1
|
|
2
|
Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argüeso T, Palacios JM. The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Mol Microbiol 2003; 48:1195-207. [PMID: 12787349 DOI: 10.1046/j.1365-2958.2003.03510.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tat (twin-arginine translocation) system mediates export of periplasmic proteins in folded conformation. Proteins transported via Tat contain a characteristic twin-arginine motif in their signal peptide. Genetic determinants (tatABC genes) of the Tat system from Rhizobium leguminosarum bv. viciae were cloned and characterized, and a tatBC deletion mutant was constructed. The mutant lacked the ability for membrane targeting of hydrogenase, a known Tat substrate, and was impaired in hydrogenase activity. Interestingly, in the absence of a functional Tat system, only small, white nodules unable to fix nitrogen were induced in symbiosis with pea plants. Analysis of nodule structure and location of green fluorescent protein (GFP)-tagged bacteria within nodules indicated that the symbiotic process was blocked in the tat mutant at a stage previous to bacteria release into cortical cells. The R. leguminosarum Tat-deficient mutant lacked a functional cytochrome bc1 complex. This was consistent with the fact that R. leguminosarum Rieske protein, a key component of the symbiosis-essential cytochrome bc1 complex, contained a typical twin-arginine signal peptide. However, comparative analyses of nodule structure indicated that nodule development in the tat mutant was arrested at an earlier step than in a cytochrome bc1 mutant. These data indicate that the Tat pathway is also critical for proteins relevant to the initial stages of the symbiotic process.
Collapse
Affiliation(s)
- Stefania Meloni
- Laboratorio de Microbiología, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
3
|
Maier RJ. Respiratory metabolism in hyperthermophilic organisms: hydrogenases, sulfur reductases, and electron transport factors that function at temperatures exceeding 100 degrees C. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:35-99. [PMID: 8791624 DOI: 10.1016/s0065-3233(08)60361-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R J Maier
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Ferber DM, Moy B, Maier RJ. Bradhyrhizobium japonicum hydrogen-ubiquinone oxidoreductase activity: quinone specificity, inhibition by quinone analogs, and evidence for separate sites of electron acceptor reactivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995; 1229:334-46. [DOI: 10.1016/0005-2728(95)00012-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Brito B, Palacios JM, Hidalgo E, Imperial J, Ruiz-Argüeso T. Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. J Bacteriol 1994; 176:5297-303. [PMID: 8071205 PMCID: PMC196714 DOI: 10.1128/jb.176.17.5297-5303.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Rhizobium leguminosarum bv. viciae UPM791 induces the synthesis of an [NiFe] hydrogenase in pea (Pisum sativum L.) bacteroids which oxidizes the H2 generated by the nitrogenase complex inside the root nodules. The synthesis of this hydrogenase requires the genes for the small and large hydrogenase subunits (hupS and hupL, respectively) and 15 accessory genes clustered in a complex locus in the symbiotic plasmid. We show here that the bacteroid hydrogenase activity is limited by the availability of nickel to pea plants. Addition of Ni2+ to plant nutrient solutions (up to 10 mg/liter) resulted in sharp increases (up to 15-fold) in hydrogenase activity. This effect was not detected when other divalent cations (Zn2+, Co2+, Fe2+, and Mn2+) were added at the same concentrations. Determinations of the steady-state levels of hupSL-specific mRNA indicated that this increase in hydrogenase activity was not due to stimulation of transcription of structural genes. Immunoblot analysis with antibodies raised against the large and small subunits of the hydrogenase enzyme demonstrated that in the low-nickel situation, both subunits are mainly present in slow-migrating, unprocessed forms. Supplementation of the plant nutrient solution with increasing nickel concentrations caused the conversion of the slow-migrating forms of both subunits into fast-moving, mature forms. This nickel-dependent maturation process of the hydrogenase subunits is mediated by accessory gene products, since bacteroids from H2 uptake-deficient mutants carrying Tn5 insertions in hupG and hupK and in hypB and hypE accumulated the immature forms of both hydrogenase subunits even in the presence of high nickel levels.
Collapse
Affiliation(s)
- B Brito
- Laboratorio de Microbiología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Fu C, Maier RJ. Sequence and characterization of three genes within the hydrogenase gene cluster of Bradyrhizobium japonicum. Gene X 1994; 141:47-52. [PMID: 8163174 DOI: 10.1016/0378-1119(94)90126-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A 2.0-kb DNA fragment downstream from the hydrogenase-encoding structural genes within the hydrogenase gene cluster of Bradyrhizobium japonicum was sequenced. Analysis of the nucleotide (nt) sequence revealed three open reading frames (ORFs), designated hupC, hupD and hupF, which encode polypeptides of 28, 21 and 10.7 kDa, respectively. Based on analysis of the nt sequence and physiological studies, hupSL (hydrogenase structural genes) and hupCDF are organized as a single transcriptional unit. Plasmid pRY12 carrying hupSL genes did not complement (restore) hydrogenase activity of the hupSL deletion mutant strain (JHCS2), whereas the activity of the mutant was considerably restored by pLD22 harboring the entire hydrogenase operon (hupSLCDF genes). Western blots revealed a very low level of hydrogenase protein in JHCS2 containing pRY12. The results suggest that the products of the hupCDF genes may be involved in either stabilizing the hydrogenase peptides (i.e., from degradation) or in post-translational regulation of hydrogenase production. The products of hupC and hupD were successfully expressed in Escherichia coli by a phage T7 promoter system, although the apparent sizes of the gene products were slightly larger than those calculated from the deduced amino-acid sequences.
Collapse
Affiliation(s)
- C Fu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
7
|
Ferber DM, Maier RJ. Hydrogen-ubiquinone oxidoreductase activity by the Bradyrhizobium japonicum membrane-bound hydrogenase. FEMS Microbiol Lett 1993; 110:257-64. [PMID: 8354459 DOI: 10.1111/j.1574-6968.1993.tb06331.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Bradyrhizobium japonicum heterodimeric nickel-iron hydrogenase efficiently catalyzed H2-ubiquinone-1 oxidoreductase activity at rates up to 47% of the maximal rates obtained using the artificial electron acceptor methylene blue. Gel filtration chromatography and SDS-polyacrylamide gel electrophoresis experiments demonstrated that the purified enzyme was a heterodimer containing only the 65 kDa and 33 kDa subunits. Reduced minus oxidized absorption difference spectra demonstrated the absence of detectable cytochromes. The H2-ubiquinone-1 oxidoreductase activity of both the purified heterodimeric hydrogenase and membranes was significantly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide and antimycin A, inhibitors known to act in the quinone region of electron transport chains. Our results are the first report of H2-ubiquinone oxidoreductase activity by a purified hydrogenase.
Collapse
Affiliation(s)
- D M Ferber
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218-2685
| | | |
Collapse
|
8
|
Fu C, Maier RJ. A genetic region downstream of the hydrogenase structural genes of Bradyrhizobium japonicum that is required for hydrogenase processing. J Bacteriol 1993; 175:295-8. [PMID: 8416905 PMCID: PMC196126 DOI: 10.1128/jb.175.1.295-298.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Deletion of a 2.9-kb chromosomal EcoRI fragment of DNA located 2.2 kb downstream from the end of the hydrogenase structural genes resulted in the complete loss of hydrogenase activity. The normal 65- and 35-kDa hydrogenase subunits were absent in the deletion mutants. Instead, two peptides of 66.5 and 41 kDa were identified in the mutants by use of anti-hydrogenase subunit-specific antibody. A hydrogenase structural gene mutant did not synthesize either the normal hydrogenase subunits or the larger peptides. Hydrogenase activity in the deletion mutants was complemented to near wild-type levels by plasmid pCF1, containing a 6.5-kb BglII fragment, and the 65- and 35-kDa hydrogenase subunits were also recovered in the mutants containing pCF1.
Collapse
Affiliation(s)
- C Fu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
9
|
Anoxygenic Phototrophic Bacteria: Physiology and Advances in Hydrogen Production Technology. ADVANCES IN APPLIED MICROBIOLOGY 1993. [DOI: 10.1016/s0065-2164(08)70217-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Abstract
Membrane-bound nickel-iron hydrogenases from diverse genera of bacteria have been previously characterized and they are closely related. We report the reconstitution of purified Bradyrhizobium japonicum hydrogenase into proteoliposomes by a detergent dialysis method followed by two or three cycles of freeze-thaw. Sedimentation experiments revealed that more than 60% of the H2-uptake activity was particulate when reconstituted into Escherichia coli phospholipids. Sucrose-gradient centrifugation separated hydrogenase activity into two peaks, the less dense of which was phospholipid-associated and turbid, thereby showing successful incorporation. Purified enzyme did not bind to performed phospholipid vesicles, and 1.0 M NaCl failed to remove incorporated hydrogenase. The optimal micellar detergent:phospholipid ratio (rho) value for hydrogenase incorporation was 2.0. Proteoliposomes containing acidic phospholipids were the most effective for incorporation as well as for activity. The artificial electron acceptor specificity was similar for proteoliposomes and for H2-oxidizing membranes from B. japonicum. Proteoliposomes formed under optimal conditions had a broad size distribution centered around 400 nm diameter. Hydrogenase activity in proteoliposomes was partially protected from inactivation by the protein modification reagent diazobenzene sulfonate (DABS) (inactivation t1/2 = 30 min), whereas DABS rapidly inactivated the purified enzyme (t1/2 = 4 min). The latter result indicates protection of a catalytically important site by the phospholipid bilayer. This experimental system should be useful in addressing questions regarding the in vivo situation of bacterial membrane-bound hydrogenases.
Collapse
Affiliation(s)
- D M Ferber
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
11
|
Fu C, Maier RJ. Nickel-dependent reconstitution of hydrogenase apoprotein in Bradyrhizobium japonicum Hupc mutants and direct evidence for a nickel metabolism locus involved in nickel incorporation into the enzyme. Arch Microbiol 1992; 157:493-8. [PMID: 1503531 DOI: 10.1007/bf00276768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A double mutant (JH103K10) was created from hydrogenase constitutive mutant (JH103) by replacement of a chromosomal 0.60 kb nickel metabolism related locus with a kanamycin resistance gene. The double mutant required 10 to 20 times more nickel (Ni) to achieve near parental strain levels of hydrogenase activity. In the absence of nickel, both JH103K10 and JH103 synthesized high levels of (inactive) hydrogenase apoprotein (large subunit, 65 kDa). With nickel, the double mutant JH103K10 synthesized the same level of hydrogenase apoenzyme (65-kDa subunit) as the JH103 parent strain; however, whole cell hydrogenase activity in JH103K10 was less than half of that in JH103, and the CPM (due to 63Ni in hydrogenase) of membranes and the calculated ratio of nickel per unit of hydrogenase enzyme of the double mutant were 40% of that in JH103. Therefore, the difference in hydrogenase activities between the double mutant and the Hupc strain can be accounted for by different abilities of the strains to incorporate nickel into the hydrogenase apoenzyme. The addition of nickel ions to previously Ni-starved and then chloramphenicol-treated Bradyrhizobium japonicum whole cells (JH103 and JH103K10) resulted in (an in vivo) restoration of hydrogenase activity, suggesting that the apoprotein synthesized in the Ni-free cultures could be activated by addition of nickel even in the absence of protein synthesis. The extent of reconstitution of active hydrogenase by nickel was greater in the absence of chloramphenicol. Hydrogenase apoprotein could not be activated by nickel in vitro even with the addition of ATP. The successful in vivo but not in vitro results suggest that enzymatic but cell-disruption labile factors are required for Ni incorporation into hydrogenase.
Collapse
Affiliation(s)
- C Fu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
12
|
Kim H, Yu C, Maier RJ. Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen. J Bacteriol 1991; 173:3993-9. [PMID: 2061281 PMCID: PMC208045 DOI: 10.1128/jb.173.13.3993-3999.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bradyrhizobium japonicum expresses hydrogenase in microaerophilic free-living conditions in the presence of nickel. Plasmid-borne hup-lacZ transcriptional fusion constructs were used to study the regulation of the hydrogenase gene. The hydrogenase gene was transcriptionally induced under microaerobic conditions (0.1 to 3.0% partial pressure O2). The hydrogenase gene was not transcribed or was poorly transcribed in strictly anaerobic conditions or conditions above 3.0% O2. Hydrogen gas at levels as low as 0.1% partial pressure induced hydrogenase transcription, and a high level of transcription was maintained up to at least 10% H2 concentration. No transcription was observed in the absence of H2. Hydrogenase was regulated by H2, O2, and Ni when the 5'-upstream sequence was pared down to include base number -168. However, when the upstream sequence was pared down to base number -118, the regulatory response to O2, H2, and Ni levels was negated. Thus, a common cis-acting regulatory region localized within 50 bp is critical for the regulation of hydrogenase by hydrogen, oxygen, and nickel. As a control, the B. japonicum hemA gene which codes for delta-aminolevulinic acid synthase was also fused to the promoterless lacZ gene, and its regulation was tested in the presence of various concentrations of O2 and H2. hemA-lacZ transcription was not dependent on levels of Ni, O2, or H2. Two different hup-lacZ fusions were tested in a Hup- background, strain JH47; these hup-lacZ constructs in JH47 demonstrated dependency on nickel, O2, and H2, indicating that the hydrogenase protein itself is not a sensor for regulation by O2, H2, or nickel.
Collapse
Affiliation(s)
- H Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
13
|
Kovács KL, Tigyi G, Thanh LT, Lakatos S, Kiss Z, Bagyinka C. Structural rearrangements in active and inactive forms of hydrogenase from Thiocapsa roseopersicina. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35265-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
Adams MW. The metabolism of hydrogen by extremely thermophilic, sulfur-dependent bacteria. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb04096.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
15
|
Novak PD, Maier RJ. Identification of a Locus Upstream from the Hydrogenase Structural Genes That Is Involved in Hydrogenase Expression in
Bradyrhizobium japonicum. Appl Environ Microbiol 1989; 55:3051-7. [PMID: 16348066 PMCID: PMC203222 DOI: 10.1128/aem.55.12.3051-3057.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A locus involved in the expression of the uptake hydrogenase system of
Bradyrhizobium japonicum
was identified adjacent to genes encoding the hydrogenase subunits. A cloned fragment of DNA was used to complement to autotrophy a Hup
−
putative regulatory mutant of
B. japonicum
. The mutant strain lacked hydrogenase activity and synthesized low levels of the large subunit of hydrogenase as determined by Western gels. Tn
5
-induced mutagenesis located the region within the fragment which was necessary for complementation of the mutant phenotype. The locus identified is adjacent to that encoding the small subunit of hydrogenase; its right border is <0.5 kilobase upstream from the hydrogenase transcriptional start site, and its left border is between 1 and 2.5 kilobases from that start site. However, the locus is outside the region previously shown to contain
hup
-related genes of
B. japonicum
. Thus, the localization of this gene describes a previously unidentified
hup
-related gene on a region of DNA not previously shown to contain
hup
-specific DNA.
Collapse
Affiliation(s)
- P D Novak
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
16
|
O'Brian MR, Maier RJ. Molecular aspects of the energetics of nitrogen fixation in Rhizobium-legume symbioses. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 974:229-46. [PMID: 2659085 DOI: 10.1016/s0005-2728(89)80239-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M R O'Brian
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|