1
|
Antagonistic roles of the ERK and p38 MAPK signalling pathways in globin expression, haem biosynthesis and iron uptake. Biochem J 2010; 432:145-51. [PMID: 20738258 DOI: 10.1042/bj20100541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Late-stage erythroid cells synthesize large quantities of haemoglobin, a process requiring the co-ordinated regulation of globin and haem synthesis as well as iron uptake. In the present study, we investigated the role of the ERK (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) signalling pathways in MEL (mouse erythroleukaemia) cell differentiation. We found that treatment of HMBA (hexamethylene bisacetamide)-induced MEL cells with the ERK pathway inhibitor UO126 results in an increase in intracellular haem and haemoglobin levels. The transcript levels of the genes coding for β(major)-globin, the haem biosynthesis enzyme 5-aminolevulinate synthase 2 and the mitochondrial iron transporter mitoferrin 1 are up-regulated. We also showed enhanced expression of globin and transferrin receptor 1 proteins upon UO126 treatment. With respect to iron uptake, we found that ERK inhibitor treatment led to an increase in both haem-bound and total iron. In contrast, treatment of MEL cells with the p38 MAPK pathway inhibitor SB202190 had the opposite effect, resulting in decreased globin expression, haem synthesis and iron uptake. Reporter assays showed that globin promoter and HS2 enhancer-mediated transcription was under the control of MAPKs, as inhibition of the ERK and p38 MAPK pathways led to increased and decreased gene activity respectively. Our present results suggest that the ERK1/2 and p38α/β MAPKs play antagonistic roles in HMBA-induced globin gene expression and erythroid differentiation. These results provide a novel link between MAPK signalling and the regulation of haem biosynthesis and iron uptake in erythroid cells.
Collapse
|
2
|
MacKenzie EL, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal 2008; 10:997-1030. [PMID: 18327971 PMCID: PMC2932529 DOI: 10.1089/ars.2007.1893] [Citation(s) in RCA: 388] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 12/03/2007] [Accepted: 12/04/2007] [Indexed: 12/21/2022]
Abstract
Maintenance of proper "labile iron" levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess "labile iron" is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation-reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation.
Collapse
Affiliation(s)
- Elizabeth L MacKenzie
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
3
|
Bakker WJ, van Dijk TB, Parren-van Amelsvoort M, Kolbus A, Yamamoto K, Steinlein P, Verhaak RGW, Mak TW, Beug H, Löwenberg B, von Lindern M. Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol 2007; 27:3839-3854. [PMID: 17353275 PMCID: PMC1900006 DOI: 10.1128/mcb.01662-06] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/08/2006] [Accepted: 02/20/2007] [Indexed: 12/14/2022] Open
Abstract
The cooperation of stem cell factor (SCF) and erythropoietin (Epo) is required to induce renewal divisions in erythroid progenitors, whereas differentiation to mature erythrocytes requires the presence of Epo only. Epo and SCF activate common signaling pathways such as the activation of protein kinase B (PKB) and the subsequent phosphorylation and inactivation of Foxo3a. In contrast, only Epo activates Stat5. Both Foxo3a and Stat5 promote erythroid differentiation. To understand the interplay of SCF and Epo in maintaining the balance between renewal and differentiation during erythroid development, we investigated differential Foxo3a target regulation by Epo and SCF. Expression profiling revealed that a subset of Foxo3a targets was not inhibited but was activated by Epo. One of these genes was Cited2. Transcriptional control of Epo/Foxo3a-induced Cited2 was studied and compared with that of the Epo-repressed Foxo3a target Btg1. We show that in response to Epo, the allegedly growth-inhibitory factor Foxo3a associates with the allegedly growth-stimulatory factor Stat5 in the nucleus, which is required for Epo-induced Cited2 expression. In contrast, Btg1 expression is controlled by the cooperation of Foxo3a with cyclic AMP- and Jun kinase-dependent Creb family members. Thus, Foxo3a not only is an effector of PKB but also integrates distinct signals to regulate gene expression in erythropoiesis.
Collapse
Affiliation(s)
- Walbert J Bakker
- Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Inoue A, Kuroyanagi Y, Terui K, Moi P, Ikuta T. Negative regulation of gamma-globin gene expression by cyclic AMP-dependent pathway in erythroid cells. Exp Hematol 2004; 32:244-53. [PMID: 15003309 DOI: 10.1016/j.exphem.2003.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 12/04/2003] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Fetal hemoglobin inducers such as hemin, butyrate, and hydroxyurea stimulate gamma-globin gene expression by activating the cyclic GMP (cGMP)-dependent pathway. Although cGMP activates the cyclic AMP (cAMP)-dependent pathway by suppressing cGMP-inhibited phosphodiesterase 3 (PDE3), the effects of the cAMP-dependent pathway on gamma-globin gene expression are unknown. MATERIALS AND METHODS The cAMP-dependent pathway was activated in K562 cells using the adenylate cyclase activator forskolin. Expression of gamma-globin mRNA was examined by primer extension, and transcriptional activity of the gamma-globin gene promoter was determined by reporter gene assays. RESULTS PDE3 was expressed in K562 cells at a high level. The cAMP-dependent pathway was found to be activated in K562 cells in which the cGMP-dependent pathway was activated by hemin. Activation of the cAMP-dependent pathway by forskolin inhibited hemin-induced expression of gamma-globin mRNA and decreased transcriptional activity of the gamma-globin gene promoter. The levels of phosphorylation of mitogen-activated protein kinases (MAPKs) were not affected by the cAMP-dependent pathway. CONCLUSIONS These results suggested that the cAMP-dependent pathway, which is independent of MAPK pathways, plays a negative role in gamma-globin gene expression in K562 cells. cAMP and cGMP may have differential roles in the regulation of gamma-globin gene expression in erythroid cells.
Collapse
Affiliation(s)
- Akio Inoue
- Laboratory of Molecular Hematology, Center for Human Genetics, Boston University School of Medicine, Boston, Mass. 02118-2394, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
The role of cyclic AMP (cAMP) as second messenger in erythropoiesis has been suggested in the early 1980s. However, careful analysis showed that cAMP is not generated in direct response to the main erythropoiesis-controlling cytokines such as erythropoietin (Epo). As a result, cAMP disappeared from the central stage in research of erythropoiesis. Instead, other signal transduction pathways, including the Ras/extracellular regulated kinase (ERK)-pathway, the phosphatidylinositol 3-kinase (P13K) and the signal transducer and activator of transcription (STAT5)-pathways, have been found and explored. In concert, these signaling pathways control the transcriptional machinery of erythroid cells. Although cAMP is not directly generated in response to Epo stimulation, it has recently been demonstrated that increased cAMP-levels and in particular the cAMP-dependent protein kinase A (PKA) can modulate erythroid signal transduction pathways. In some cases, like the ERK-signaling pathway, PKA affects signal transduction by regulating the balance between specific phosphatases and kinases. In other cases, such as the STAT5 pathway, PKA enhances Epo signaling by inducing recruitment of additional co-regulators of transcription. In addition to STAT5, PKA also activates other transcription factors that are required for erythroid gene expression. This review discusses the impact of cAMP/PKA on Epo-mediated signaling pathways and summarizes the role of cAMP in malignant erythropoiesis.
Collapse
Affiliation(s)
- Arjen-Kars Boer
- Division of Hematology, Department of Medicine, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | |
Collapse
|
6
|
Affiliation(s)
- Frank M Torti
- Department of Cancer Biology and Biochemistry and the Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
7
|
Kramer MF, Gunaratne P, Ferreira GC. Transcriptional regulation of the murine erythroid-specific 5-aminolevulinate synthase gene. Gene 2000; 247:153-66. [PMID: 10773455 DOI: 10.1016/s0378-1119(00)00103-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
5-Aminolevulinate synthase (ALAS) catalyzes the first step of the heme biosynthetic pathway in mammalian cells. Separate genes encode the two isoforms: ubiquitously expressed ALAS (ALAS1) and erythroid-specific ALAS (ALAS2). Transcription of the ALAS2 gene is only activated during erythroid cell differentiation. This stimulation allows for the formation of hemoglobin-specific heme. The 5'-flanking region of the mouse ALAS2 gene was studied in order to define its erythroid-specific function in transcriptional activation. Putative binding sites for the erythroid-specific nuclear factors GATA-1, NF-E2, and EKLF were identified within the first 300bp region of the mouse ALAS2 5'-flanking region. However, this 300bp region alone did not efficiently activate transient expression in erythroid MEL and K562 cell lines. Additional DNA regulatory sequences found within 300-718bp upstream of the transcription start site were required for maximal transcriptional activation, even though these regions stimulated similar expression in the non-erythroid HeLa and NIH/3T3 cells. This suggests that cis-acting elements present in the 5'-flanking region are not responsible for maintenance of transcriptional silencing in non-erythroid cell lines and that tissue-specific regulation of ALAS2 depends on other regions of the gene or on chromatin remodeling. A putative hypoxia inducible factor 1 (HIF-1) response element was identified within the 300-718bp upstream region. Significantly, two proximal GATA-1-binding sites (-118/-113 and -98/-93) and a region located within -518 to -315bp of the mouse ALAS2 promoter were essential for transcriptional activation during chemically induced differentiation of MEL cells, implying their importance in conferring erythroid specificity to the ALAS2 transcriptional activation. This is the first study to delimit the cis-acting region responsible for activation of the ALAS2 promoter upon dimethyl-sulfoxide induction in MEL cells.
Collapse
Affiliation(s)
- M F Kramer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, FL 33612-4799, USA
| | | | | |
Collapse
|
8
|
Regulation of the Erythroid Transcription Factor NF-E2 by Cyclic Adenosine Monophosphate–Dependent Protein Kinase. Blood 1998. [DOI: 10.1182/blood.v91.9.3193.3193_3193_3201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Activation of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (A-kinase) promotes hemoglobin synthesis in several erythropoietin-dependent cell lines, whereas A-kinase–deficient murine erythroleukemia (MEL) cells show impaired hemoglobin production; A-kinase may regulate the erythroid transcription factor NF-E2 by directly phosphorylating its p45 subunit or by changing p45 interactions with other proteins. We have mapped the major A-kinase phosphorylation site of p45 to Ser169; Ala substitution for Ser169 resulted in a protein that was no longer phosphorylated by A-kinase in vitro or in vivo. The mutant protein formed NF-E2 complexes that bound to DNA with the same affinity as wild-type p45 and functioned normally to restore β-globin gene expression in a p45-deficient MEL cell line. Transactivation properties of the (Ser169 → Ala) mutant p45 were also indistinguishable from wild-type p45 when Gal4-p45 fusion constructs were tested with a Gal4-dependent reporter gene. Transactivation of the reporter by both mutant and wild-type p45 was significantly enhanced when A-kinase was activated by membrane-permeable cAMP analogs or when cells were cotransfected with the catalytic subunit of A-kinase. Stimulation of p45 transactivation by A-kinase required only the N-terminal transactivation domain of p45, suggesting that A-kinase regulates the interaction of p45 with downstream effectors.
Collapse
|
9
|
Regulation of the Erythroid Transcription Factor NF-E2 by Cyclic Adenosine Monophosphate–Dependent Protein Kinase. Blood 1998. [DOI: 10.1182/blood.v91.9.3193] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractActivation of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (A-kinase) promotes hemoglobin synthesis in several erythropoietin-dependent cell lines, whereas A-kinase–deficient murine erythroleukemia (MEL) cells show impaired hemoglobin production; A-kinase may regulate the erythroid transcription factor NF-E2 by directly phosphorylating its p45 subunit or by changing p45 interactions with other proteins. We have mapped the major A-kinase phosphorylation site of p45 to Ser169; Ala substitution for Ser169 resulted in a protein that was no longer phosphorylated by A-kinase in vitro or in vivo. The mutant protein formed NF-E2 complexes that bound to DNA with the same affinity as wild-type p45 and functioned normally to restore β-globin gene expression in a p45-deficient MEL cell line. Transactivation properties of the (Ser169 → Ala) mutant p45 were also indistinguishable from wild-type p45 when Gal4-p45 fusion constructs were tested with a Gal4-dependent reporter gene. Transactivation of the reporter by both mutant and wild-type p45 was significantly enhanced when A-kinase was activated by membrane-permeable cAMP analogs or when cells were cotransfected with the catalytic subunit of A-kinase. Stimulation of p45 transactivation by A-kinase required only the N-terminal transactivation domain of p45, suggesting that A-kinase regulates the interaction of p45 with downstream effectors.
Collapse
|
10
|
Prasad KS, Brandt SJ. Target-dependent effect of phosphorylation on the DNA binding activity of the TAL1/SCL oncoprotein. J Biol Chem 1997; 272:11457-62. [PMID: 9111058 DOI: 10.1074/jbc.272.17.11457] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the TAL1 (or SCL) gene, initially identified through its involvement by a recurrent chromosomal translocation, is the most frequent gain-of-function mutation recognized in T-cell acute lymphoblastic leukemia. The translational products of this gene contain the basic domain helix-loop-helix motif characteristic of a family of transcription factors that bind to a consensus nucleotide sequence termed the E-box. Previous work established that the TAL1 proteins are phosphorylated exclusively on serine and identified Ser122 as a substrate for the mitogen-activated protein kinase ERK-1. We provide evidence that an additional serine residue, Ser172, located in a conserved region proximal to the DNA binding domain and sharing homology with a similarly positioned sequence in the HLH oncoprotein LYL1, can be phosphorylated in vitro and in vivo by the catalytic subunit of cAMP-dependent protein kinase. Phosphorylation was found to alter TAL1 DNA binding activity in a target-dependent manner that was influenced by both the specific CANNTG E-box core motif and its flanking sequences. In contrast, the ability of TAL1 to interact with the E2A gene product E12 and its subcellular localization in transfected COS cells were unaffected by Ser172 phosphorylation. These results suggest this serine residue has a regulatory function and indicate a mechanism by which phosphorylation could affect DNA binding site discrimination.
Collapse
Affiliation(s)
- K S Prasad
- Department of Medicine,Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
11
|
Vittet D, Duperray C, Chevillard C. Cyclic-AMP inhibits cell growth and negatively interacts with platelet membrane glycoprotein expression on the Dami human megakaryoblastic cell line. J Cell Physiol 1995; 163:645-55. [PMID: 7539815 DOI: 10.1002/jcp.1041630327] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Intracellular signaling processes by which hematopoietic growth factors regulate megakaryocytopoiesis remain incompletely understood. Cyclic AMP (cAMP) has been shown to be implicated in the regulation of growth and differentiation in various normal and malignant cell types. Since a few studies have suggested the possible involvement of the cAMP pathway as one of the intracellular mechanisms whereby megakaryocytopoiesis may be regulated, we investigated the functional effects of cAMP on the human megakaryoblastic Dami cell line. We observed that exposure of Dami cells to cAMP analogs or to agents elevating intracellular cAMP levels yielded dose-dependent cell growth inhibition. Cell cycle progression analysis of cells predominantly synchronized at the G1/S boundary by prior treatment with hydroxyurea revealed that cAMP transiently accumulated cells in the G2/M phase, then slowing down cell cycle. On the other hand, immunofluorescence and Northern blot analysis of megakaryocytic differentiation marker expression showed that probes we have used significantly inhibited GPIb expression. Moreover, although these agents used alone did not affect GPIIb/IIIa expression, they markedly reversed phorbol ester-induced GPIIb/IIIa expression increase. These inhibitory cAMP actions on glycoprotein expression were not the result of cell cycle perturbation since we observed that GPIb and GPIIb/IIIa expression were not cell cycle dependent. All these data may then be consistent with a potential negative regulatory role of the cAMP intracellular signaling pathway during megakaryocytopoiesis.
Collapse
Affiliation(s)
- D Vittet
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 300, Faculté de Pharmacie, Montpellier, France
| | | | | |
Collapse
|
12
|
Garingo AD, Suhasini M, Andrews NC, Pilz RB. cAMP-dependent protein kinase is necessary for increased NF-E2.DNA complex formation during erythroleukemia cell differentiation. J Biol Chem 1995; 270:9169-77. [PMID: 7721832 DOI: 10.1074/jbc.270.16.9169] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
When murine erythroleukemia (MEL) cells are induced to differentiate by hexamethylene bisacetamide (HMBA), erythroid-specific genes are transcriptionally activated; however, transcriptional activation of these genes is severely impaired in cAMP-dependent protein kinase (protein kinase A)-deficient MEL cells. The transcription factor NF-E2, composed of a 45-kDa (p45) and an 18-kDa (p18) subunit, is essential for enhancer activity of the globin locus control regions (LCRs). DNA binding of NF-E2 and alpha-globin LCR enhancer activity was significantly less in HMBA-treated protein kinase A-deficient cells compared to cells containing normal protein kinase A activity; DNA binding of several other transcription factors was the same in both cell types. In parental cells, HMBA treatment and/or prolonged activation of protein kinase A increased the amount of NF-E2.DNA complexes without change in DNA binding affinity; the expression of p45 and p18 was the same under all conditions. p45 and p18 were phosphorylated by protein kinase A in vitro, but the phosphorylation did not affect NF-E2.DNA complexes, suggesting that protein kinase A regulates NF-E2.DNA complex formation indirectly, e.g. by altering expression of a regulatory factor(s). Thus, protein kinase A appears to be necessary for increased NF-E2.DNA complex formation during differentiation of MEL cells and may influence erythroid-specific gene expression through this mechanism.
Collapse
Affiliation(s)
- A D Garingo
- Department of Medicine, University of California at San Diego, La Jolla 92093-0652, USA
| | | | | | | |
Collapse
|