specific phenotypes. Further, researchers should investigate the above associations in female and non-Caucasian soccer players, as almost all published studies have recruited male participants of European ancestry. Only after robust, independently replicated genetic data have been generated, can genetic testing be considered an additional tool to potentially inform future practice in soccer.
Collapse
Affiliation(s)
- Conall F Murtagh
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Sports Science Department, Liverpool Football Club and Athletic Grounds Ltd, Liverpool, United Kingdom
| | - Elliott C R Hall
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Thomas E Brownlee
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barry Drust
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alun G Williams
- Manchester Metropolitan Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| | - Robert M Erskine
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- Institute of Sport, Exercise and Health, University College London, London, United Kingdom
| |
Collapse
|
14
|
Demirci B, Bulgay C, Ceylan Hİ, Öztürk ME, Öztürk D, Kazan HH, Ergun MA, Cerit M, Semenova EA, Larin AK, Generozov EV, Ahmetov II, Cepicka L. Association of ACTN3 R577X Polymorphism with Elite Basketball Player Status and Training Responses. Genes (Basel) 2023; 14:1190. [PMID: 37372374 DOI: 10.3390/genes14061190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The α-actinin-3 (ACTN3) gene rs1815739 (C/T, R577X) polymorphism is a variant frequently associated with athletic performance among different populations. However, there is limited research on the impact of this variant on athlete status and physical performance in basketball players. Therefore, the aim of this study was twofold: (1) to determine the association of ACTN3 rs1815739 polymorphism with changes in physical performance in response to six weeks of training in elite basketball players using 30 m sprint and Yo-Yo Intermittent Recovery Test Level 2 (IR 2) tests, and (2) to compare ACTN3 genotype and allelic frequencies between elite basketball players and controls. The study included a total of 363 individuals, comprising 101 elite basketball players and 262 sedentary individuals. Genomic DNA was isolated from oral epithelial cells or leukocytes, and genotyping was performed by real-time PCR using KASP genotyping method or by microarray analysis. We found that the frequency of the ACTN3 rs1815739 XX genotype was significantly lower in basketball players compared to controls (10.9 vs. 21.4%, p = 0.023), suggesting that RR/RX genotypes were more favorable for playing basketball. Statistically significant (p = 0.045) changes were observed in Yo-Yo IRT 2 performance measurement tests in basketball players with the RR genotype only. In conclusion, our findings suggest that the carriage of the ACTN3 rs1815739 R allele may confer an advantage in basketball.
Collapse
Affiliation(s)
- Berkay Demirci
- Sports Science Faculty, Lokman Hekim University, 06510 Ankara, Türkiye
| | - Celal Bulgay
- Sports Science Faculty, Bingol University, 12000 Bingol, Türkiye
| | - Halil İbrahim Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Türkiye
| | - Mehmet Ertuğrul Öztürk
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, 25240 Erzurum, Türkiye
| | - Deniz Öztürk
- Vocational School of Health Services, Ataturk University, 25240 Erzurum, Türkiye
| | - Hasan Huseyin Kazan
- Department of Medical Genetics, Near East University, Nicosia 99138, Cyprus
- DESAM Institute, Near East University, Nicosia 99138, Cyprus
| | - Mehmet Ali Ergun
- Department of Medical Genetics, Faculty of Medicine, Gazi University, 06560 Ankara, Türkiye
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, 06510 Ankara, Türkiye
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, 30100 Pilsen, Czech Republic
| |
Collapse
|
15
|
Atang AE, Rebbeck RT, Thomas DD, Avery AW. Cardiomyopathy-associated variants alter the structure and function of the α-actinin-2 actin-binding domain. Biochem Biophys Res Commun 2023; 670:12-18. [PMID: 37271035 DOI: 10.1016/j.bbrc.2023.05.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM) are characterized by thickening, thinning, or stiffening, respectively, of the ventricular myocardium, resulting in diastolic or systolic dysfunction that can lead to heart failure and sudden cardiac death. Recently, variants in the ACTN2 gene, encoding the protein α-actinin-2, have been reported in HCM, DCM, and RCM patients. However, functional data supporting the pathogenicity of these variants is limited, and potential mechanisms by which these variants cause disease are largely unexplored. Currently, NIH ClinVar lists 34 ACTN2 missense variants, identified in cardiomyopathy patients, which we predict are likely to disrupt actin binding, based on their localization to specific substructures in the α-actinin-2 actin binding domain (ABD). We investigated the molecular consequences of three ABD localized, HCM-associated variants: A119T, M228T and T247 M. Using circular dichroism, we demonstrate that the mutant ABD proteins can attain a well-folded state. However, thermal denaturation studies show that all three mutations are destabilizing, suggesting a structural disruption. Importantly, A119T decreased actin binding, and M228T and T247M cause increased actin binding. We suggest that altered actin binding underlies pathogenesis for cardiomyopathy mutations localizing to the ABD of α-actinin-2.
Collapse
Affiliation(s)
- Alexandra E Atang
- Department of Chemistry, Oakland University, Rochester, MI, 48309-4479, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, 55455, USA
| | - Adam W Avery
- Department of Chemistry, Oakland University, Rochester, MI, 48309-4479, USA.
| |
Collapse
|
16
|
Bassi S, Gearhart A, Sanders SP, Carreon CK, Quinn B, VanderPluym C, Beroukhim RS. 2 Cases of Spontaneous Coronary Artery Dissection in Neonates. JACC Case Rep 2022; 6:101704. [PMID: 36704056 PMCID: PMC9871209 DOI: 10.1016/j.jaccas.2022.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Spontaneous coronary artery dissection in infants is a rare phenomenon. We present 2 neonates with severe ventricular dysfunction due to coronary artery dissection. Neither patient had evidence of extracardiac fibromuscular dysplasia or other comorbidities that would explain the presentation. (Level of Difficulty: Advanced.).
Collapse
Key Words
- ACTN2, alpha-actinin 2
- ECMO, extracorporeal membrane oxygenation
- FMD, fibromuscular dysplasia
- LAD, left anterior descending artery
- LCA, left coronary artery
- LV, left ventricular
- MCA, middle cerebral artery
- PCA, posterior cerebral artery
- RCA, right coronary artery
- RV, right ventricular
- SCAD, spontaneous coronary artery dissection
- SVT, supraventricular tachycardia
- coronary artery
- heart failure
- spontaneous coronary artery dissection
Collapse
Affiliation(s)
- Sunakshi Bassi
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,Address for correspondence: Dr Sunakshi Bassi, Department of Pediatrics, Boston Children’s Hospital, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | - Addison Gearhart
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Stephen P. Sanders
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,Cardiac Registry, Departments of Cardiology, Pathology, and Cardiac Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Chrystalle Katte Carreon
- Cardiac Registry, Departments of Cardiology, Pathology, and Cardiac Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA,Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Brian Quinn
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Christina VanderPluym
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Rebecca S. Beroukhim
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA,Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Ranta-Aho J, Olive M, Vandroux M, Roticiani G, Dominguez C, Johari M, Torella A, Böhm J, Turon J, Nigro V, Hackman P, Laporte J, Udd B, Savarese M. Mutation update for the ACTN2 gene. Hum Mutat 2022; 43:1745-1756. [PMID: 36116040 PMCID: PMC10087778 DOI: 10.1002/humu.24470] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.
Collapse
Affiliation(s)
- Johanna Ranta-Aho
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Montse Olive
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marie Vandroux
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | | | - Cristina Dominguez
- Department of Neurology, Neuromuscular Unit, Hospital Universitario 12 de Octubre, Research Institute imas12, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mridul Johari
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Johann Böhm
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | - Janina Turon
- Department of Neurology, Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jocelyn Laporte
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Université de Strasbourg, Illkirch, France
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Kobayashi T, Seki S, Hwang I. Relationship of muscle power and bone mineral density with the α-actinin-3 R577X polymorphism in Japanese female athletes from different sport types: An observational study. Medicine (Baltimore) 2022; 101:e31685. [PMID: 36397442 PMCID: PMC9666200 DOI: 10.1097/md.0000000000031685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to clarify the relationships between muscle power and bone mineral density (BMD) and the α-actinin-3 (ACTN3) R577X polymorphism in Japanese female collegiate athletes participating in sports with various mechanical-load characteristics. This study included 260 female collegiate athletes involved in 10 competitive sports and 26 controls (mean ages, 19.2 ± 1.2 and 19.7 ± 1.3 years, respectively). The sports were classified into 3 categories (low-impact, multidirectional, and high-impact) based on the exercise load characteristics. Data on sports participation and competition experience were obtained through a questionnaire-type survey. The maximum anaerobic power (MAnP) test was performed to measure muscle power. The total body BMD was measured using dual-energy X-ray absorptiometry. The ACTN3 R577X polymorphism (rs1815739) was analyzed using a TaqMan® assay. The multidirectional sports participants with the RR genotype of the ACTN3 R577X polymorphism had a higher BMD than those with the RX and RX + XX genotypes (P = .018 and P = .003, respectively). The RR genotype was also associated with a higher MAnP than those with the RX + XX genotypes (P = .035). No other variables related to BMD and MAnP were significantly different. Our results suggests that the RR genotype may confer high trainability for BMD and muscle power in Japanese female collegiate athletes participating in multidirectional sport types. However, these associations were not found in the athletes participating in the low- and high-impact sport types.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
- * Correspondence: Tetsuro Kobayashi, Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8508, Japan (e-mail: )
| | - Shotaro Seki
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Inkwan Hwang
- Faculty of Sport Science, Nippon Sport Science University, Kanagawa, Japan
| |
Collapse
|
19
|
Yang Q, Berkman AM, Ezekian JE, Rosamilia M, Rosenfeld JA, Liu P, Landstrom AP. Determining the Likelihood of Disease Pathogenicity Among Incidentally Identified Genetic Variants in Rare Dilated Cardiomyopathy-Associated Genes. J Am Heart Assoc 2022; 11:e025257. [PMID: 36129056 DOI: 10.1161/jaha.122.025257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background As utilization of clinical exome sequencing (ES) has expanded, criteria for evaluating the diagnostic weight of incidentally identified variants are critical to guide clinicians and researchers. This is particularly important in genes associated with dilated cardiomyopathy (DCM), which can cause heart failure and sudden death. We sought to compare the frequency and distribution of incidentally identified variants in DCM-associated genes between a clinical referral cohort with those in control and known case cohorts to determine the likelihood of pathogenicity among those undergoing genetic testing for non-DCM indications. Methods and Results A total of 39 rare, non-TTN DCM-associated genes were identified and evaluated from a clinical ES testing referral cohort (n=14 005, Baylor Genetic Laboratories) and compared with a DCM case cohort (n=9442) as well as a control cohort of population variants (n=141 456) derived from the gnomAD database. Variant frequencies in each cohort were compared. Signal-to-noise ratios were calculated comparing the DCM and ES cohort with the gnomAD cohort. The likely pathogenic/pathogenic variant yield in the DCM cohort (8.2%) was significantly higher than in the ES cohort (1.9%). Based on signal-to-noise and correlation analysis, incidental variants found in FLNC, RBM20, MYH6, DSP, ABCC9, JPH2, and NEXN had the greatest chance of being DCM-associated. Conclusions The distribution of pathogenic variants between the ES cohort and the DCM case cohort was gene specific, and variants found in the ES cohort were similar to variants found in the control cohort. Incidentally identified variants in specific genes are more associated with DCM than others.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC.,Department of Cardiology The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou China
| | - Amy M Berkman
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Jordan E Ezekian
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Michael Rosamilia
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics Baylor College of Medicine and Baylor Genetics Laboratories Houston TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics Baylor College of Medicine and Baylor Genetics Laboratories Houston TX
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
20
|
Hou CR, Cortez D. Novel ACTN2 missense variant is associated with idiopathic ventricular fibrillation: a case report. Eur Heart J Case Rep 2022; 6:ytac229. [PMID: 35975100 PMCID: PMC9373939 DOI: 10.1093/ehjcr/ytac229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Idiopathic ventricular fibrillation (VF) is a diagnosis of exclusion made in patients who experience VF without an attributable cause. Pathogenic variants of the ACTN2 gene encoding the sarcomeric protein alpha-actinin-2 are known to cause hypertrophic and dilated cardiomyopathy. We show that ACTN2 variants may also be associated with malignant arrhythmias in the absence of overt structural heart disease. CASE SUMMARY A 48-year-old female presented with cardiac arrest due to VF without any history of cardiovascular disease or family history of sudden cardiac death. Troponin I was elevated at 0.698 ng/mL, but coronary angiography showed no significant coronary artery disease. Substance abuse testing showed elevated benzodiazepine and sertraline levels, which she was taking for anxiety. Electrocardiogram showed normal QRS complexes without prolonged PR or QTc intervals. She underwent therapeutic hypothermia. Cardiac magnetic resonance imaging at 2 weeks showed normal biventricular function without structural abnormalities, fibrosis, or evidence of myocardial infarction. A targeted gene panel revealed a heterozygous missense variant of unknown significance (VUS) in exon 18 of the ACTN2 gene (c.2162G > A/p.R721H). DISCUSSION The identified VUS is located in a highly conserved residue of a spectrin-like repeat domain of alpha-actinin-2. Spectrin-like domains of alpha-actinin-2 bind and regulate the ion channels Nav1.5, Kv1.4, and Kv1.5, which contribute to the myocardial action potential. The VUS was predicted as pathogenic by MutationTaster, Polymorphism Phenotyping v2, and Sorting Intolerant From Tolerant in silico missense prediction tools. The c.2162G > A/p.R721H alpha-actinin-2 variant may result in dysregulation of cardiac ion channels, leading to arrhythmias.
Collapse
Affiliation(s)
- Cody R Hou
- Division of Pediatric Cardiology, Department of Pediatrics, University of Minnesota/Masonic Children’s Hospital, Minneapolis, MN, USA
| | | |
Collapse
|
21
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
22
|
Yamaguchi H, Awano H, Yamamoto T, Nambu Y, Iijima K. Serum Cardiac Troponin I is a Candidate Biomarker for Cardiomyopathy in Duchenne and Becker Muscular Dystrophies. Muscle Nerve 2022; 65:521-530. [PMID: 35174514 DOI: 10.1002/mus.27522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/04/2022] [Accepted: 02/12/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION/AIMS Serum cardiac troponin I (cTnI), its relation to cardiomyopathy, and the contribution of the ACTN3 genotype to serum levels of cTnI in Duchenne and Becker muscular dystrophy (DMD and BMD) remain unknown. This study aimed to reveal the characteristics of cTnI, assess whether cTnI is a biomarker for cardiomyopathy in these dystrophinopathies, and evaluate the contribution of the ACTN3 genotype to the serum levels of cTnI in DMD patients. METHODS Serum cTnI values obtained from 127 DMD and 47 BMD patients were retrospectively analyzed. The relationship between cTnI and echocardiography data or the ACTN3 XX genotype was assessed. RESULTS The cTnI levels and proportion of patients with abnormal cTnI levels were significantly higher among DMD patients than BMD, especially in the second decade of life. In DMD, the cTnI level reached a maximum at 13 years, and left ventricular ejection fraction (LVEF) became abnormal approximately 1 year subsequently. In BMD, the cTnI level peaked at the age of 14 years, and LVEF became abnormal 3 years later. Decreased LVEF was observed after cTnI elevation in both populations. cTnI levels by age in DMD patients with the ACTN3 XX genotype tended to increase significantly and early. DISCUSSION Myocardial injury indicated by cTnI elevation was more common and severe in DMD patients. cTnI elevation preceding cardiac dysfunction may represent an early phase of cardiomyopathy progression and may be a biomarker for early detection of cardiomyopathy in these dystrophinopathies. The ACTN3 XX genotype may be a risk factor for early myocardial injury. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Yoshinori Nambu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.,Director, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| |
Collapse
|
23
|
Lindholm ME, Jimenez-Morales D, Zhu H, Seo K, Amar D, Zhao C, Raja A, Madhvani R, Abramowitz S, Espenel C, Sutton S, Caleshu C, Berry GJ, Motonaga KS, Dunn K, Platt J, Ashley EA, Wheeler MT. Mono- and Biallelic Protein-Truncating Variants in Alpha-Actinin 2 Cause Cardiomyopathy Through Distinct Mechanisms. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003419. [PMID: 34802252 PMCID: PMC8692448 DOI: 10.1161/circgen.121.003419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND ACTN2 (alpha-actinin 2) anchors actin within cardiac sarcomeres. The mechanisms linking ACTN2 mutations to myocardial disease phenotypes are unknown. Here, we characterize patients with novel ACTN2 mutations to reveal insights into the physiological function of ACTN2. METHODS Patients harboring ACTN2 protein-truncating variants were identified using a custom mutation pipeline. In patient-derived iPSC-cardiomyocytes, we investigated transcriptional profiles using RNA sequencing, contractile properties using video-based edge detection, and cellular hypertrophy using immunohistochemistry. Structural changes were analyzed through electron microscopy. For mechanistic studies, we used co-immunoprecipitation for ACTN2, followed by mass-spectrometry to investigate protein-protein interaction, and protein tagging followed by confocal microscopy to investigate introduction of truncated ACTN2 into the sarcomeres. RESULTS Patient-derived iPSC-cardiomyocytes were hypertrophic, displayed sarcomeric structural disarray, impaired contractility, and aberrant Ca2+-signaling. In heterozygous indel cells, the truncated protein incorporates into cardiac sarcomeres, leading to aberrant Z-disc ultrastructure. In homozygous stop-gain cells, affinity-purification mass-spectrometry reveals an intricate ACTN2 interactome with sarcomere and sarcolemma-associated proteins. Loss of the C-terminus of ACTN2 disrupts interaction with ACTN1 (alpha-actinin 1) and GJA1 (gap junction protein alpha 1), 2 sarcolemma-associated proteins, which may contribute to the clinical arrhythmic and relaxation defects. The causality of the stop-gain mutation was verified using CRISPR-Cas9 gene editing. CONCLUSIONS Together, these data advance our understanding of the role of ACTN2 in the human heart and establish recessive inheritance of ACTN2 truncation as causative of disease.
Collapse
Affiliation(s)
- Malene E. Lindholm
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - David Jimenez-Morales
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Han Zhu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Kinya Seo
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - David Amar
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Chunli Zhao
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Archana Raja
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Roshni Madhvani
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Sarah Abramowitz
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Cedric Espenel
- Cell Sciences Imaging Facility, Stanford University School of Medicine, Stanford, USA
| | - Shirley Sutton
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Colleen Caleshu
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
- GeneMatters, San Francisco, CA
| | - Gerald J. Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, USA
| | - Kara S. Motonaga
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, USA
| | - Kyla Dunn
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, USA
| | - Julia Platt
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Euan A. Ashley
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
| | - Matthew T. Wheeler
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, USA
- Center for Inherited Cardiovascular Diseases, Stanford University School of Medicine, Stanford University, Stanford, USA
| |
Collapse
|
24
|
Agarwal S, Sudhini YR, Polat OK, Reiser J, Altintas MM. Renal cell markers: lighthouses for managing renal diseases. Am J Physiol Renal Physiol 2021; 321:F715-F739. [PMID: 34632812 DOI: 10.1152/ajprenal.00182.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | | - Onur K Polat
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | - Jochen Reiser
- Department of Internal Medicine, Rush University, Chicago, Illinois
| | | |
Collapse
|
25
|
Xie P, Chen Y, Zhang H, Zhou G, Chao Q, Wang J, Liu Y, Fang J, Xie J, Zhen J, Wang Z, Hao L, Huang D. The deubiquitinase OTUD3 stabilizes ACTN4 to drive growth and metastasis of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:19317-19338. [PMID: 34380780 PMCID: PMC8386523 DOI: 10.18632/aging.203293] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/31/2021] [Indexed: 12/29/2022]
Abstract
OTU domain-containing protein 3 (OTUD3), a deubiquitinating enzyme, has been shown to participate in progression of multiple malignancies. The accurate function of OTUD3 in hepatocellular carcinoma (HCC) progression remains elusive. We found that OTUD3 was significantly overexpressed in HCC, and higher OTUD3 expression was correlated with larger tumor size, more distant metastasis, and worse TNM stage. A series of gain- and loss-of-function assays were also performed to examine the oncogenic function of OTUD3 in promoting HCC cell growth and metastasis in vitro. Using a xenograft mouse model, we showed that OTUD3 accelerated HCC progression in vivo. Furthermore, alpha-actinin 4 (ACTN4) was identified as a downstream target of OTUD3 through mass spectrometry analysis, and the ACTN4 protein level was significantly related to OTUD3 expression. Additionally, OTUD3 directly bound with ACTN4 and deubiquitinated ACTN4 to stabilize it. Finally, ACTN4 was found to be essential for OTUD3-mediated HCC proliferation and metastasis in vitro and in vivo. Collectively, our findings identify the oncogenic role of OTUD3 in HCC and suggest that OTUD3 can be considered as a pivotal prognostic biomarker and a potential therapeutic target.
Collapse
Affiliation(s)
- Peiyi Xie
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanglin Chen
- Second Abdominal Surgery Department, Affiliated Tumor Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hongfei Zhang
- School of Basic Medical Sciences, Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Guichao Zhou
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Chao
- Second College of Clinical Medicine, Zunyi Medical University, Zhuhai, Guangdong, China
| | - Jiangwen Wang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Yue Liu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jiayu Fang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jing Xie
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhen
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyuan Wang
- Department of Imaging Center, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
Chen L, Chen DF, Dong HL, Liu GL, Wu ZY. A novel frameshift ACTN2 variant causes a rare adult-onset distal myopathy with multi-minicores. CNS Neurosci Ther 2021; 27:1198-1205. [PMID: 34170073 PMCID: PMC8446211 DOI: 10.1111/cns.13697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction Distal myopathies are a group of rare muscle disorders characterized by selective or predominant weakness in the feet and/or hands. In 2019, ACTN2 gene was firstly identified to be a cause of a new adult‐onset distal muscular dystrophy calling actininopathy and another distinctly different myopathy, named multiple structured core disease (MsCD). Thus, the various phenotypes and limited mutations in ACTN2‐related myopathy make the genotype‐phenotype correlation hard to understand. Aims To investigate the clinical features and histological findings in a Chinese family with distal myopathy. Whole exome sequencing and several functional studies were performed to explore the pathogenesis of the disease. Results We firstly identified a novel frameshift variant (c.2504delT, p.Phe835Serfs*66) within ACTN2 in a family including three patients. The patients exhibited adult‐onset distal myopathy with multi‐minicores, which, interestingly, was more like a combination of MsCD and actininopathy. Moreover, functional analysis using muscle samples revealed that the variant significantly increased the expression level of α‐actinin‐2 and resulted in abnormal Z‐line organization of muscle fiber. Vitro studies suggested aggregate formations might be involved in the pathogenesis of the disease. Conclusion Our results expanded the phenotypes of ACTN2‐related myopathy and provided helpful information to clarify the molecular mechanisms.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dian-Fu Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Lin Dong
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
27
|
Tran Q, Sudasinghe A, Jones B, Xiong K, Cohen RE, Sharlin DS, Hartert KT, Goellner GM. FAM171B is a novel polyglutamine protein widely expressed in the mammalian brain. Brain Res 2021; 1766:147540. [PMID: 34052262 DOI: 10.1016/j.brainres.2021.147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Mutation in proteins containing polyglutamine (polyQ) tracts has been shown to underlie a number of severe human neurodegenerative disorders such as Huntington's Disease and Spinocerebellar Ataxia. In this study, we identify and describe FAM171B as a novel polyQ protein containing fourteen consecutive glutamine residues in its National Center for Biotechnology Information (NCBI) referenced sequence. Utilizing western blotting, in situ hybridization, and immunohistochemistry, we demonstrate that FAM171B is widely expressed in mouse brain with pronounced localization in the hippocampus, cerebellum, and cerebral cortex. Furthermore, immunofluorescence experiments reveal that FAM171B predominantly localizes to vesicle-like structures in the cytoplasm of neurons. Finally, bioinformatic analysis suggests that FAM171B is robustly expressed in human brain, and (similar to other polyQ disease genes) its polyQ tract is polymorphic within the general human population. Thus, as a polyQ protein that is expressed in brain, FAM171B should be considered a candidate gene for an as yet molecularly uncharacterized neurodegenerative disease.
Collapse
Affiliation(s)
- Quan Tran
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Ashani Sudasinghe
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Brooke Jones
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Ka Xiong
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Rachel E Cohen
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - David S Sharlin
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Keenan T Hartert
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Geoffrey M Goellner
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States.
| |
Collapse
|
28
|
Hu Z, Cao J, Zhang J, Ge L, Zhang H, Liu X. Skeletal Muscle Transcriptome Analysis of Hanzhong Ma Duck at Different Growth Stages Using RNA-Seq. Biomolecules 2021; 11:315. [PMID: 33669581 PMCID: PMC7927120 DOI: 10.3390/biom11020315] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/02/2023] Open
Abstract
As one of the most important poultry worldwide, ducks (Anas platyrhynchos) are raised mainly for meat and egg products, and muscle development in ducks is important for meat production. Therefore, an investigation of gene expression in duck skeletal muscle would significantly contribute to our understanding of muscle development. In this study, twenty-four cDNA libraries were constructed from breast and leg muscles of Hanzhong Ma ducks at day 17, 21, 27 of the embryo and postnatal at 6-month-old. High-throughput sequencing and bioinformatics were used to determine the abundances and characteristics of transcripts. A total of 632,172,628 (average 52,681,052) and 637,213,938 (average 53,101,162) reads were obtained from the sequencing data of breast and leg muscles, respectively. Over 71.63% and 77.36% of the reads could be mapped to the Anas platyrhynchos genome. In the skeletal muscle of Hanzhong duck, intron variant (INTRON), synonymous variant (SYNONYMOUS_CODING), and prime 3' UTR variant (UTR_3_PRIME) were the main single nucleotide polymorphisms (SNP) annotation information, and "INTRON", "UTR_3_PRIME", and downstream-gene variant (DOWNSTREAM) were the main insertion-deletion (InDel) annotation information. The predicted number of alternative splicing (AS) in all samples were mainly alternative 5' first exon (transcription start site)-the first exon splicing (TSS) and alternative 3' last exon (transcription terminal site)-the last exon splicing (TTS). Besides, there were 292 to 2801 annotated differentially expressed genes (DEGs) in breast muscle and 304 to 1950 annotated DEGs in leg muscle from different databases. It is worth noting that 75 DEGs in breast muscle and 49 DEGs in leg muscle were co-expressed at all developmental points of comparison, respectively. The RNA-Seq data were confirmed to be reliable by qPCR. The identified DEGs, such as CREBL2, RHEB, GDF6, SHISA2, MYLK2, ACTN3, RYR3, and STMN1, were specially highlighted, indicating their strong associations with muscle development in the Hanzhong Ma duck. KEGG pathway analysis suggested that regulation of actin cytoskeleton, oxidative phosphorylation, and focal adhesion were involved in the development of skeletal muscle. The findings from this study can contribute to future investigations of the growth and development mechanism in duck skeletal muscle.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolin Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (Z.H.); (J.C.); (J.Z.); (L.G.); (H.Z.)
| |
Collapse
|
29
|
McAuley ABT, Hughes DC, Tsaprouni LG, Varley I, Suraci B, Roos TR, Herbert AJ, Kelly AL. The association of the ACTN3 R577X and ACE I/D polymorphisms with athlete status in football: a systematic review and meta-analysis. J Sports Sci 2021; 39:200-211. [PMID: 32856541 DOI: 10.1080/02640414.2020.1812195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of this review was to assess the association of ACTN3 R577X and ACE I/D polymorphisms with athlete status in football and determine which allele and/or genotypes are most likely to influence this phenotype via a meta-analysis. A comprehensive search identified 17 ACTN3 and 19 ACE studies. Significant associations were shown between the presence of the ACTN3 R allele and professional footballer status (OR = 1.35, 95% CI: 1.18-1.53) and the ACE D allele and youth footballers (OR = 1.18, 95% CI: 1.01-1.38). More specifically, the ACTN3 RR genotype (OR = 1.48, 95% CI: 1.23-1.77) and ACE DD genotype (OR = 1.29, 95% CI: 1.02-1.63) exhibited the strongest associations, respectively. These findings may be explained by the association of the ACTN3 RR genotype and ACE DD genotype with power-orientated phenotypes and the relative contribution of power-orientated phenotypes to success in football. As such, the results of this review provide further evidence that individual genetic variation may contribute towards athlete status and can differentiate athletes of different competitive playing statuses in a homogenous team-sport cohort. Moreover, the ACTN3 R577X and ACE I/D polymorphisms are likely (albeit relatively minor) contributing factors that influence athlete status in football.
Collapse
Affiliation(s)
- Alexander B T McAuley
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - David C Hughes
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Loukia G Tsaprouni
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Ian Varley
- Department of Sport Science, Nottingham Trent University , Nottingham, UK
| | - Bruce Suraci
- Academy Coaching Department, AFC Bournemouth , Bournemouth, UK
| | - Thomas R Roos
- The International Academy of Sports Science and Technology (AISTS), University of Lausanne , Lausanne, Switzerland
| | - Adam J Herbert
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| | - Adam L Kelly
- Faculty of Health, Education and Life Sciences, Birmingham City University , Birmingham, UK
| |
Collapse
|
30
|
Parajón E, Surcel A, Robinson DN. The mechanobiome: a goldmine for cancer therapeutics. Am J Physiol Cell Physiol 2020; 320:C306-C323. [PMID: 33175572 DOI: 10.1152/ajpcell.00409.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer progression is dependent on heightened mechanical adaptation, both for the cells' ability to change shape and to interact with varying mechanical environments. This type of adaptation is dependent on mechanoresponsive proteins that sense and respond to mechanical stress, as well as their regulators. Mechanoresponsive proteins are part of the mechanobiome, which is the larger network that constitutes the cell's mechanical systems that are also highly integrated with many other cellular systems, such as gene expression, metabolism, and signaling. Despite the altered expression patterns of key mechanobiome proteins across many different cancer types, pharmaceutical targeting of these proteins has been overlooked. Here, we review the biochemistry of key mechanoresponsive proteins, specifically nonmuscle myosin II, α-actinins, and filamins, as well as the partnering proteins 14-3-3 and CLP36. We also examined a wide range of data sets to assess how gene and protein expression levels of these proteins are altered across many different cancer types. Finally, we determined the potential of targeting these proteins to mitigate invasion or metastasis and suggest that the mechanobiome is a goldmine of opportunity for anticancer drug discovery and development.
Collapse
Affiliation(s)
- Eleana Parajón
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra Surcel
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas N Robinson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Nagai M, Awano H, Yamamoto T, Bo R, Matsuo M, Iijima K. The ACTN3 577XX Null Genotype Is Associated with Low Left Ventricular Dilation-Free Survival Rate in Patients with Duchenne Muscular Dystrophy. J Card Fail 2020; 26:841-848. [DOI: 10.1016/j.cardfail.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
|
32
|
Abstract
Muscle stiffness, muscle elasticity and explosive strength are the main components of athletes' performance and they show a sex-based as well as ethnicity variation. Muscle stiffness is thought to be one of the risk factors associated with sports injuries and is less common in females than in males. These observations may be explained by circulating levels of sex hormones and their specific receptors. It has been shown that higher levels of estrogen are associated with lower muscle stiffness responsible for suppression of collagen synthesis. It is thought that these properties, at least in part, depend on genetic factors. Particularly, the gene encoding estrogen receptor 1 (ESR1) is one of the candidates that may be associated with muscle stiffness. Muscle elasticity increases with aging and there is evidence suggesting that titin (encoded by the TTN gene), a protein that is expressed in cardiac and skeletal muscles, is one of the factors responsible for elastic properties of the muscles. Mutations in the TTN gene result in some types of muscular dystrophy or cardiomyopathy. In this context, TTN may be regarded as a promising candidate for studying the elastic properties of muscles in athletes. The physiological background of explosive strength depends not only on the muscle architecture and muscle fiber composition, but also on the central nervous system and functionality of neuromuscular units. These properties are, at least partly, genetically determined. In this context, the ACTN3 gene code for α-actinin 3 has been widely researched.
Collapse
|
33
|
Hughes DC, Baehr LM, Driscoll JR, Lynch SA, Waddell DS, Bodine SC. Identification and characterization of Fbxl22, a novel skeletal muscle atrophy-promoting E3 ubiquitin ligase. Am J Physiol Cell Physiol 2020; 319:C700-C719. [PMID: 32783651 DOI: 10.1152/ajpcell.00253.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle-specific E3 ubiquitin ligases have been identified in muscle atrophy-inducing conditions. The purpose of the current study was to explore the functional role of F-box and leucine-rich protein 22 (Fbxl22), and a newly identified splice variant (Fbxl22-193), in skeletal muscle homeostasis and neurogenic muscle atrophy. In mouse C2C12 muscle cells, promoter fragments of the Fbxl22 gene were cloned and fused with the secreted alkaline phosphatase reporter gene to assess the transcriptional regulation of Fbxl22. The tibialis anterior muscles of male C57/BL6 mice (12-16 wk old) were electroporated with expression plasmids containing the cDNA of two Fbxl22 splice variants and tissues collected after 7, 14, and 28 days. Gastrocnemius muscles of wild-type and muscle-specific RING finger 1 knockout (MuRF1 KO) mice were electroporated with an Fbxl22 RNAi or empty plasmid and denervated 3 days posttransfection, and tissues were collected 7 days postdenervation. The full-length gene and novel splice variant are transcriptionally induced early (after 3 days) during neurogenic muscle atrophy. In vivo overexpression of Fbxl22 isoforms in mouse skeletal muscle leads to evidence of myopathy/atrophy, suggesting that both are involved in the process of neurogenic muscle atrophy. Knockdown of Fbxl22 in the muscles of MuRF1 KO mice resulted in significant additive muscle sparing 7 days after denervation. Targeting two E3 ubiquitin ligases appears to have a strong additive effect on protecting muscle mass loss with denervation, and these findings have important implications in the development of therapeutic strategies to treat muscle atrophy.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leslie M Baehr
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Julia R Driscoll
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Sarah A Lynch
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, Florida
| | - Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
34
|
The genetic profile of elite youth soccer players and its association with power and speed depends on maturity status. PLoS One 2020; 15:e0234458. [PMID: 32569264 PMCID: PMC7307776 DOI: 10.1371/journal.pone.0234458] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/03/2020] [Indexed: 12/17/2022] Open
Abstract
We investigated the association of multiple single nucleotide polymorphisms (SNPs) with athlete status and power/speed performance in elite male youth soccer players (ESP) and control participants (CON) at different stages of maturity. ESP (n = 535; aged 8-23 years) and CON (n = 151; aged 9-26 years) were genotyped for 10 SNPs and grouped according to years from predicted peak-height-velocity (PHV), i.e. pre- or post-PHV, to determine maturity status. Participants performed bilateral vertical countermovement jumps, bilateral horizontal-forward countermovement jumps, 20m sprints and modified 505-agility tests. Compared to CON, pre-PHV ESP demonstrated a higher ACTN3 (rs1815739) XX ('endurance') genotype frequency distribution, while post-PHV ESP revealed a higher frequency distribution of the PPARA (rs4253778) C-allele, AGT (rs699) GG genotype and NOS3 (rs2070744) T-allele ('power' genotypes/alleles). BDNF (rs6265) CC, COL5A1 (rs12722) CC and NOS3 TT homozygotes sprinted quicker than A-allele carriers, CT heterozygotes and CC homozygotes, respectively. COL2A1 (rs2070739) CC and AMPD1 (rs17602729) GG homozygotes sprinted faster than their respective minor allele carrier counterparts in CON and pre-PHV ESP, respectively. BDNF CC homozygotes jumped further than T-allele carriers, while ESP COL5A1 CC homozygotes jumped higher than TT homozygotes. To conclude, we have shown for the first time that pre- and post-PHV ESP have distinct genetic profiles, with pre-PHV ESP more suited for endurance, and post-PHV ESP for power and speed (the latter phenotypes being crucial attributes for post-PHV ESP). We have also demonstrated that power, acceleration and sprint performance were associated with five SNPs, both individually and in combination, possibly by influencing muscle size and neuromuscular activation.
Collapse
|
35
|
Cao Y, Cao W, Qiu Y, Zhou Y, Guo Q, Gao Y, Lu N. Oroxylin A suppresses ACTN1 expression to inactivate cancer-associated fibroblasts and restrain breast cancer metastasis. Pharmacol Res 2020; 159:104981. [PMID: 32492489 DOI: 10.1016/j.phrs.2020.104981] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/26/2020] [Indexed: 02/09/2023]
Abstract
Tumor initiation and progression are not only ascribed to the behavior of cancer cells, but also profoundly influenced by the tumor microenvironment. Inside, cancer-associated fibroblasts (CAFs) have become key factors to accelerate growth and metastasis for the abundance in most solid tumors. Our group previously reported that Oroxylin A (OA), a flavone from Scutellaria Baicalensis Georgi, possess the ability to suppress growth and invasion of several tumor cells. However, the regulatory effect of OA on stromal microenvironment is poorly understood. In this study, breast cancer-induced fibroblasts and primary breast CAFs from MMTV-PyMT mice were used to evaluate the influence of OA on the activation of fibroblasts. Results showed that OA could decrease the expression of α-SMA, fibronectin, vimentin and matrix metalloproteinases (MMPs). Thus, OA-deactivated CAFs did not further promote the proliferation and invasion in breast cancer cells. In vivo experiments, OA could also impede tumor metastasis through exhausting progressive CAFs. Mechanically, OA could specifically bind ACTN1 and significantly inhibit its expression to prevent CAF activation. As a consequence, OA could decrease the phosphorylation of FAK and STAT3, and reduce the secretion of CCL2 in CAFs. Altogether, OA could remodel stromal microenvironment and it is a potential therapeutic agent in breast cancer.
Collapse
Affiliation(s)
- Yue Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Wangjia Cao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yangmin Qiu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuxin Zhou
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Yuan Gao
- Pharmaceutical Animal Experimental Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Na Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
36
|
Fragmented QRS complex in patients with systemic lupus erythematosus at the time of diagnosis and its relationship with disease activity. PLoS One 2020; 15:e0227022. [PMID: 31895922 PMCID: PMC6939939 DOI: 10.1371/journal.pone.0227022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Cardiovascular disease is an important contributor to the mortality rate of patients with systemic lupus erythematosus (SLE), which is related to SLE disease activity. Fragmented QRS (fQRS) complexes, defined by additional spikes in the QRS complex, are useful for identifying myocardial scars on electrocardiography and can be an independent predictor of cardiac events. We aimed to assess the relationship between disease activity in patients with SLE and fQRS at the time of diagnosis. Methods Forty-four patients with SLE were included. Patients with cardiac diseases, other rheumatic diseases, and prior treatment at the time of electrocardiography measurement were excluded. The appearance of fQRS represented exposure. The primary outcome was SLE Disease Activity Index 2000 (SLEDAI-2K). Multiple regression analysis was conducted to assess the association between fQRS and SLEDAI-2K adjusted for age, sex, and time from the estimated onset date to the date of diagnosis. Results Among patients with SLE at diagnosis, 26 (59.1%) had fQRS. The median SLEDAI-2K was 18 (interquartile range [IQR], 12–22) and 9 (IQR, 8–15) in the fQRS(+) and fQRS(-) groups, respectively. SLEDAI-2K was significantly higher in the fQRS(+) group than in the fQRS(-) group (regression coefficient, 2.69; 95% confidence interval, 0.76–4.61; p = 0.008). Conclusion Our results suggested that fQRS(+) patients with SLE had high disease activity. fQRS could likely detect subclinical myocardial involvement in patients with SLE and predict long-term occurrence of cardiac events.
Collapse
|
37
|
Jung J, Kim S, An HT, Ko J. α-Actinin-4 regulates cancer stem cell properties and chemoresistance in cervical cancer. Carcinogenesis 2019; 41:940-949. [DOI: 10.1093/carcin/bgz168] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 10/02/2019] [Indexed: 11/14/2022] Open
Abstract
AbstractCancer stem cells (CSCs) initiate tumors and possess the properties of self-renewal and differentiation. Since they are responsible for chemoresistance, CSCs are known to be a key factor in cancer recurrence. α-Actinin-4 (ACTN4) is an actin-binding protein that is involved in muscle differentiation and cancer metastasis. It promotes epithelial to mesenchymal transition and cell cycle progression via β-catenin stabilization in cervical cancer. In the present study, we investigated the role of ACTN4 in regulating cancer cell stemness and chemoresistance in cervical cancer. Results from the gene expression database analysis showed that ACTN4 mRNA expression was elevated in cancerous cervices when compared with normal cervices. Furthermore, ACTN4 knockdown suppressed sphere formation and CSC proliferation. It also decreased CSC size and CD44high/CD24low cell population. ACTN4-knockdown CSCs were sensitive to anticancer drugs, which was observed by down-regulation of the ATP-binding cassette family G2 involved in drug resistance. Finally, ACTN4-knockdown CSCs formed reduced tumors in vivo when compared with control CSCs. Overall, these findings suggest that ACTN4 regulates CSC properties and contributes to chemoresistance in cervical cancer.
Collapse
Affiliation(s)
- Jaeyeon Jung
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Suhyun Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Hyoung-Tae An
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
38
|
Moorchung N, Puri B, Bhatti V, Lahareesh BL, Singh SP, Sitaram WT. In the search of a 'fitness gene': an analysis of ACTN gene polymorphisms in serving soldiers. Med J Armed Forces India 2019; 75:246-250. [PMID: 31388225 DOI: 10.1016/j.mjafi.2019.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/19/2015] [Indexed: 11/25/2022] Open
Abstract
Background Genetic polymorphisms in the exon 15 and exon 16 of the ACTN3 gene are believed to be associated with athletic performance. Paratroopers are some of the fittest soldiers in the Indian Armed Forces. This study was taken up to assess if there was a significant difference in the genetic profile between paratroopers and non-paratroopers. Method Polymerase chain reaction (PCR) followed by restriction length fragment polymorphism (RFLP) was used to analyse the genetic polymorphisms in the exon 15 and 16 of the ACTN3 gene. Results There was a significant difference between paratroopers and non-paratroopers in the polymorphic loci at codon 15 and 16. Conclusions The study suggests that there is a significant difference in the genotype between paratroopers and non-paratroopers. It is likely that the differences in muscle fibres as a result of these genotypic changes confer a 'survival advantage'; people with a homozygous genotype are more likely to pass the harsh probation and qualify for the Parachute Regiment.
Collapse
Affiliation(s)
- Nikhil Moorchung
- Assistant Director, Institute of Bioinformatics, International Tech Park, Bengaluru 560066, India
| | - Bipin Puri
- Director General Armed Forces Medical Services, O/o DGAFMS, Ministry of Defence, 'M' Block, New Delhi 110001, India
| | - Vijay Bhatti
- Director (H) AFMS, O/o DGAFMS, Ministry of Defence, New Delhi, India
| | | | - S P Singh
- DADMS, HQ CE (P) Swastik, C/o 99 APO, India
| | - Wankhede Tanaji Sitaram
- Associate Professor, Department of Physiology, Armed Forces Medical College, Pune 411040, India
| |
Collapse
|
39
|
Musiał AD, Ropka-Molik K, Piórkowska K, Jaworska J, Stefaniuk-Szmukier M. ACTN3 genotype distribution across horses representing different utility types and breeds. Mol Biol Rep 2019; 46:5795-5803. [PMID: 31392535 DOI: 10.1007/s11033-019-05013-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
Abstract
In horses, the identification of the genetic background of phenotypic variation, especially with regard to performance characteristics and predisposition to effort, has been extensively studied. As α-actinin-3 function is related to the regulation of muscle contraction and cell metabolism, the ACTN3 gene is considered one of the main genetic factors determining muscle strength. The aim of the present study was to assess the genotype distribution of two SNP variants within the equine ACTN3 gene (g.1104G > A and c.2334C > T) across different utility types and horse breeds. The analyses were performed on five breeds representing horses of different types, origins and utilities according to performance (in total 877 horses): primitive (Polish koniks; Hucul horses), draught (Polish heavy draught) and light (Thoroughbred and Arabian horses). Two polymorphisms within the ACTN3 gene locus were genotyped and genotype and allele frequency were compared across populations in order to verify if the identified differences contribute to the phenotypic variation observed in horse breeds. The present study allowed confirmation of the significant differences in genotype distribution of g.1104G > A localized in the promoter region between native breeds and racehorse breeds such as Thoroughbreds and Arabians. The allele/genotype variations between primitive and light breeds confirmed that the analysed variant was under selection pressure and can be correlated with racing ability. Moreover, the significant differences for the c.2334C > T genotype frequency between Arabian horses and other breeds indicate its relationship with endurance and athletic performance. The predominance of the T allele (85%) in Arabians suggests that the T variant was favoured during selection focused on improving stamina and could be one of the genetic factors determining endurance ability. Further research is needed to confirm the association of both polymorphisms with exact racing and/or riding results.
Collapse
Affiliation(s)
- Adrianna D Musiał
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland. .,Laboratory of Genomics, Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083, Balice, Poland.
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Joanna Jaworska
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn - UWM, Olsztyn, Poland
| | - Monika Stefaniuk-Szmukier
- Department of Horse Breeding, Institute of Animal Science, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
40
|
Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019; 16:e301-e372. [PMID: 31078652 DOI: 10.1016/j.hrthm.2019.05.007] [Citation(s) in RCA: 499] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 02/08/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an arrhythmogenic disorder of the myocardium not secondary to ischemic, hypertensive, or valvular heart disease. ACM incorporates a broad spectrum of genetic, systemic, infectious, and inflammatory disorders. This designation includes, but is not limited to, arrhythmogenic right/left ventricular cardiomyopathy, cardiac amyloidosis, sarcoidosis, Chagas disease, and left ventricular noncompaction. The ACM phenotype overlaps with other cardiomyopathies, particularly dilated cardiomyopathy with arrhythmia presentation that may be associated with ventricular dilatation and/or impaired systolic function. This expert consensus statement provides the clinician with guidance on evaluation and management of ACM and includes clinically relevant information on genetics and disease mechanisms. PICO questions were utilized to evaluate contemporary evidence and provide clinical guidance related to exercise in arrhythmogenic right ventricular cardiomyopathy. Recommendations were developed and approved by an expert writing group, after a systematic literature search with evidence tables, and discussion of their own clinical experience, to present the current knowledge in the field. Each recommendation is presented using the Class of Recommendation and Level of Evidence system formulated by the American College of Cardiology and the American Heart Association and is accompanied by references and explanatory text to provide essential context. The ongoing recognition of the genetic basis of ACM provides the opportunity to examine the diverse triggers and potential common pathway for the development of disease and arrhythmia.
Collapse
Affiliation(s)
- Jeffrey A Towbin
- Le Bonheur Children's Hospital, Memphis, Tennessee; University of Tennessee Health Science Center, Memphis, Tennessee
| | - William J McKenna
- University College London, Institute of Cardiovascular Science, London, United Kingdom
| | | | | | | | | | | | | | | | | | - N A Mark Estes
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Wei Hua
- Fu Wai Hospital, Beijing, China
| | - Julia H Indik
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | - Jodie Ingles
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
| | | | - Roy M John
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel P Judge
- Medical University of South Carolina, Charleston, South Carolina
| | - Roberto Keegan
- Hospital Privado Del Sur, Buenos Aires, Argentina; Hospital Español, Bahia Blanca, Argentina
| | | | - Mark S Link
- UT Southwestern Medical Center, Dallas, Texas
| | - Frank I Marcus
- University of Arizona, Sarver Heart Center, Tucson, Arizona
| | | | - Luisa Mestroni
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Silvia G Priori
- University of Pavia, Pavia, Italy; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); ICS Maugeri, IRCCS, Pavia, Italy
| | | | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan
| | - J Peter van Tintelen
- University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Utrecht University Medical Center Utrecht, University of Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Arthur A M Wilde
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart); University of Amsterdam, Academic Medical Center, Amsterdam, the Netherlands; Department of Medicine, Columbia University Irving Medical Center, New York, New York
| | | |
Collapse
|
41
|
Savarese M, Palmio J, Poza JJ, Weinberg J, Olive M, Cobo AM, Vihola A, Jonson PH, Sarparanta J, García-Bragado F, Urtizberea JA, Hackman P, Udd B. Actininopathy: A new muscular dystrophy caused by ACTN2 dominant mutations. Ann Neurol 2019; 85:899-906. [PMID: 30900782 DOI: 10.1002/ana.25470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/07/2019] [Accepted: 03/17/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To clinically and pathologically characterize a cohort of patients presenting with a novel form of distal myopathy and to identify the genetic cause of this new muscular dystrophy. METHODS We studied 4 families (3 from Spain and 1 from Sweden) suffering from an autosomal dominant distal myopathy. Affected members showed adult onset asymmetric distal muscle weakness with initial involvement of ankle dorsiflexion later progressing also to proximal limb muscles. RESULTS In all 3 Spanish families, we identified a unique missense variant in the ACTN2 gene cosegregating with the disease. The affected members of the Swedish family carry a different ACTN2 missense variant. INTERPRETATION ACTN2 encodes for alpha actinin2, which is highly expressed in the sarcomeric Z-disk with a major structural and functional role. Actininopathy is thus a new genetically determined distal myopathy. ANN NEUROL 2019;85:899-906.
Collapse
Affiliation(s)
- Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Juan José Poza
- Department of Neurology, Donostia University Hospital, San Sebastián, Spain
| | - Jan Weinberg
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Montse Olive
- Department of Pathology, Neuropathology and Neuromuscular Unit, Biomedical Research Institute of Bellvitge, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Ana Maria Cobo
- Neuromuscular Diseases Center of Competence, Marin Hospital, Public Hospital Network of Paris, Hendaye, France
| | - Anna Vihola
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | - Per Harald Jonson
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | - Jaakko Sarparanta
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | | | - Jon Andoni Urtizberea
- Neuromuscular Diseases Center of Competence, Marin Hospital, Public Hospital Network of Paris, Hendaye, France
| | - Peter Hackman
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, Helsinki, Finland.,Medicum, University of Helsinki, Helsinki, Finland.,Neuromuscular Research Center, Tampere University Hospital and Tampere University, Tampere, Finland.,Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| |
Collapse
|
42
|
Lornage X, Romero NB, Grosgogeat CA, Malfatti E, Donkervoort S, Marchetti MM, Neuhaus SB, Foley AR, Labasse C, Schneider R, Carlier RY, Chao KR, Medne L, Deleuze JF, Orlikowski D, Bönnemann CG, Gupta VA, Fardeau M, Böhm J, Laporte J. ACTN2 mutations cause "Multiple structured Core Disease" (MsCD). Acta Neuropathol 2019; 137:501-519. [PMID: 30701273 DOI: 10.1007/s00401-019-01963-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Abstract
The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement. Morphological and ultrastructural analyses of muscle biopsies revealed a distinctive pattern with the presence of muscle fibers containing small structured cores and jagged Z-lines. Deeper analysis of the missense mutation revealed mutant alpha-actinin-2 properly localized to the Z-line in differentiating myotubes and its level was not altered in muscle biopsy. Modelling of the disease in zebrafish and mice by exogenous expression of mutated alpha-actinin-2 recapitulated the abnormal muscle function and structure seen in the patients. Motor deficits were noted in zebrafish, and muscle force was impaired in isolated muscles from AAV-transduced mice. In both models, sarcomeric disorganization was evident, while expression of wild-type alpha-actinin-2 did not result in muscle anomalies. The murine muscles injected with mutant ACTN2 displayed cores and Z-line defects. Dominant ACTN2 mutations were previously associated with cardiomyopathies, and our data demonstrate that specific mutations in the well-known Z-line regulator alpha-actinin-2 can cause a skeletal muscle disorder.
Collapse
Affiliation(s)
- Xavière Lornage
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1, rue Laurent Fries, BP 10142, 67404, Illkirch, France
- INSERM U1258, 67404, Illkirch, France
- CNRS, UMR7104, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Norma B Romero
- Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GH Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013, Paris, France
- Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Paris, France
| | - Claire A Grosgogeat
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Edoardo Malfatti
- Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Paris, France
- Neurology Department, Raymond-Poincaré teaching hospital, Centre de référence des maladies neuromusculaires Nord/Est/Ile-de-France, AP-HP, 92380, Garches, France
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael M Marchetti
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Clémence Labasse
- Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Paris, France
| | - Raphaël Schneider
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1, rue Laurent Fries, BP 10142, 67404, Illkirch, France
- INSERM U1258, 67404, Illkirch, France
- CNRS, UMR7104, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Robert Y Carlier
- Neurolocomotor Division, Department of Radiology, Raymond Poincare Hospital, University Hospitals Paris-Ile-de-France West, Public Hospital Network of Paris, 92380, Garches, France
- Versailles Saint-Quentin-en-Yvelines University, 78000, Versailles, France
| | - Katherine R Chao
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, 02115, USA
| | - Livija Medne
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de biologie François Jacob, CEA, 91000, Evry, France
| | - David Orlikowski
- CIC 1429, INSERM, AP-HP, Hôpital Raymond Poincaré, 92380, Garches, France
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Vandana A Gupta
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michel Fardeau
- Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, GH Pitié-Salpêtrière, 47 Boulevard de l'hôpital, 75013, Paris, France
- Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, 75013, Paris, France
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, 75013, Paris, France
| | - Johann Böhm
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1, rue Laurent Fries, BP 10142, 67404, Illkirch, France
- INSERM U1258, 67404, Illkirch, France
- CNRS, UMR7104, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1, rue Laurent Fries, BP 10142, 67404, Illkirch, France.
- INSERM U1258, 67404, Illkirch, France.
- CNRS, UMR7104, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| |
Collapse
|
43
|
Houweling PJ, Papadimitriou ID, Seto JT, Pérez LM, Coso JD, North KN, Lucia A, Eynon N. Is evolutionary loss our gain? The role of
ACTN3
p.Arg577Ter (R577X) genotype in athletic performance, ageing, and disease. Hum Mutat 2018; 39:1774-1787. [DOI: 10.1002/humu.23663] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Peter J. Houweling
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | | | - Jane T. Seto
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Laura M. Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Instituto de Investigación Hospital 12 de Octubre Madrid Spain
| | - Juan Del Coso
- Exercise Physiology Laboratory Camilo José Cela University Madrid Spain
| | - Kathryn N. North
- Murdoch Children's Research Institute Melbourne, Victoria Australia
- Department of Paediatrics University of Melbourne The Royal Children's Hospital Melbourne, Victoria Australia
| | - Alejandro Lucia
- Universidad Europea de Madrid (Faculty of Sport Sciences) Madrid Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable Madrid Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS) Victoria University Victoria Australia
| |
Collapse
|
44
|
Del Coso J, Hiam D, Houweling P, Pérez LM, Eynon N, Lucía A. More than a 'speed gene': ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur J Appl Physiol 2018; 119:49-60. [PMID: 30327870 DOI: 10.1007/s00421-018-4010-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
A common null polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) has been related to different aspects of exercise performance. Individuals who are homozygous for the X allele are unable to express the α-actinin-3 protein in the muscle as opposed to those with the RX or RR genotype. α-actinin-3 deficiency in the muscle does not result in any disease. However, the different ACTN3 genotypes can modify the functioning of skeletal muscle during exercise through structural, metabolic or signaling changes, as shown in both humans and in the mouse model. Specifically, the ACTN3 RR genotype might favor the ability to generate powerful and forceful muscle contractions. Leading to an overall advantage of the RR genotype for enhanced performance in some speed and power-oriented sports. In addition, RR genotype might also favor the ability to withstand exercise-induced muscle damage, while the beneficial influence of the XX genotype on aerobic exercise performance needs to be validated in human studies. More information is required to unveil the association of ACTN3 genotype with trainability and injury risk during acute or chronic exercise.
Collapse
Affiliation(s)
- Juan Del Coso
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | | | - Laura M Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Alejandro Lucía
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain
| |
Collapse
|
45
|
Pickering C, Kiely J. Hamstring injury prevention: A role for genetic information? Med Hypotheses 2018; 119:58-62. [DOI: 10.1016/j.mehy.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/24/2018] [Accepted: 07/11/2018] [Indexed: 01/19/2023]
|
46
|
Shoji H, Miura N, Ueno H, Honda K. Measurement of copy number of ACTN4 to optimize the therapeutic strategy for locally advanced pancreatic cancer. Pancreatology 2018; 18:624-629. [PMID: 29921500 DOI: 10.1016/j.pan.2018.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/10/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
The standard therapeutic strategy recommended for locally advanced pancreatic cancer (LAPC) is typically chemotherapy or chemoradiotherapy (CRT). Although the clinical benefit of chemotherapy alone versus CRT for LAPC has been compared in a number of clinical trials, the optimal therapy for LAPC remains unclear. Moreover, the clinical benefit derived from treatment in each clinical trial is a matter of controversy, and the superiority of one treatment over another has yet to be definitively demonstrated. The poor outcomes seen among patients with LAPC owe largely to the emergence of metastatic disease; therefore, accurately evaluating occult distant metastasis before choosing a therapeutic strategy could be expected to help stratify patients with LAPC into the most appropriate treatment regimen, namely local control or systemic therapy. In 1998, we identified the actinin-4 gene (ACTN4) as an actin-binding protein and showed its molecular mechanisms had clinical implications for cancer metastasis. We also identified ACTN4 gene amplification in pancreatic, ovarian, and salivary gland cancer, and demonstrated its utility as a strong prognostic biomarker for stage I lung adenocarcinoma in patients who had never received chemotherapy. Moreover, we recently reported that ACTN4 gene amplification could be a useful biomarker for predicting the efficacy of CRT for LAPC. In the present review, we summarize current knowledge regarding therapeutic strategies for LAPC and discuss the potential development of personalized medicine using ACTN4 measurement for patients with LAPC.
Collapse
Affiliation(s)
- Hirokazu Shoji
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Nami Miura
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hideki Ueno
- Hepatobiliary and Pancreatic Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Kazufumi Honda
- Department of Biomarker for Early Detection of Cancer, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Japan Agency for Medical Research and Development: AMED-CREST, AMED, Tokyo, 100-0004, Japan.
| |
Collapse
|
47
|
Hsu CP, Moghadaszadeh B, Hartwig JH, Beggs AH. Sarcomeric and nonmuscle α-actinin isoforms exhibit differential dynamics at skeletal muscle Z-lines. Cytoskeleton (Hoboken) 2018; 75:213-228. [PMID: 29518289 PMCID: PMC5943145 DOI: 10.1002/cm.21442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 01/12/2023]
Abstract
The α-actinin proteins are a highly conserved family of actin crosslinkers that mediate interactions between several cytoskeletal and sarcomeric proteins. Nonsarcomeric α-actinin-1 and α-actinin-4 crosslink actin filaments in the cytoskeleton, while sarcomeric α-actinin-2 and α-actinin-3 serve a crucial role in anchoring actin filaments to the muscle Z-line. To assess the difference in turnover dynamics and structure/function properties between the α-actinin isoforms at the sarcomeric Z-line, we used Fluorescence Recovery After Photobleaching (FRAP) in primary myofiber cultures. We found that the recovery kinetics of these proteins followed three distinct patterns: α-actinin-2/α-actinin-3 had the slowest turn over, α-actinin-1 recovered to an intermediate degree, and α-actinin-4 had the fastest recovery. Interestingly, the isoforms' patterns of recovery were reversed at adhesion plaques in fibroblasts. This disparity suggests that the different α-actinin isoforms have unique association kinetics in myofibers and that nonmuscle isoform interactions are more dynamic at the sarcomeric Z-line. Protein domain-specific investigations using α-actinin-2/4 chimeric proteins showed that differential dynamics between sarcomeric and nonmuscle isoforms are regulated by cooperative interactions between the N-terminal actin-binding domain, the spectrin-like linker region and the C-terminal calmodulin-like EF hand domain. Together, these findings demonstrate that α-actinin isoforms are unique in binding dynamics at the Z-line and suggest differentially evolved interactive and Z-line association capabilities of each functional domain.
Collapse
Affiliation(s)
- Cynthia P Hsu
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John H Hartwig
- Translational Medicine Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Wang YN, Yang WC, Li PW, Wang HB, Zhang YY, Zan LS. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast. PLoS One 2018; 13:e0196255. [PMID: 29698438 PMCID: PMC5919640 DOI: 10.1371/journal.pone.0196255] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Myocyte enhancer factor 2A (MEF2A) is widely distributed in various tissues or organs and plays crucial roles in multiple biological processes. To examine the potential effects of MEF2A on skeletal muscle myoblast, the functional role of MFE2A in myoblast proliferation and differentiation was investigated. In this study, we found that the mRNA expression level of Mef2a was dramatically increased during the myogenesis of bovine skeletal muscle primary myoblast. Overexpression of MEF2A significantly promoted myoblast proliferation, while knockdown of MEF2A inhibited the proliferation and differentiation of myoblast. RT-PCR and western blot analysis revealed that this positive effect of MEF2A on the proliferation of myoblast was carried out by triggering cell cycle progression by activating CDK2 protein expression. Besides, MEF2A was found to be an important transcription factor that bound to the myozenin 2 (MyoZ2) proximal promoter and performed upstream of MyoZ2 during myoblast differentiation. This study provides the first experimental evidence that MEF2A is a positive regulator in skeletal muscle myoblast proliferation and suggests that MEF2A regulates myoblast differentiation via regulating MyoZ2.
Collapse
Affiliation(s)
- Ya-Ning Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Wu-Cai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Pei-Wei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Hong-Bao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
| | - Ying-Ying Zhang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- National Beef Cattle Improvement Center in China, Yangling, Shaanxi, P. R. China
- National and Provincial Joint Engineering Research Center of Modern Cattle Biotechnology and Applications, Yangling, Shaanxi, P. R. China
- * E-mail:
| |
Collapse
|
49
|
Pickering C, Kiely J. ACTN3: More than Just a Gene for Speed. Front Physiol 2017; 8:1080. [PMID: 29326606 PMCID: PMC5741991 DOI: 10.3389/fphys.2017.01080] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3, which has commonly been referred to as “a gene for speed”. Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes.
Collapse
Affiliation(s)
- Craig Pickering
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom.,Exercise and Nutritional Genomics Research Centre, DNAFit Ltd., London, United Kingdom
| | - John Kiely
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
50
|
Li N, Zhou T, Geng X, Jin Y, Wang X, Liu S, Xu X, Gao D, Li Q, Liu Z. Identification of novel genes significantly affecting growth in catfish through GWAS analysis. Mol Genet Genomics 2017; 293:587-599. [PMID: 29230585 DOI: 10.1007/s00438-017-1406-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Growth is the most important economic trait in aquaculture. Improvements in growth-related traits can enhance production, reduce costs and time to produce market-size fish. Catfish is the major aquaculture species in the United States, accounting for 65% of the US finfish production. However, the genes underlying growth traits in catfish were not well studied. Currently, the majority of the US catfish industry uses hybrid catfish derived from channel catfish female mated with blue catfish male. Interestingly, channel catfish and blue catfish exhibit differences in growth-related traits, and therefore the backcross progenies provide an efficient system for QTL analysis. In this study, we conducted a genome-wide association study for catfish body weight using the 250 K SNP array with 556 backcross progenies generated from backcross of male F1 hybrid (female channel catfish × male blue catfish) with female channel catfish. A genomic region of approximately 1 Mb on linkage group 5 was found to be significantly associated with body weight. In addition, four suggestively associated QTL regions were identified on linkage groups 1, 2, 23 and 24. Most candidate genes in the associated regions are known to be involved in muscle growth and bone development, some of which were reported to be associated with obesity in humans and pigs, suggesting that the functions of these genes may be evolutionarily conserved in controlling growth. Additional fine mapping or functional studies should allow identification of the causal genes for fast growth in catfish, and elucidation of molecular mechanisms of regulation of growth in fish.
Collapse
Affiliation(s)
- Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xin Geng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoyan Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, 201306, China
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Qi Li
- The Shellfish Genetics and Breeding Laboratory, Fisheries College, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhanjiang Liu
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|