1
|
Neidle EL, Kaplan S. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol 1993; 175:2304-13. [PMID: 8468291 PMCID: PMC204518 DOI: 10.1128/jb.175.8.2304-2313.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the photosynthetic bacterium Rhodobacter sphaeroides, two genes, hemA and hemT, each encode a distinct 5-aminolevulinic acid (ALA) synthase isozyme (E. L. Neidle and S. Kaplan, J. Bacteriol. 175:2292-2303, 1993). This enzyme catalyzes the first and rate-limiting step in a branched pathway for tetrapyrrole formation, leading to the biosynthesis of hemes, bacteriochlorophylls, and corrinoids. In an attempt to determine the functions of hemA and hemT, mutant strains were constructed with specific chromosomal disruptions. These chromosomal disruption allowed hemA and hemT to be precisely localized on the larger and smaller of two R. sphaeroides chromosomes, respectively. Mutants carrying a single hemA or hemT disruption grew well without the addition of ALA, whereas a mutant, HemAT1, in which hemA and hemT had both been inactivated required exogenous ALA for growth. The growth rates, ALA synthase enzyme levels, and the amounts of bacteriochlorophyll-containing intracytoplasmic membrane spectral complexes of all strains were compared. Under photosynthetic growth conditions, the levels of bacteriochlorophyll, carotenoids, and B800-850 and B875 light-harvesting complexes were significantly lower in the Hem mutants than in the wild type. In the mutant strains, available bacteriochlorophyll appeared to be preferentially targeted to the B875 light-harvesting complex relative to the B800-850 complex. In strain HemAT1, the amount of B800-850 complex varied with the concentration of ALA added to the growth medium, and under conditions of ALA limitation, no B800-850 complexes could be detected. In the Hem mutants, there were aberrant transcript levels corresponding to the puc and puf operons encoding structural polypeptides of the B800-850 and B875 complexes. These results suggest that hemA and hemT expression is coupled to the genetic control of the R. sphaeroides photosynthetic apparatus.
Collapse
Affiliation(s)
- E L Neidle
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225
| | | |
Collapse
|
2
|
Hundle BS, Richards WR. Use of the membrane-impermeable guanidinating reagent 2-S-[14C]thiuroniumethanesulfonate to demonstrate the orientation of light-harvesting proteins in Rhodobacter sphaeroides. Biochemistry 1990; 29:6172-9. [PMID: 2119798 DOI: 10.1021/bi00478a009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The radiolabeled guanidinating reagent 2-S-[14C]thiuroniumethanesulfonate reacts with the epsilon-amino groups of accessible lysyl residues of membrane proteins under relatively mild labeling conditions, yielding labeled homoarginyl residues. Model studies have shown that the resulting homoarginyl residues do act as new cleavage sites for trypsin, but only at a very slow rate of hydrolysis. The reagent has been shown to be impermeable to the intracytoplasmic membranes of Rhodobacter sphaeroides: when cytoplasmic-side-out chromatophores were treated with the reagent, it reacted with all four of the light-harvesting proteins, all of which have one or more lysyl residues on the N-terminal sides of their hydrophobic regions. However, when periplasmic-side-out vesicles, prepared by cytochrome c affinity chromatography, were treated with the guanidinating reagent, three of the light-harvesting proteins (B850 alpha, B850 beta, and B870 beta) were not labeled. The only light-harvesting protein to be labeled (B870 alpha) was the only one of the four to have a lysyl residue on the C-terminal side of its hydrophobic region. Guanidinated B870 alpha polypeptides from both the cytoplasmic-side-out chromatophores and the periplasmic-side-out membrane vesicles were purified and digested with trypsin. The resulting peptide fragments were then separated by high-performance liquid chromatography and analyzed for radioactivity. The results have confirmed the asymmetric orientation of the light-harvesting proteins of R. sphaeroides, with their N-termini on the cytoplasmic side of the intracytoplasmic membrane. In the case of the B870 alpha subunit, the protein has been shown to be transmembrane with its C-terminus on the periplasmic side of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- B S Hundle
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
3
|
Lee JK, Kiley PJ, Kaplan S. Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides. J Bacteriol 1989; 171:3391-405. [PMID: 2470727 PMCID: PMC210063 DOI: 10.1128/jb.171.6.3391-3405.1989] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The puc operon of Rhodobacter sphaeroides comprises the pucBA structural genes which encode B800-850 light-harvesting beta and alpha polypeptides, respectively. Northern (RNA) blot hybridization analysis of puc operon expression has identified two pucBA-specific transcripts. The small (0.5-kilobase [kb]) transcript encodes the beta and alpha polypeptides and, under photoheterotrophic growth conditions, was approximately 200-fold more abundant than the large (2.3-kb) transcript. The 5' end of the 0.5-kb transcript was mapped at 117 nucleotides upstream from the start of pucB. The 3' ends of the 0.5-kb transcript were mapped to two adjacent nucleotides, which follow a stem-loop structure immediately 3' to the pucA stop codon. Two mutant strains, PUC705-BA and PUC-Pv, were constructed by replacement of the pucBA genes and adjacent DNA in the former case or by insertional interruption of the DNA downstream of the pucBA genes in the latter case. The two mutant strains were devoid of B800-850 complexes during photosynthetic growth but were otherwise apparently normal. The B800-850 phenotype of both PUC705-BA and PUC-Pv was not complemented in trans with a 2.5-kb PstI restriction endonuclease fragment extending from 0.75 kb upstream of pucBA to 1.3 kb downstream of pucBA, despite the presence of the 0.5-kb pucBA-specific transcript. Both of the mutant strains, however, showed restoration of B800-850 expression with a 10.5-kb EcoRI restriction endonuclease fragment in trans encompassing the 2.5-kb PstI fragment. Western immunoblot analysis revealed no B800-850-beta polypeptide as well as no polypeptide designated 15A in either mutant. Nonetheless, under photoheterotrophic growth conditions, the 0.5-kb pucBA-specific transcript was present in PUC-Pv, although no 2.3-kb transcript was detectable. We suggest that the DNA region immediately downstream of pucBA encodes a gene product(s) essential for translational or posttranslational expression of the B800-850 beta and alpha polypeptides.
Collapse
Affiliation(s)
- J K Lee
- Department of Microbiology, University of Illinois, Urbana-Champaign 61801
| | | | | |
Collapse
|
4
|
Kiley PJ, Varga A, Kaplan S. Physiological and structural analysis of light-harvesting mutants of Rhodobacter sphaeroides. J Bacteriol 1988; 170:1103-15. [PMID: 3277945 PMCID: PMC210879 DOI: 10.1128/jb.170.3.1103-1115.1988] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Two mutants of Rhodobacter sphaeroides defective in formation of light-harvesting spectral complexes were examined in detail. Mutant RS103 lacked the B875 spectral complex despite the fact that substantial levels of the B875-alpha polypeptide (and presumably the beta polypeptide) were present. The B800-850 spectral complex was derepressed in RS103, even at high light intensities, and the growth rate was near normal at high light intensity but decreased relative to the wild type as the light intensity used for growth decreased. Mutant RS104 lacked colored carotenoids and the B800-850 spectral complex, as well as the cognate apoproteins. This strain grew normally at high light intensity and, as with RS103, the growth rate decreased as the light intensity used for growth decreased. At very low light intensities, however, RS104 would grow, whereas RS103 would not. Structural analysis of these mutants as well as others revealed that the morphology of the intracytoplasmic membrane invaginations is associated with the presence or absence of the B800-850 complex as well as of carotenoids. A low-molecular-weight intracytoplasmic membrane polypeptide, which may play a role in B800-850 complex formation, is described, as is a 62,000-dalton polypeptide whose abundance is directly related to light intensity as well as the absence of either of the light-harvesting spectral complexes. These data, obtained from studies of mutant strains and the wild type, are discussed in light of photosynthetic membrane formation and the abundance of spectral complexes per unit area of membrane. Finally, a method for the bulk preparation of the B875 complex from wild-type strain 2.4.1 is reported.
Collapse
Affiliation(s)
- P J Kiley
- Department of Microbiology, University of Illinois at Urbana-Champaign 61801
| | | | | |
Collapse
|
5
|
Varga AR, Staehelin LA. Pigment-protein complexes from Rhodopseudomonas palustris: isolation, characterization, and reconstitution into liposomes. J Bacteriol 1985; 161:921-7. [PMID: 3972775 PMCID: PMC214985 DOI: 10.1128/jb.161.3.921-927.1985] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have employed detergent solubilization and sucrose density gradient centrifugation to obtain pigment-protein complexes from Rhodopseudomonas palustris. Two types of detergent buffers were used, containing either octyl-beta-glucopyranoside (OG) plus sodium dodecyl sulfate (SDS) or OG alone. The fractions thus obtained were analyzed spectrophotometrically and by polyacrylamide gel electrophoresis to determine their pigment and protein composition. OG-SDS solubilization yields four fractions. The least dense of these fractions (OG-SDS a and b) are nonspecific mixtures of peptides and pigments. The next fraction, OG-SDS c, is an accessory light-harvesting complex, LHII, called B800-850. The largest particle, OG-SDS d, is a combination of reaction center (RC) and primary light-harvesting complex (LHI), B880. Solubilization using OG alone yields one fraction, a single large complex consisting of RC, LHI, and LHII. We have inserted the two large OG-SDS complexes and the OG complex into phospholipid liposomes to determine the size of such complexes in freeze-fractured membranes. On the basis of morphological, biochemical, and available biophysical data, we propose the following models for pigment-protein complexes in R. palustris membranes: 5-nm particles as free RC or LHI tetramers, 7.5-nm particles as LHI or LHII octamers (or both); 10-nm particles as RC-LHI core complexes (1 RC plus 12 LHI) or large LHII oligomers (or both), and large particles of 12.5 and 15 nm and LHII associated with the RC-LHI core complex.
Collapse
|
6
|
Yen GS, Cain BD, Kaplan S. Cell-cycle-specific biosynthesis of the photosynthetic membrane of Rhodopseudomonas sphaeroides. Structural implications. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 777:41-55. [PMID: 6333251 DOI: 10.1016/0005-2736(84)90495-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural changes association with the intracytoplasmic membrane during the cell cycle of the photosynthetic bacterium Rhodopseudomonas sphaeroides have been studied by freeze-fracture electron microscopy. The isolated intracytoplasmic membrane vesicles, chromatophores, were fused in order to obtain large fracture faces, allowing more precise measurements and statistical analysis of both intramembrane particle density and size determinations. The intramembrane particle density of the protoplasmic face (PF) of the intracytoplasmic membrane, (from 4970 to 8290/micrometers 2), was shown to be a linear function of the protein/phospholipid ratio (from 2.5 to 5.1, w/w) of the intracytoplasmic membrane. Under constant light intensity, both the average particle size and particle size distribution remained unchanged during the cell cycle. These results provide the structural basis for the earlier reported cell-cycle-specific variations in both protein/phospholipid ratio and alternation in phospholipid structure of the intracytoplasmic membrane of R. sphaeroides during photosynthetic growth. The average particle diameter in the PF face of the intracytoplasmic membrane was 8.25, 9.08 and 9.75 nm at incident light intensities of 4000, 500 and 30 ft X cd, respectively. When chromatophores were fused with small, unilamellar liposomes, the intramembrane particle density decreased as input liposome phospholipid increased, whereas the particle size remained constant and particle distribution became random.
Collapse
|
7
|
Chory J, Donohue TJ, Varga AR, Staehelin LA, Kaplan S. Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: biochemical and morphological studies. J Bacteriol 1984; 159:540-54. [PMID: 6611335 PMCID: PMC215678 DOI: 10.1128/jb.159.2.540-554.1984] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cells of Rhodopseudomonas sphaeroides grown in a 25% O2 atmosphere were rapidly subjected to total anaerobiosis in the presence of light to study the progression of events associated with the de novo synthesis of the inducible intracytoplasmic membrane (ICM). This abrupt change in physiological conditions resulted in the immediate cessation of cell growth and whole cell protein, DNA, and phospholipid accumulation. Detectable cell growth and whole cell protein accumulation resumed ca. 12 h later. Bulk phospholipid accumulation paralleled cell growth, but the synthesis of individual phospholipid species during the adaptation period suggested the existence of a specific regulatory site in phospholipid synthesis at the level of the phosphatidylethanolamine methyltransferase system. Freeze-fracture electron microscopy showed that aerobic cells contain small indentations within the cell membrane that appear to be converted into discrete ICM invaginations within 1 h after the imposition of anaerobiosis. Microscopic examination also revealed a series of morphological changes in ICM structure and organization during the lag period before the initiation of photosynthetic growth. Bacteriochlorophyll synthesis and the formation of the two light-harvesting bacteriochlorophyll-protein complexes of R. sphaeroides (B800-850 and B875) occurred coordinately within 2 h after the shift to anaerobic conditions. Using antibodies prepared against various ICM-specific polypeptides, the synthesis of reaction center proteins and the polypeptides associated with the B800-850 complex was monitored. The reaction center H polypeptide was immunochemically detected at low levels in the cell membrane of aerobic cells, which contained no detectable ICM or bacteriochlorophyll. The results are discussed in terms of the oxygen-dependent regulation of gene expression in R. sphaeroides and the possible role of the reaction center H polypeptide and the cell membrane indentations in the site-specific assembly of ICM pigment-protein complexes during the de novo synthesis of the ICM.
Collapse
|
8
|
Theiler R, Suter F, Wiemken V, Zuber H. The light-harvesting polypeptides of Rhodopseudomonas sphaeroides R-26.1. I. Isolation, purification and sequence analyses. HOPPE-SEYLER'S ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE 1984; 365:703-19. [PMID: 6384009 DOI: 10.1515/bchm2.1984.365.2.703] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Four low-molecular-mass polypeptides were isolated and purified from chromatophore membranes of Rhodopseudomonas sphaeroides blue-green mutant R-26.1 by a combination of gel filtration and ion-exchange chromatography in organic solvents. On dodecyl sulfate polyacrylamide gels, the purified polypeptides comigrate with bands LH-1, LH-2 and LH-3 known to be related to the antenna-pigment-protein complexes. The complete primary structures were elucidated by automated Edman degradation of the intact polypeptides and of overlapping C-terminal fragments obtained after chemical cleavage at tryptophan and methionine residues. The C-termini were verified by hydrazinolysis and, in one case where an overlapping C-terminal fragment could not be obtained, by digestion with carboxypeptidase A. The four polypeptides show a tripartite structure: i.e. a polar N-terminal region is separated from a polar C-terminal region by a segment of about 21 predominantly hydrophobic amino-acid residues. All hydrophobic segments contain a characteristic conservative histidine residue. The C-terminal region is reduced to only a few amino acids in the two polypeptides which together form band LH-3, i.e. LH-3A and LH-3B. Their extended N-terminal region is rich in charged residues and contains an additional conserved histidine residue close to the beginning of the hydrophobic segment. These properties place LH-3A and LH-3B into subgroup (beta-polypeptides: B 870-beta and B 850-beta, respectively). LH-1 and LH-2 appear to form another subgroup (alpha-polypeptides: B 870-alpha and B 850-alpha, respectively) as suggested during a search for conservative elements within their sequences (structural basis for classification). N-Terminal analyses carried out with intact antenna-pigment-protein complexes revealed the following: (i) LH-1 and LH-3 are associated with the B 870 complex in Rp. sphaeroides 24.1 (wild type), (ii) the same polypeptides are almost exclusively present in chromatophore membranes of Rp. sphaeroides R-26, a blue-green mutant which absorbs at 870 nm, (iii) LH-2 and LH-3B are the constituent polypeptides of the B 800-850 complex of Rp. sphaeroides 2.4.1 and of the spectrally altered B 850 complex isolated from the blue-green mutant R-26.1 which absorbs at 860 nm. This mutant contains LH-2 and LH-3B along with LH-1 and LH-3A and apparently is able to form both types of antenna complexes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
9
|
Chory J, Kaplan S. Light-dependent regulation of the synthesis of soluble and intracytoplasmic membrane proteins of Rhodopseudomonas sphaeroides. J Bacteriol 1983; 153:465-74. [PMID: 6600232 PMCID: PMC217395 DOI: 10.1128/jb.153.1.465-474.1983] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cells of Rhodopseudomonas sphaeroides grown under saturating light conditions (30 W/m2) and then shifted to low light intensity (3 W/m2) required 2.5 h to adapt to the new lower light conditions. After the shift, cell growth, whole cell protein accumulation, and bacteriochlorophyll accumulation ceased immediately. Approximately midway into the adaptation period, bacteriochlorophyll synthesis commenced at a new, higher rate, which continued through the beginning of the low-light growth period until new steady-state levels were reached. Immediately after the downshift, the rate of cellular protein synthesis declined to 22% of its preshift rate. Pulse-labeling of protein throughout the adaptation period and comparison with a steady-state prelabel culture revealed that synthesis of two of the three light-harvesting proteins, as well as two additional high-molecular-weight photosynthetic membrane proteins, was derepressed three- to fivefold compared with bulk cellular protein. Finally, the synthesis of at least three soluble proteins showed light-dependent regulation after the light downshift. These results are discussed in terms of the light-dependent regulation of synthesis of the photosynthetic membrane macromolecular components and the division of protein synthesis between the photosynthetic membranes and the soluble cell phase.
Collapse
|
10
|
|
11
|
The in vitro transcription-translation of DNA and RNA templates by extracts of Rhodopseudomonas sphaeroides. Optimization and comparison of template specificity with Escherichia coli extracts and in vivo synthesis. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33400-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Yen GS, Wraight CA, Kaplan S. Fusion of chromatophores derived from Rhodopseudomonas sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1982. [DOI: 10.1016/0005-2736(82)90372-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
|
14
|
Cohen L, Kaplan S. The non-detergent solubilization and isolation of intracytoplasmic membrane polypeptides from Rhodopseudomonas sphaeroides. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69294-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|