1
|
Huang H, Liang X, Li S, Yan Y, Li S, Qiu C, Ye Z, Zhu Y, Shen D, Lin Y, Wang L, Chen N, Yao Y, Zhao X, Wu F, Shi X, Kou L, Chen R, Yao Q. Chondrocyte-targeted bilirubin/rapamycin carrier-free nanoparticles alleviate oxidative stress and modulate autophagy for osteoarthritis therapy. J Control Release 2025; 378:517-533. [PMID: 39701459 DOI: 10.1016/j.jconrel.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic disease, characterized by the destruction of joint cartilage and synovitis, affects over 7 % of people worldwide. Disease-modifying treatments for OA still face significant challenges. Chondrocytes, as the exclusive cellular component of articular cartilage, play a pivotal role in synthesizing the intricate matrix of cartilage, thereby assuming a critical responsibility in facilitating its renewal and repair processes. However, oxidative stress within chondrocytes and subsequent apoptotic cell death plays significant roles in the progression of OA. Therefore, targeting apoptosis inhibition and mitigation of oxidative stress in chondrocytes represents a promising therapeutic strategy for OA. This study develops a type II collagen-targeting peptide (WYRGRLC) modified bilirubin/rapamycin carrier-free nanoparticle (PP/BRRP) and evaluate its therapeutic potential for OA. The PP/BRRP system exhibits remarkable chondrocyte-targeting ability, enabling the rupture of highly oxidized chondrocytes and subsequent release of bilirubin and rapamycin. This dual payload effectively scavenges reactive oxygen species, triggers autophagy, and suppresses the mTOR pathway, thereby augmenting anti-inflammatory and anti-apoptotic effects. The in vivo experiments further validate the retention and therapeutic efficacy of PP/BRRP in rat joints affected by OA. Overall, PP/BRRP exhibits significant potential for intervention and treatment of OA.
Collapse
Affiliation(s)
- Huirong Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xindan Liang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shengjie Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yuqi Yan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shize Li
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Chenyu Qiu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhanzheng Ye
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yixuan Zhu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Dingchao Shen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yinhao Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Luhui Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Nuo Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yinsha Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyu Zhao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Fugen Wu
- Department of Pediatric, The First People's Hospital of Wenling, Taizhou, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Pediatrics Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
2
|
Leite CBG, Ormsby RT, Mekhail J, Charles JF, Görtz S, Merkely G, Lattermann C. Culturing Osteochondral Explants Under Rotary Shaking or After Removing Bone Marrow Elements Increases Explant Cellular Viability. Am J Sports Med 2024; 52:2384-2390. [PMID: 39101736 DOI: 10.1177/03635465241254401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
BACKGROUND Reduced viability in the deepest zones of osteochondral allografts (OCAs) can weaken the subchondral interface, potentially increasing the risk of failure. This reduction may result from nutritional imbalances due to uneven media distribution or interference from bone marrow elements. PURPOSE To investigate whether culturing OCAs using a rotary shaker or removing the bone marrow elements would increase graft cellular viability. STUDY DESIGN Controlled laboratory study. METHODS Bovine osteochondral explants were stored for 28 days at 4°C under 3 different conditions (n = 6 explants per group): static (control group), rotary shaker at 150 rpm (shaker group), and static after removal of bone marrow elements using a Waterpik device (Waterpik group). Chondrocyte viability was assessed using live/dead staining across the entire tissue and in each zone (superficial, middle, deep). Subchondral bone viability was assessed using TUNEL (terminal deoxynucleotidal transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling) staining to detect apoptotic cells. RESULTS Both shaker (64.2%; P = .010) and Waterpik (65.6%; P = .005) conditions showed significantly higher chondrocyte viability compared with control (49.8%). When samples were analyzed by zone, the shaker and Waterpik groups displayed higher cellular viability at the middle zone (shaker = 60.6%, P < .001; Waterpik = 56.1%, P < .001) and deep zone (shaker = 63.1%, P = .018; Waterpik = 61.5%, P = .025) than the control group (25.6% at middle zone; 32.8% at deep zone). Additionally, shaker (56.7%; P = .018) and Waterpik (51.4%; P = .007) groups demonstrated a lower percentage of apoptotic cells in subchondral bone compared with control (88.0%). No significant differences were observed between the shaker and Waterpik groups in any of the analyses. CONCLUSION Both rotary shaking and removal of bone marrow elements during storage of osteochondral explants led to higher chondrocyte viability at the middle and deep zones of the graft compared with the static storage condition. Enhancing nutrition delivery to the graft could improve its quality, potentially improving outcomes of OCA transplantation. CLINICAL RELEVANCE The use of a rotary shaker or the removal of bone marrow elements may significantly improve the culture conditions, increasing graft viability and integrity after OCA storage.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Renee T Ormsby
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Mekhail
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Görtz
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Jung J, Habib M, Morrissette LJ, Timmons SC, Maerz T, Fields AJ. Non-enzymatic glycation reduces glucose transport in the human cartilage endplate independently of matrix porosity or proteoglycan content. JOR Spine 2024; 7:e1297. [PMID: 38222801 PMCID: PMC10782066 DOI: 10.1002/jsp2.1297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 01/16/2024] Open
Abstract
Background Intervertebral disc degeneration is associated with low back pain, which is a leading cause of disability. While the precise causes of disc degeneration are unknown, inadequate nutrient and metabolite transport through the cartilage endplate (CEP) may be one important factor. Prior work shows that CEP transport properties depend on the porosity of the CEP matrix, but little is known about the role of CEP characteristics that could influence transport properties independently from porosity. Here, we show that CEP transport properties depend on the extent of non-enzymatic glycation of the CEP matrix. Methods and Results Using in vitro ribosylation to induce non-enzymatic glycation and promote the formation of advanced glycation end products, we found that ribosylation reduced glucose partition coefficients in human cadaveric lumbar CEP tissues by 10.7%, on average, compared with donor- and site-matched CEP tissues that did not undergo ribosylation (p = 0.04). These reductions in glucose uptake were observed in the absence of differences in CEP porosity (p = 0.89) or in the amounts of sulfated glycosaminoglycans (sGAGs, p = 0.47) or collagen (p = 0.61). To investigate whether ribosylation altered electrostatic interactions between fixed charges on the sGAG molecules and the mobile free ions, we measured the charge density in the CEP matrix using equilibrium partitioning of a cationic contrast agent using micro-computed tomography. After contrast enhancement, mean X-ray attenuation was 11.9% lower in the CEP tissues that had undergone ribosylation (p = 0.02), implying the CEP matrix was less negatively charged. Conclusions Taken together, these findings indicate that non-enzymatic glycation negatively impacts glucose transport in the CEP independent of matrix porosity or sGAG content and that the effects may be mediated by alterations to matrix charge density.
Collapse
Affiliation(s)
- Jae‐Young Jung
- Department of Orthopaedic SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mohamed Habib
- Department of Orthopaedic SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Luke J. Morrissette
- Department of Natural SciencesLawrence Technological UniversitySouthfieldMichiganUSA
| | - Shannon C. Timmons
- Department of Natural SciencesLawrence Technological UniversitySouthfieldMichiganUSA
| | - Tristan Maerz
- Departments of Orthopaedic Surgery and Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Aaron J. Fields
- Department of Orthopaedic SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
4
|
Iacobescu GL, Iacobescu L, Popa MIG, Covache-Busuioc RA, Corlatescu AD, Cirstoiu C. Genomic Determinants of Knee Joint Biomechanics: An Exploration into the Molecular Basis of Locomotor Function, a Narrative Review. Curr Issues Mol Biol 2024; 46:1237-1258. [PMID: 38392197 PMCID: PMC10888373 DOI: 10.3390/cimb46020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, the nexus between genetics and biomechanics has garnered significant attention, elucidating the role of genomic determinants in shaping the biomechanical attributes of human joints, specifically the knee. This review seeks to provide a comprehensive exploration of the molecular basis underlying knee joint locomotor function. Leveraging advancements in genomic sequencing, we identified specific genetic markers and polymorphisms tied to key biomechanical features of the knee, such as ligament elasticity, meniscal resilience, and cartilage health. Particular attention was devoted to collagen genes like COL1A1 and COL5A1 and their influence on ligamentous strength and injury susceptibility. We further investigated the genetic underpinnings of knee osteoarthritis onset and progression, as well as the potential for personalized rehabilitation strategies tailored to an individual's genetic profile. We reviewed the impact of genetic factors on knee biomechanics and highlighted the importance of personalized orthopedic interventions. The results hold significant implications for injury prevention, treatment optimization, and the future of regenerative medicine, targeting not only knee joint health but joint health in general.
Collapse
Affiliation(s)
- Georgian-Longin Iacobescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Loredana Iacobescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Mihnea Ioan Gabriel Popa
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Catalin Cirstoiu
- Orthopaedics and Traumatology Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
5
|
Morejon A, Schwartz G, Best TM, Travascio F, Jackson AR. Effect of molecular weight and tissue layer on solute partitioning in the knee meniscus. OSTEOARTHRITIS AND CARTILAGE OPEN 2023; 5:100360. [PMID: 37122844 PMCID: PMC10133802 DOI: 10.1016/j.ocarto.2023.100360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Knee meniscus tissue is partly vascularized, meaning that nutrients must be transported through the extracellular matrix of the avascular portion to reach resident cells. Similarly, drugs used as therapeutic agents to treat meniscal pathologies rely on transport through the tissue. The driving force of diffusive transport is the gradient of concentration, which depends on molecular solubility. The meniscus is organized into a core region sandwiched between the tibial and femoral superficial layers. Structural differences exist across meniscal regions; therefore, regional differences in solubility are also hypothesized. Methods Samples from the core, tibial and femoral layers were obtained from 5 medial and 5 lateral porcine menisci. The partition coefficient (K) of fluorescein, 3 kDa and 40 kDa dextrans in the layers of the meniscus was measured using an equilibration experiment. The effect of meniscal compartment, layer, and solute molecular weight on K was analyzed using a three-way ANOVA. Results K ranged from a high of ∼2.9 in fluorescein to a low of ∼0.1 in 40 kDa dextran and was inversely related to the solute molecular weight across all tissue regions. Tissue layer only had a significant effect on partitioning of 40k Dex solute, which was lower in the tibial surface layer relative to the core (p = 0.032). Conclusion This study provides insight into depth-dependent partitioning in the meniscus, indicating the limiting effect of the meniscus superficial layer on solubility increases with solute molecular size. This illustrates how the surface layers could potentially reduce the effectiveness of drug delivery therapies incorporating large molecules (>40 kDa).
Collapse
Affiliation(s)
- Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
| | - Gabi Schwartz
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, USA
- UHealth Sports Medicine Institute, Coral Gables, FL, USA
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedic Surgery, University of Miami, Coral Gables, FL, USA
- Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL, USA
- Corresponding author. College of Engineering, University of Miami, 1251 Memorial Drive, MEB 276, Coral Gables, FL 33146, USA.
| | - Alicia R. Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Corresponding author. College of Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 USA.
| |
Collapse
|
6
|
Kim B, Bonassar LJ. Understanding the Influence of Local Physical Stimuli on Chondrocyte Behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:31-44. [PMID: 37052844 DOI: 10.1007/978-3-031-25588-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Investigating the mechanobiology of chondrocytes is challenging due to the complex micromechanical environment of cartilage tissue. The innate zonal differences and poroelastic properties of the tissue combined with its heterogeneous composition create spatial- and temporal-dependent cell behavior, which further complicates the investigation. Despite the numerous challenges, understanding the mechanobiology of chondrocytes is crucial for developing strategies for treating cartilage related diseases as chondrocytes are the only cell type within the tissue. The effort to understand chondrocyte behavior under various mechanical stimuli has been ongoing over the last 50 years. Early studies examined global biosynthetic behavior under unidirectional mechanical stimulus. With the technological development in high-speed confocal imaging techniques, recent studies have focused on investigating real-time individual and collective cell responses to multiple / combined modes of mechanical stimuli. Such efforts have led to tremendous advances in understanding the influence of local physical stimuli on chondrocyte behavior. In addition, we highlight the wide variety of experimental techniques, spanning from static to impact loading, and analysis techniques, from biochemical assays to machine learning, that have been utilized to study chondrocyte behavior. Finally, we review the progression of hypotheses about chondrocyte mechanobiology and provide a perspective on the future outlook of chondrocyte mechanobiology.
Collapse
Affiliation(s)
- Byumsu Kim
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Schwartz G, Morejon A, Best TM, Jackson AR, Travascio F. Strain-Dependent Diffusivity of Small and Large Molecules in Meniscus. J Biomech Eng 2022; 144:111010. [PMID: 35789377 PMCID: PMC9309715 DOI: 10.1115/1.4054931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/28/2022] [Indexed: 11/08/2022]
Abstract
Due to lack of full vascularization, the meniscus relies on diffusion through the extracellular matrix to deliver small (e.g., nutrients) and large (e.g., proteins) to resident cells. Under normal physiological conditions, the meniscus undergoes up to 20% compressive strains. While previous studies characterized solute diffusivity in the uncompressed meniscus, to date, little is known about the diffusive transport under physiological strain levels. This information is crucial to fully understand the pathophysiology of the meniscus. The objective of this study was to investigate strain-dependent diffusive properties of the meniscus fibrocartilage. Tissue samples were harvested from the central portion of porcine medial menisci and tested via fluorescence recovery after photobleaching to measure diffusivity of fluorescein (332 Da) and 40 K Da dextran (D40K) under 0%, 10%, and 20% compressive strain. Specifically, average diffusion coefficient and anisotropic ratio, defined as the ratio of the diffusion coefficient in the direction of the tissue collagen fibers to that orthogonal, were determined. For all the experimental conditions investigated, fluorescein diffusivity was statistically faster than that of D40K. Also, for both molecules, diffusion coefficients significantly decreased, up to ∼45%, as the strain increased. In contrast, the anisotropic ratios of both molecules were similar and not affected by the strain applied to the tissue. This suggests that compressive strains used in this study did not alter the diffusive pathways in the meniscus. Our findings provide new knowledge on the transport properties of the meniscus fibrocartilage that can be leveraged to further understand tissue pathophysiology and approaches to tissue restoration.
Collapse
Affiliation(s)
- Gabi Schwartz
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Andy Morejon
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146
| | - Thomas M Best
- Department of Orthopaedic Surgery, University of Miami, Miami, FL 33136; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146;UHealth Sports Medicine Institute, Coral Gables, FL 33146
| | - Alicia R Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146; Department of Orthopaedic Surgery, University of Miami, Miami, FL 33136; Max Biedermann Institute for Biomechanics at Mount, Sinai Medical Center, Miami Beach, FL 33140
| |
Collapse
|
8
|
Gao W, Hasan H, Anderson DE, Lee W. The Role of Mechanically-Activated Ion Channels Piezo1, Piezo2, and TRPV4 in Chondrocyte Mechanotransduction and Mechano-Therapeutics for Osteoarthritis. Front Cell Dev Biol 2022; 10:885224. [PMID: 35602590 PMCID: PMC9114637 DOI: 10.3389/fcell.2022.885224] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/29/2022] Open
Abstract
Mechanical factors play critical roles in the pathogenesis of joint disorders like osteoarthritis (OA), a prevalent progressive degenerative joint disease that causes debilitating pain. Chondrocytes in the cartilage are responsible for extracellular matrix (ECM) turnover, and mechanical stimuli heavily influence cartilage maintenance, degeneration, and regeneration via mechanotransduction of chondrocytes. Thus, understanding the disease-associated mechanotransduction mechanisms can shed light on developing effective therapeutic strategies for OA through targeting mechanotransducers to halt progressive cartilage degeneration. Mechanosensitive Ca2+-permeating channels are robustly expressed in primary articular chondrocytes and trigger force-dependent cartilage remodeling and injury responses. This review discusses the current understanding of the roles of Piezo1, Piezo2, and TRPV4 mechanosensitive ion channels in cartilage health and disease with a highlight on the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA.
Collapse
Affiliation(s)
- Winni Gao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Hamza Hasan
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Devon E. Anderson
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Whasil Lee
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
9
|
Huang Y, Chen C, Wang F, Chen G, Cheng S, Tang Z, Li Z, Gong X, Yang L. Observation of Solute Transport between Articular Cartilage and Subchondral Bone in Live Mice. Cartilage 2021; 13:398S-407S. [PMID: 32840114 PMCID: PMC8804871 DOI: 10.1177/1947603520951627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To establish a method for investigating the permeability of calcified cartilage zone (CCZ) and to observe solute transport between articular cartilage (AC) and subchondral bone (SB) through intact CCZ in vivo. DESIGN We developed a novel fixing device combined with un-decalcified fluorescence observation method to address the permeability of CCZ in live mice. Twenty-four Balb/c female mice aged 1 to 8 months were used to observe the development of CCZ. Eighty-four Balb/c female mice (aged 1 or 6 months) with mature or immature CCZ of distal femur were used to investigate the permeability of intact CCZ in vivo. Diffusivity of rhodamine B (476 Da) and tetramethyl-rhodamine isothicyanate-dextran (TRITC-Dextran, 20 kDa) was tested from AC to SB in 0 minutes, 1 minute, 15 minutes, 30 minutes, 1 hour, and 2 hours. None diffused knee joints (0 minutes) served as blank control, while in vitro immersion of distal femurs in rhodamine B or TRITC-Dextran for 72 hours served as positive control. RESULTS CCZ was well developed in 6-month mice. Both tracers penetrated immature CCZ down to SB in less than 1 hour in live mice, while the diffusion of both tracers decreased rapidly at tidemark in all testing time points. CONCLUSION Current study provided direct evidence of blocking effect of CCZ in solute transportation during short diffusion period in live animal, indicating the important role of CCZ in joint development and microenvironment maintenance.
Collapse
Affiliation(s)
- Yang Huang
- Center for Joint Surgery, Southwest
Hospital, Third Military Medical University (Army Medical University), Chongqing,
People’s Republic of China
| | - Cheng Chen
- Center for Joint Surgery, Southwest
Hospital, Third Military Medical University (Army Medical University), Chongqing,
People’s Republic of China
| | - Fuyou Wang
- Center for Joint Surgery, Southwest
Hospital, Third Military Medical University (Army Medical University), Chongqing,
People’s Republic of China
| | - Guangxin Chen
- Center for Joint Surgery, Southwest
Hospital, Third Military Medical University (Army Medical University), Chongqing,
People’s Republic of China
| | - Shidi Cheng
- Hematology Department, Army Medical
Center of PLA, Chongqing, People’s Republic of China
| | - Zhexiong Tang
- Center for Joint Surgery, Southwest
Hospital, Third Military Medical University (Army Medical University), Chongqing,
People’s Republic of China
| | - Zheng Li
- Hematology Department, Army Medical
Center of PLA, Chongqing, People’s Republic of China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest
Hospital, Third Military Medical University (Army Medical University), Chongqing,
People’s Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest
Hospital, Third Military Medical University (Army Medical University), Chongqing,
People’s Republic of China
| |
Collapse
|
10
|
Topographic features of nano-pores within the osteochondral interface and their effects on transport properties -a 3D imaging and modeling study. J Biomech 2021; 123:110504. [PMID: 34052773 DOI: 10.1016/j.jbiomech.2021.110504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022]
Abstract
Recent insights suggest that the osteochondral interface plays a central role in maintaining healthy articulating joints. Uncovering the underlying transport mechanisms is key to the understanding of the cross-talk between articular cartilage and subchondral bone. Here, we describe the mechanisms that facilitate transport at the osteochondral interface. Using scanning electron microscopy (SEM), we found a continuous transition of mineralization architecture from the non-calcified cartilage towards the calcified cartilage. This refurbishes the classical picture of the so-called tidemark; a well-defined discontinuity at the osteochondral interface. Using focused-ion-beam SEM (FIB-SEM) on one osteochondral plug derived from a human cadaveric knee, we elucidated that the pore structure gradually varies from the calcified cartilage towards the subchondral bone plate. We identified nano-pores with radius of 10.71 ± 6.45 nm in calcified cartilage to 39.1 ± 26.17 nm in the subchondral bone plate. The extracted pore sizes were used to construct 3D pore-scale numerical models to explore the effect of pore sizes and connectivity among different pores. Results indicated that connectivity of nano-pores in calcified cartilage is highly compromised compared to the subchondral bone plate. Flow simulations showed a permeability decrease by about 2000-fold and solute transport simulations using a tracer (iodixanol, 1.5 kDa with a free diffusivity of 2.5 × 10-10 m2/s) showed diffusivity decrease by a factor of 1.5. Taken together, architecture of the nano-pores and the complex mineralization pattern in the osteochondral interface considerably impacts the cross-talk between cartilage and bone.
Collapse
|
11
|
Ngo L, Knothe Tate ML. Osteoarthritis: New Strategies for Transport and Drug Delivery Across Length Scales. ACS Biomater Sci Eng 2020; 6:6009-6020. [PMID: 33449636 DOI: 10.1021/acsbiomaterials.0c01081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is the fourth leading cause of disability in adults. Yet, few viable pharmaceutical options exist for pain abatement and joint restoration, aside from joint replacement at late and irreversible stages of the disease. From the first onset of OA, as joint pain increases, individuals with arthritis increasingly reach for drug delivery solutions, from taking oral glycosaminoglycans (GAGs) bought over the counter from retail stores (e.g., Costco) to getting injections of viscous, GAG-containing synovial fluid supplement in the doctor's office. Little is known regarding the efficacy of delivery mode and/or treatment by such disease-modulating agents. This Review addresses the interplay of mechanics and biology on drug delivery to affected joints, which has profound implications for molecular transport in joint health and (patho)physiology. Multiscale systems biology approaches lend themselves to understand the relationship between the cell and joint health in OA and other joint (patho)physiologies. This Review first describes OA-related structural and functional changes in the context of the multilength scale anatomy of articular joints. It then summarizes and categorizes, by size and charge, published molecular transport studies, considering changes in permeability induced through inflammatory pathways. Finally, pharmacological interventions for OA are outlined in the context of molecular weights and modes of drug delivery. Taken together, the current state-of-the-art points to a need for new drug delivery strategies that harness systems-based interactions underpinning molecular transport and maintenance of joint structure and function at multiple length scales from molecular agents to cells, tissues, and tissue compartments which together make up articular joints. Cutting edge and cross-length and -time scale imaging represents a key discovery enabling technology in this process.
Collapse
Affiliation(s)
- Lucy Ngo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Melissa L Knothe Tate
- Inaugural Paul Trainor Chair of Biomedical Engineering, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
12
|
Meng H, Quan Q, Yuan X, Zheng Y, Peng J, Guo Q, Wang A, Lu S. Diffusion of neutral solutes within human osteoarthritic cartilage: Effect of loading patterns. J Orthop Translat 2019; 22:58-66. [PMID: 32440500 PMCID: PMC7231982 DOI: 10.1016/j.jot.2019.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/26/2019] [Accepted: 10/28/2019] [Indexed: 11/04/2022] Open
Abstract
Objective Variation of the solute diffusion within articular cartilage is an important feature of osteoarthritis (OA) progression. For in vitro study of monitoring of the diffusion process, it is essential to simulate physiological conditions as much as possible. Our objective was to investigate the effects of loading patterns on diffusion processes of neutral solutes within osteoarthritic cartilage. Methods Osteochondral plugs were harvested from human tibial plateaus and separated into three OA stages according to modified Mankin scoring system. The samples were subjected to static or cyclic compression using a carefully designed loading device. Contrast-enhanced micro-computed tomography (CEμCT) was applied to acquire image sequences while the cartilage was being compressed. The apparent diffusion maps and diffusion coefficients were analysed, as well as histological and stereological assessments of the plugs. Results The diffusion of neutral solutes was significantly affected by the loading patterns. For OA cartilage with early and middle stages, cyclic loading accelerated contrast agent infiltration compared with static loading. However, for late-stage OA samples, no acceleration of diffusion was observed in the first 2 h because of the insufficient resilience of compressed cartilage. The accumulation of neutral solutes in an upward invasive fissure also suggested that solutes could penetrate into the fissure under cyclic loading. Conclusions To our knowledge, this is the first study to combine the cyclic compression and CEμCT scanning in the diffusion testing of human OA cartilage. This loading pattern could simulate the physiological conditions and reduce the time to reach solute equilibrium within cartilage. The diffusion data may contribute to joint drug-injection therapies for early OA. The translational potential of this article The combination of cyclic loading and CEμCT scanning enabled diffusion analysis of osteoarthritic cartilage under different compressions. A comprehensive evaluation of OA cartilage and subchondral bone may benefit from this technique. The diffusion data provide theoretical support and reference for intra-articular injection of drugs.
Collapse
Affiliation(s)
- Haoye Meng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China.,Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Qi Quan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xueling Yuan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Yudong Zheng
- School of Material Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Beijing Key Lab of Regenerative Medicine in Orthopaedics, Beijing, China
| |
Collapse
|
13
|
YANG XIUPING, SUN FENGJU, WANG LONGTAO, ZHANG CHUNQIU, ZHANG XIZHENG. SOLUTE TRANSPORT IN ARTICULAR CARTILAGE UNDER ROLLING-COMPRESSION LOAD. J MECH MED BIOL 2019. [DOI: 10.1142/s0219519419500544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Solute transport is one of the important aspects involved in maintaining the physiological activity of tissues. The mechanical environment drives nutrition in and waste out in articular cartilage due to its avascularity, which plays a key role in the biological activity of articular cartilage. The human knee joint motion is a complex interaction between different bones including relative rolling and/or sliding movements. Rolling-compression process is a typical physiological load in knee joint motion. To investigate solute transport behavior in articular cartilage under rolling-compression load, fluorescence tracers with molecular weights of 40kDa and 0.43kDa were used respectively to mark the transport in fresh articular cartilage of mature pigs. Solute fluorescence intensity changing with time and depth of cartilage layer was measured under rolling-compression load and static state, respectively, and the distribution of corresponding relative concentration was calculated by the fluorescence microscope imaging method. The experiment results show that the solute relative concentration in articular cartilage under rolling-compression load increases significantly, even up to 62.4%, comparing with that under static state, and the changes of concentration vary in different layers and that small molecular weight solute is easier to transport than relatively large molecular weight solute in articular cartilage. Therefore, rolling-compression load can promote the solute transport in cartilage, and the mechanical loading may have application in functional cartilage tissue engineering.
Collapse
Affiliation(s)
- XIUPING YANG
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin Binshuixi Road No 391, Tianjin 300384, P. R. China
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - FENGJU SUN
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - LONGTAO WANG
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - CHUNQIU ZHANG
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - XIZHENG ZHANG
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
14
|
Molecular transport in articular cartilage - what have we learned from the past 50 years? Nat Rev Rheumatol 2019; 14:393-403. [PMID: 29899547 DOI: 10.1038/s41584-018-0033-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing therapeutic molecules that target chondrocytes and locally produced inflammatory factors within arthritic cartilage is an active area of investigation. The extensive studies that have been conducted over the past 50 years have enabled the accurate prediction and reliable optimization of the transport of a wide variety of molecules into cartilage. In this Review, the factors that can be used to tune the transport kinetics of therapeutics are summarized. Overall, the most crucial factor when designing new therapeutic molecules is solute size. The diffusivity and partition coefficient of a solute both decrease with increasing solute size as indicated by molecular mass or by hydrodynamic radius. Surprisingly, despite having an effective pore size of ~6 nm, molecules of ~16 nm radius can diffuse through the cartilage matrix. Alteration of the shape or charge of a solute and the application of physiological loading to cartilage can be used to predictably improve solute transport kinetics, and this knowledge can be used to improve the development of therapeutic agents for osteoarthritis that target the cartilage.
Collapse
|
15
|
Spitters TW, Stamatialis D, Petit A, Leeuw MGD, Karperien M. In Vitro Evaluation of Small Molecule Delivery into Articular Cartilage: Effect of Synovial Clearance and Compressive Load. Assay Drug Dev Technol 2019; 17:191-200. [DOI: 10.1089/adt.2018.907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Tim W.G.M. Spitters
- Department of Developmental BioEngineering, MIRA Institute, University of Twente, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Biomaterials Science and Technology Group, MIRA Institute, University of Twente, Enschede, The Netherlands
| | | | | | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute, University of Twente, Enschede, The Netherlands
| |
Collapse
|
16
|
Multi-scale imaging techniques to investigate solute transport across articular cartilage. J Biomech 2018; 78:10-20. [DOI: 10.1016/j.jbiomech.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
|
17
|
Kleinhans KL, Jackson AR. Hydraulic permeability of meniscus fibrocartilage measured via direct permeation: Effects of tissue anisotropy, water volume content, and compressive strain. J Biomech 2018; 72:215-221. [PMID: 29605083 DOI: 10.1016/j.jbiomech.2018.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 11/30/2022]
Abstract
Hydraulic permeability is an important material property of cartilaginous tissues, governing the rate of fluid flow, which is crucial to tissue biomechanics and cellular nutrition. The effects of strain, anisotropy, and region on the hydraulic permeability in meniscus tissue have not been fully elucidated. Using a one-dimensional direct permeation test, we measured the hydraulic permeability within statically compressed porcine meniscus specimens, prepared such that the explants were in either the axial or circumferential direction of either the central or horn (axial direction only) region of the medial and lateral menisci. A constant flow was applied and the pressure difference was measured using pressure transducers. Specimens were tested under 10-20% compressive strain. Permeability values were in the range of 1.53-1.87 × 10-15 m4/Ns, which is comparable to values found in the literature. Permeability was significantly anisotropic, being higher in the circumferential direction than in the axial direction. Additionally, there was a significant negative correlation between strain level and permeability for all groups. Lastly, no statistically significant difference was found between permeability coefficients from different regional locations. This study provides important information regarding structure-function relationships in meniscal tissues that helps to elucidate biomechanics and transport in the tissue, and can aid in the understanding of the tissue's role in the function of the knee joint and onset of osteoarthritis.
Collapse
Affiliation(s)
- Kelsey L Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Alicia R Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA.
| |
Collapse
|
18
|
Kleinhans KL, Jackson AR. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage. J Biomech Eng 2017; 139:2595196. [DOI: 10.1115/1.4035537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Indexed: 12/18/2022]
Abstract
A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.
Collapse
Affiliation(s)
- Kelsey L. Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33124-0621 e-mail:
| | - Alicia R. Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 207, Coral Gables, FL 33124-0621 e-mail:
| |
Collapse
|
19
|
Kleinhans KL, McMahan JB, Jackson AR. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region. J Biomech 2016; 49:3041-3046. [DOI: 10.1016/j.jbiomech.2016.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
20
|
Wu Y, Cisewski SE, Wegner N, Zhao S, Pellegrini VD, Slate EH, Yao H. Region and strain-dependent diffusivities of glucose and lactate in healthy human cartilage endplate. J Biomech 2016; 49:2756-2762. [PMID: 27338525 DOI: 10.1016/j.jbiomech.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
Abstract
The cartilage endplate (CEP) is implicated as the main pathway of nutrient supply to the healthy human intervertebral disc (IVD). In this study, the diffusivities of nutrient/metabolite solutes in healthy CEP were assessed, and further correlated with tissue biochemical composition and structure. The CEPs from non-degenerated human IVD were divided into four regions: central, lateral, anterior, and posterior. The diffusivities of glucose and lactate were measured with a custom diffusion cell apparatus under 0%, 10%, and 20% compressive strains. Biochemical assays were conducted to quantify the water and glycosaminoglycan (GAG) contents. The Safranin-O and Ehrlich׳s hematoxylin and eosin staining and scanning electron microscopy (SEM) were performed to reveal the tissue structure of the CEP. Average diffusivities of glucose and lactate in healthy CEP were 2.68±0.93×10-7cm2/s and 4.52±1.47×10-7cm2/s, respectively. Solute diffusivities were region-dependent (p<0.0001) with the highest values in the central region, and mechanical strains impeded solute diffusion in the CEP (p<0.0001). The solute diffusivities were significantly correlated with the tissue porosities (glucose: p<0.0001, r=0.581; lactate: p<0.0001, r=0.534). Histological and SEM studies further revealed that the collagen fibers in healthy CEP are more compacted than those in the nucleus pulposus (NP) and annulus fibrosus (AF) and show no clear orientation. Compared to human AF and NP, much smaller solute diffusivities in human CEP suggested that it acts as a gateway for solute diffusion through the disc, maintaining the balance of nutritional environment in healthy human disc under mechanical loading and preventing the progression of disc degeneration.
Collapse
Affiliation(s)
- Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Sarah E Cisewski
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Nicholas Wegner
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Shichang Zhao
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Vincent D Pellegrini
- Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Elizabeth H Slate
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States.
| |
Collapse
|
21
|
Albro MB, Nims RJ, Durney KM, Cigan AD, Shim JJ, Vunjak-Novakovic G, Hung CT, Ateshian GA. Heterogeneous engineered cartilage growth results from gradients of media-supplemented active TGF-β and is ameliorated by the alternative supplementation of latent TGF-β. Biomaterials 2015; 77:173-185. [PMID: 26599624 DOI: 10.1016/j.biomaterials.2015.10.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta (TGF-β) has become one of the most widely utilized mediators of engineered cartilage growth. It is typically exogenously supplemented in the culture medium in its active form, with the expectation that it will readily transport into tissue constructs through passive diffusion and influence cellular biosynthesis uniformly. The results of this investigation advance three novel concepts regarding the role of TGF-β in cartilage tissue engineering that have important implications for tissue development. First, through the experimental and computational analysis of TGF-β concentration distributions, we demonstrate that, contrary to conventional expectations, media-supplemented exogenous active TGF-β exhibits a pronounced concentration gradient in tissue constructs, resulting from a combination of high-affinity binding interactions and a high cellular internalization rate. These gradients are sustained throughout the entire culture duration, leading to highly heterogeneous tissue growth; biochemical and histological measurements support that while biochemical content is enhanced up to 4-fold at the construct periphery, enhancements are entirely absent beyond 1 mm from the construct surface. Second, construct-encapsulated chondrocytes continuously secrete large amounts of endogenous TGF-β in its latent form, a portion of which undergoes cell-mediated activation and enhances biosynthesis uniformly throughout the tissue. Finally, motivated by these prior insights, we demonstrate that the alternative supplementation of additional exogenous latent TGF-β enhances biosynthesis uniformly throughout tissue constructs, leading to enhanced but homogeneous tissue growth. This novel demonstration suggests that latent TGF-β supplementation may be utilized as an important tool for the translational engineering of large cartilage constructs that will be required to repair the large osteoarthritic defects observed clinically.
Collapse
Affiliation(s)
- Michael B Albro
- Department of Materials, Imperial College London, London, UK
| | - Robert J Nims
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Krista M Durney
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Alexander D Cigan
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Jay J Shim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | | | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY 10027.,Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
22
|
Shafieyan Y, Khosravi N, Moeini M, Quinn TM. Diffusion of MRI and CT contrast agents in articular cartilage under static compression. Biophys J 2015; 107:485-492. [PMID: 25028890 DOI: 10.1016/j.bpj.2014.04.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022] Open
Abstract
Cartilage has a limited capacity for self-repair and focal damage can eventually lead to complete degradation of the tissue. Early diagnosis of degenerative changes in cartilage is therefore essential. Contrast agent-based computed tomography and magnetic resonance imaging provide promising tools for this purpose. However, the common assumption in clinical applications that contrast agents reach steady-state distributions within the tissue has been of questionable validity. Characterization of nonequilibrium diffusion of contrast agents rather than their equilibrium distributions may therefore be more effective for image-based cartilage assessment. Transport of contrast agent through the extracellular matrix of cartilage can be affected by tissue compression due to matrix structural and compositional changes including reduced pore size and fluid content. We therefore investigate the effects of static compression on diffusion of three common contrast agents: sodium iodide, sodium diatrizoate, and gadolinium diethylenetriamine-pentaacid (Gd-DTPA). Results showed that static compression was associated with significant decreases in diffusivities for sodium iodide and Gd-DTPA, with similar (but not significant) trends for sodium diatrizoate. Molecular mass of contrast agents affected diffusivities as the smallest one tested, sodium iodide, showed higher diffusivity than sodium diatrizoate and Gd-DTPA. Compression-associated cartilage matrix alterations such as glycosaminoglycan and fluid contents were found to correspond with variations in contrast agent diffusivities. Although decreased diffusivity was significantly correlated with increasing glycosaminoglycan content for sodium iodide and Gd-DTPA only, diffusivity significantly increased for all contrast agents by increasing fluid fraction. Because compounds based on iodine and gadolinium are commonly used for computed tomography and magnetic resonance imaging, present findings can be valuable for more accurate image-based assessment of variations in cartilage composition associated with focal injuries.
Collapse
Affiliation(s)
- Yousef Shafieyan
- Chemical Engineering Department, McGill University, Montreal, Canada
| | - Niloufar Khosravi
- Chemical Engineering Department, McGill University, Montreal, Canada
| | - Mohammad Moeini
- Chemical Engineering Department, McGill University, Montreal, Canada
| | - Thomas M Quinn
- Chemical Engineering Department, McGill University, Montreal, Canada.
| |
Collapse
|
23
|
Kleinhans KL, Jaworski LM, Schneiderbauer MM, Jackson AR. Effect of Static Compressive Strain, Anisotropy, and Tissue Region on the Diffusion of Glucose in Meniscus Fibrocartilage. J Biomech Eng 2015. [DOI: 10.1115/1.4031118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteoarthritis (OA) is a significant socio-economic concern, affecting millions of individuals each year. Degeneration of the meniscus of the knee is often associated with OA, yet the relationship between the two is not well understood. As a nearly avascular tissue, the meniscus must rely on diffusive transport for nutritional supply to cells. Therefore, quantifying structure–function relations for transport properties in meniscus fibrocartilage is an important task. The purpose of the present study was to determine how mechanical loading, tissue anisotropy, and tissue region affect glucose diffusion in meniscus fibrocartilage. A one-dimensional (1D) diffusion experiment was used to measure the diffusion coefficient of glucose in porcine meniscus tissues. Results show that glucose diffusion is strain-dependent, decreasing significantly with increased levels of compression. It was also determined that glucose diffusion in meniscus tissues is anisotropic, with the diffusion coefficient in the circumferential direction being significantly higher than that in the axial direction. Finally, the effect of tissue region was not statistically significant, comparing axial diffusion in the central and horn regions of the tissue. This study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration and related OA in the knee.
Collapse
Affiliation(s)
- Kelsey L. Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| | - Lukas M. Jaworski
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| | - Michaela M. Schneiderbauer
- Department of Orthopaedics, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, Room 4056, Miami, FL 33136 e-mail:
| | - Alicia R. Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| |
Collapse
|
24
|
Decker SGA, Moeini M, Chin HC, Rosenzweig DH, Quinn TM. Adsorption and distribution of fluorescent solutes near the articular surface of mechanically injured cartilage. Biophys J 2014; 105:2427-36. [PMID: 24268155 DOI: 10.1016/j.bpj.2013.09.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/29/2013] [Accepted: 09/04/2013] [Indexed: 11/26/2022] Open
Abstract
The development of cartilage-specific imaging agents supports the improvement of tissue assessment by minimally invasive means. Techniques for highlighting cartilage surface damage in clinical images could provide for sensitive indications of posttraumatic injury and early stage osteoarthritis. Previous studies in our laboratory have demonstrated that fluorescent solutes interact with cartilage surfaces strongly enough to affect measurement of their partition coefficients within the tissue bulk. In this study, these findings were extended by examining solute adsorption and distribution near the articular surface of mechanically injured cartilage. Using viable cartilage explants injured by an established protocol, solute distributions near the articular surface of three commonly used fluorophores (fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC), and carboxytetramethylrhodamine (TAMRA)) were observed after absorption and subsequent desorption to assess solute-specific matrix interactions and reversibility. Both absorption and desorption processes demonstrated a trend of significantly less solute adsorption at surfaces of fissures compared to adjacent intact surfaces of damaged explants or surfaces of uninjured explants. After adsorption, normalized mean surface intensities of fissured surfaces of injured explants were 6%, 40%, and 32% for FITC, TRITC, and TAMRA, respectively, compared to uninjured surfaces. Similar values were found for sliced explants and after a desorption process. After desorption, a trend of increased solute adsorption at the site of intact damaged surfaces was noted (316% and 238% for injured and sliced explants exposed to FITC). Surface adsorption of solute was strongest for FITC and weakest for TAMRA; no solutes negatively affected cell viability. Results support the development of imaging agents that highlight distinct differences between fissured and intact cartilage surfaces.
Collapse
Affiliation(s)
- Sarah G A Decker
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
25
|
Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol 2013; 13:565-72. [PMID: 23896937 DOI: 10.1007/s10237-013-0518-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022]
Abstract
Mechanical loading is essential for articular cartilage homeostasis and plays a central role in the cartilage pathology, yet the mechanotransduction processes that underlie these effects remain unclear. Previously, we showed that lethal amounts of reactive oxygen species (ROS) were liberated from the mitochondria in response to mechanical insult and that chondrocyte deformation may be a source of ROS. To this end, we hypothesized that mechanically induced mitochondrial ROS is related to the magnitude of cartilage deformation. To test this, we measured axial tissue strains in cartilage explants subjected to semi-confined compressive stresses of 0, 0.05, 0.1, 0.25, 0.5, or 1.0 MPa. The presence of ROS was then determined by confocal imaging with dihydroethidium, an oxidant sensitive fluorescent probe. Our results indicated that ROS levels increased linearly relative to the magnitude of axial strains (r(2) = 0.87, p < 0.05), and significant cell death was observed at strains >40%. By contrast, hydrostatic stress, which causes minimal tissue strain, had no significant effect. Cell-permeable superoxide dismutase mimetic Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride significantly decreased ROS levels at 0.5 and 0.25 MPa. Electron transport chain inhibitor, rotenone, and cytoskeletal inhibitor, cytochalasin B, significantly decreased ROS levels at 0.25 MPa. Our findings strongly suggest that ROS and mitochondrial oxidants contribute to cartilage mechanobiology.
Collapse
|
26
|
Wright GJ, Kuo J, Shi C, Bacro TRH, Slate EH, Yao H. Effect of mechanical strain on solute diffusion in human TMJ discs: an electrical conductivity study. Ann Biomed Eng 2013; 41:2349-57. [PMID: 23771300 DOI: 10.1007/s10439-013-0840-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/04/2013] [Indexed: 11/26/2022]
Abstract
This study investigated the effect of mechanical strain on solute diffusion in human TMJ discs (mean cadaver age 77.8) using the electrical conductivity method. The electrical conductivity, as well as small ion diffusivity, of male and female TMJ discs was determined under three compressive strains. In the male group, the average disc electrical conductivity (mean ± SD) at 0% strain was 5.14 ± 0.97 mS/cm, decreased to 4.50 ± 0.91 mS/cm (-12.3%) at 10% strain, and 3.93 ± 0.81 mS/cm (-23.5%) at 20% compressive strain. Correspondingly, the average disc relative ion diffusivity at 0% strain was 0.44 ± 0.08, decreased to 0.40 ± 0.08 (-8.9%) at 10% strain, and 0.36 ± 0.08 (-16.7%) at 20% compressive strain. In the female group, the average disc electrical conductivity at 0% strain was 5.84 ± 0.59 mS/cm, decreased to 5.01 ± 0.50 mS/cm (-14.2%) at 10% strain, and 4.33 ± 0.46 mS/cm (-25.8%) at 20% compressive strain. Correspondingly, the average disc relative ion diffusivity at 0% strain was 0.49 ± 0.05, decreased to 0.43 ± 0.04 (-11.3%) at 10% strain, and 0.39 ± 0.04 (-19.9%) at 20% compressive strain. The results indicated that mechanical strain significantly impeded solute diffusion through the disc. This mechanical strain effect was larger in the female than in the male human TMJ disc. This study may provide new insights into TMJ pathophysiology.
Collapse
Affiliation(s)
- Gregory J Wright
- Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, 173 Ashley Avenue, P.O. Box 250508, Charleston, SC, 29425, USA
| | | | | | | | | | | |
Collapse
|
27
|
Ito K, Creemers L. Mechanisms of intervertebral disk degeneration/injury and pain: a review. Global Spine J 2013; 3:145-52. [PMID: 24436865 PMCID: PMC3854582 DOI: 10.1055/s-0033-1347300] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/19/2013] [Indexed: 12/31/2022] Open
Abstract
Degeneration of the intervertebral disk and its treatments are currently intensely investigated topics. Back pain is a condition whose chronic and debilitating nature combined with its prevalence make it a major health issue of substantial socioeconomic importance. Although researchers, and even sometimes clinicians, focus on the degenerated disk as the problem, to most patients, pain is the factor that limits their function and impacts their well-being. The purpose of this review is to delineate the changes associated with disk degeneration and to outline mechanisms by which they could be the source of back pain. Although the healthy disk is only innervated in the external layer of its annulus fibrosus, adjacent structures are plentiful with nociceptive receptors. Stimulation of such structures as a consequence of processes initiated by disk degeneration is explored. The concept of discogenic pain and possible mechanisms such as neoinnervation and solute transport are discussed. Finally, how such pain mechanisms may relate to current and proposed treatment strategies is discussed.
Collapse
Affiliation(s)
- Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Address for correspondence Prof. Keita Ito, MD, ScD Orthopaedic Biomechanics, GEM-Z 4.115, Department of Biomedical EngineeringP.O. Box 513, 5600 MB EindhovenThe Netherlands
| | - Laura Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Byun S, Sinskey YL, Lu YCS, Ort T, Kavalkovich K, Sivakumar P, Hunziker EB, Frank EH, Grodzinsky AJ. Transport of anti-IL-6 antigen binding fragments into cartilage and the effects of injury. Arch Biochem Biophys 2013; 532:15-22. [PMID: 23333631 DOI: 10.1016/j.abb.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/05/2012] [Accepted: 12/19/2012] [Indexed: 12/15/2022]
Abstract
The efficacy of biological therapeutics against cartilage degradation in osteoarthritis is restricted by the limited transport of macromolecules through the dense, avascular extracellular matrix. The availability of biologics to cell surface and matrix targets is limited by steric hindrance of the matrix, and the microstructure of matrix itself can be dramatically altered by joint injury and the subsequent inflammatory response. We studied the transport into cartilage of a 48 kDa anti-IL-6 antigen binding fragment (Fab) using an in vitro model of joint injury to quantify the transport of Fab fragments into normal and mechanically injured cartilage. The anti-IL-6 Fab was able to diffuse throughout the depth of the tissue, suggesting that Fab fragments can have the desired property of achieving local delivery to targets within cartilage, unlike full-sized antibodies which are too large to penetrate beyond the cartilage surface. Uptake of the anti-IL-6 Fab was significantly increased following mechanical injury, and an additional increase in uptake was observed in response to combined treatment with TNFα and mechanical injury, a model used to mimic the inflammatory response following joint injury. These results suggest that joint trauma leading to cartilage degradation can further alter the transport of such therapeutics and similar-sized macromolecules.
Collapse
Affiliation(s)
- Sangwon Byun
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Duda GN, Eniwumide JO, Sittinger M. Constraints to Articular Cartilage Regeneration. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Moeini M, Lee KB, Quinn TM. Temperature affects transport of polysaccharides and proteins in articular cartilage explants. J Biomech 2012; 45:1916-23. [DOI: 10.1016/j.jbiomech.2012.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 05/10/2012] [Accepted: 05/13/2012] [Indexed: 11/25/2022]
|
31
|
Jackson AR, Yuan TY, Huang CY, Brown MD, Gu WY. Nutrient transport in human annulus fibrosus is affected by compressive strain and anisotropy. Ann Biomed Eng 2012; 40:2551-8. [PMID: 22669503 DOI: 10.1007/s10439-012-0606-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/25/2012] [Indexed: 11/24/2022]
Abstract
The avascular intervertebral disc (IVD) receives nutrition via transport from surrounding vasculature; poor nutrition is believed to be a main cause of disc degeneration. In this study, we investigated the effects of mechanical deformation and anisotropy on the transport of two important nutrients--oxygen and glucose--in human annulus fibrosus (AF). The diffusivities of oxygen and glucose were measured under three levels of uniaxial confined compression--0, 10, and 20%--and in three directions--axial, circumferential, and radial. The glucose partition coefficient was also measured at three compression levels. Results for glucose and oxygen diffusivity in AF ranged from 4.46 × 10(-7) to 9.77 × 10(-6) cm(2)/s and were comparable to previous studies; the glucose partition coefficient ranged from 0.71 to 0.82 and was also similar to previous results. Transport properties were found to decrease with increasing deformation, likely caused by fluid exudation during tissue compression and reduction in pore size. Furthermore, diffusivity in the radial direction was lower than in the axial or circumferential directions, indicating that nutrient transport in human AF is anisotropic. This behavior is likely a consequence of the layered structure and unique collagen architecture of AF tissue. These findings are important for better understanding nutritional supply in IVD and related disc degeneration.
Collapse
Affiliation(s)
- Alicia R Jackson
- Orthopaedic Biomechanics Lab, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | | | | | | | | |
Collapse
|
32
|
Ateshian GA, Albro MB, Maas S, Weiss JA. Finite element implementation of mechanochemical phenomena in neutral deformable porous media under finite deformation. J Biomech Eng 2012; 133:081005. [PMID: 21950898 DOI: 10.1115/1.4004810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological soft tissues and cells may be subjected to mechanical as well as chemical (osmotic) loading under their natural physiological environment or various experimental conditions. The interaction of mechanical and chemical effects may be very significant under some of these conditions, yet the highly nonlinear nature of the set of governing equations describing these mechanisms poses a challenge for the modeling of such phenomena. This study formulated and implemented a finite element algorithm for analyzing mechanochemical events in neutral deformable porous media under finite deformation. The algorithm employed the framework of mixture theory to model the porous permeable solid matrix and interstitial fluid, where the fluid consists of a mixture of solvent and solute. A special emphasis was placed on solute-solid matrix interactions, such as solute exclusion from a fraction of the matrix pore space (solubility) and frictional momentum exchange that produces solute hindrance and pumping under certain dynamic loading conditions. The finite element formulation implemented full coupling of mechanical and chemical effects, providing a framework where material properties and response functions may depend on solid matrix strain as well as solute concentration. The implementation was validated using selected canonical problems for which analytical or alternative numerical solutions exist. This finite element code includes a number of unique features that enhance the modeling of mechanochemical phenomena in biological tissues. The code is available in the public domain, open source finite element program FEBio (http:∕∕mrl.sci.utah.edu∕software).
Collapse
Affiliation(s)
- Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | |
Collapse
|
33
|
Kuo J, Wright GJ, Bach DE, Slate EH, Yao H. Effect of mechanical loading on electrical conductivity in porcine TMJ discs. J Dent Res 2011; 90:1216-20. [PMID: 21743033 DOI: 10.1177/0022034511415275] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The objective of this study was to examine the impact of mechanical loading on solute transport in porcine temporomandibular joint (TMJ) discs using the electrical conductivity method. The electrical conductivity, as well as ion diffusivity, of TMJ discs was determined under confined compression with 3 strains in 5 disc regions. The average electrical conductivity over the 5 regions (mean ± SD) at 0% strain was 3.10 ± 0.68 mS/cm, decreased to 2.76 ± 0.58 mS/cm (-11.0%) at 10% strain, and 2.38 ± 0.55 mS/cm (-22.2%) at 20% compressive strain. Correspondingly, the average relative ion diffusivity (mean ± SD) at 0% strain was 0.273 ± 0.055, decreased to 0.253 ± 0.048 (-7.3%) at 10% strain, and 0.231 ± 0.048 (-15.4%) at 20% compressive strain. These results indicated that compressive strain impeded solute transport in the TMJ disc. Furthermore, our results showed that the transport properties of TMJ discs were region-dependent. The electrical conductivity and ion diffusivity in the anterior region were significantly higher than in the posterior region. This regional difference is likely due to the significant differences of tissue hydration between these 2 regions. This study provides important insight into the electrical and solute transport behaviors in TMJ discs under mechanical loading and aids in the understanding of TMJ pathophysiology related to tissue nutrition.
Collapse
Affiliation(s)
- J Kuo
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | | | | | | |
Collapse
|
34
|
Lee JI, Sato M, Ushida K, Mochida J. Measurement of diffusion in articular cartilage using fluorescence correlation spectroscopy. BMC Biotechnol 2011; 11:19. [PMID: 21366913 PMCID: PMC3061899 DOI: 10.1186/1472-6750-11-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 03/02/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluorescence correlation spectroscopy (FCS) provides information about translational diffusion of fluorescent molecules in tiny detection volumes at the single-molecule level. In normal states, cartilage tissue lacks vascularity, so chondrocyte metabolism depends on diffusion for molecular exchanges. The abundant extracellular matrix (ECM) of cartilage is maintained by a limited number of chondrocytes. ECM plays an important role in the regulation of chondrocyte functions. In this study, FCS was used to measure diffusion behaviors of albumin, the major protein of the intra-articular space, using normal and degenerated cartilage. Preliminary investigation of fluorescence dyes including Alexa 488, Rhodamine 6G and Rhodamine 123 was conducted to evaluate their properties in cartilage. RESULTS The results indicate that the diffusion behaviors of fluorescently labeled albumin can be observed using FCS in both normal and chemically degenerated cartilage. CONCLUSIONS This work demonstrates the capability of FCS for direct measurement of diffusion in cartilaginous ECM. When the diffusion characteristics of fluorescent probes in ECM are clarified using FCS evaluation, FCS will be applicable as a method for early diagnosis of osteoarthritis, which is accompanied by increased abnormalities of ECM and also as tool for evaluating bio-engineered artificial cartilage for autologous chondrocyte implantation.
Collapse
Affiliation(s)
- Jeong Ik Lee
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | | | | | | |
Collapse
|
35
|
Constraints to Articular Cartilage Regeneration. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
|
37
|
Simultaneous measurement of anisotropic solute diffusivity and binding reaction rates in biological tissues by FRAP. Ann Biomed Eng 2010; 39:53-65. [PMID: 20686922 DOI: 10.1007/s10439-010-0138-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Several solutes (e.g., growth factors, cationic solutes, etc.) can reversibly bind to the extracellular matrix (ECM) of biological tissues. Binding interactions have significant implications on transport of such solutes through the ECM. In order to fully delineate transport phenomena in biological tissues, knowledge of binding kinetics is crucial. In this study, a new method for the simultaneous determination of solute anisotropic diffusivity and binding reaction rates was presented. The new technique was solely based on Fourier analysis of fluorescence recovery after photobleaching (FRAP) images. Computer-simulated FRAP tests were used to assess the sensitivity and the robustness of the method to experimental parameters, such as anisotropic solute diffusivity and rates of binding reaction. The new method was applied to the determination of diffusivity and binding rates of 5-dodecanoylaminofluorescein (DAF) in bovine coccygeal annulus fibrosus (AF). Our findings indicate that DAF reversibly binds to the ECM of AF. In addition, it was found that DAF diffusion in AF is anisotropic. The results were in agreement with those reported in previous studies. This study provides a new tool for the simultaneous determination of solute anisotropic diffusion tensor and rates of binding reaction that can be used to investigate diffusive-reactive transport in biological tissues and tissue engineered constructs.
Collapse
|
38
|
Kulmala KAM, Korhonen RK, Julkunen P, Jurvelin JS, Quinn TM, Kröger H, Töyräs J. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents. Med Eng Phys 2010; 32:878-82. [PMID: 20594900 DOI: 10.1016/j.medengphy.2010.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 10/19/2022]
Abstract
In contrast enhanced magnetic resonance imaging (MRI) and computed tomography (CT), the equilibrium distribution of anionic contrast agent is expected to reflect the fixed charged density (FCD) of articular cartilage. Diffusion is mainly responsible for the transport of contrast agents into cartilage. In osteoarthritis, cartilage composition changes at early stages of disease, and solute diffusion is most likely affected. Thus, investigation of contrast agent diffusion could enable new methods for imaging of cartilage composition. The aim of this study was to determine the diffusion coefficient of four contrast agents (ioxaglate, gadopentetate, iodide, gadodiamide) in bovine articular cartilage. The contrast agents were different in molecular size and charge. In peripheral quantitative CT experiments, penetration of contrast agent into the tissue was allowed either through the articular surface or through deep cartilage. To determine diffusion coefficients, a finite element model based on Fick's law was fitted to experimental data. Diffusion through articular surface was faster than through deep cartilage with every contrast agent. Iodide, being of atomic size, diffused into the cartilage significantly faster (q<0.05) than the other three contrast agents, for either transport direction. The diffusion coefficients of all clinical contrast agents (ioxaglate, gadopentetate and gadodiamide) were relatively low (142.8-253.7 μm(2)/s). In clinical diagnostics, such slow diffusion may not reach equilibrium and this jeopardizes the determination of FCD by standard methods. However, differences between diffusion through articular surface and deep cartilage, that are characterized by different tissue composition, suggest that diffusion coefficients may correlate with cartilage composition. Present method could therefore enable image-based assessment of cartilage composition by determination of diffusion coefficients within cartilage tissue.
Collapse
Affiliation(s)
- K A M Kulmala
- Department of Physics and Mathematics, University of Eastern Finland, POB 1627, 70211 Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shi C, Kuo J, Bell PD, Yao H. Anisotropic solute diffusion tensor in porcine TMJ discs measured by FRAP with spatial Fourier analysis. Ann Biomed Eng 2010; 38:3398-408. [PMID: 20582475 DOI: 10.1007/s10439-010-0099-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/08/2010] [Indexed: 10/19/2022]
Abstract
A new method solely based on spatial Fourier analysis (SFA) was developed to completely determine a two-dimensional (2D) anisotropic diffusion tensor in fibrous tissues using fluorescence recovery after photobleaching (FRAP). The accuracy and robustness of this method was validated using computer-simulated FRAP experiments. This method was applied to determine the region-dependent anisotropic diffusion tensor in porcine temporomandibular joint (TMJ) discs. The average characteristic diffusivity of 4 kDa FITC-Dextran across the disc was 26.05 ± 4.32 μm²/s which is about 16% of its diffusivity in water. In the anteroposterior direction, the anterior region (30.99 ± 5.93 μm²/s) had significantly higher characteristic diffusivity than the intermediate region (20.49 ± 5.38 μm²/s) and posterior region (20.97 ± 2.46 μm²/s). The ratio of the two principal diffusivities represents the anisotropy of the diffusion and ranged between 0.45 and 0.51 (1.0 = isotropic). Our results indicated that the solute diffusion in TMJ discs is inhomogeneous and anisotropic. These findings suggested that diffusive transport in the TMJ disc is dependent on tissue composition (e.g., water content) and structure (e.g., collagen orientation). This study provides a new method to quantitatively investigate the relationship between solute transport properties and tissue composition and structure.
Collapse
Affiliation(s)
- Changcheng Shi
- Department of Bioengineering, Clemson University, CU-MUSC Bioengineering Program, 173 Ashley Avenue, P.O. Box 250508, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
40
|
Byun S, Tortorella MD, Malfait AM, Fok K, Frank EH, Grodzinsky AJ. Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Arch Biochem Biophys 2010; 499:32-9. [PMID: 20447377 DOI: 10.1016/j.abb.2010.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 04/22/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
The availability of therapeutic molecules to targets within cartilage depends on transport through the avascular matrix. We studied equilibrium partitioning and non-equilibrium transport into cartilage of Pf-pep, a 760 Da positively charged peptide inhibitor of the proprotein convertase PACE4. Competitive binding measurements revealed negligible binding of Pf-pep to sites within cartilage. Uptake of Pf-pep depended on glycosaminoglycan charge density, and was consistent with predictions of Donnan equilibrium given the known charge of Pf-pep. In separate transport experiments, the diffusivity of Pf-pep in cartilage was measured to be approximately 1 x 10(-6) cm(2)/s, close to other similarly-sized non-binding solutes. These results suggest that small positively charged therapeutics will have a higher concentration within cartilage than in the surrounding synovial fluid, a desired property for local delivery; however, such therapeutics may rapidly diffuse out of cartilage unless there is additional specific binding to intra-tissue substrates that can maintain enhanced intra-tissue concentration for local delivery.
Collapse
Affiliation(s)
- Sangwon Byun
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
41
|
van Nierop BJ, Stekelenburg A, Loerakker S, Oomens CW, Bader D, Strijkers GJ, Nicolay K. Diffusion of water in skeletal muscle tissue is not influenced by compression in a rat model of deep tissue injury. J Biomech 2010; 43:570-5. [PMID: 19897200 DOI: 10.1016/j.jbiomech.2009.07.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
Sustained mechanical loading of skeletal muscle may result in the development of a severe type of pressure ulcer, referred to as deep tissue injury. Recently it was shown that the diffusion of large molecules (10-150kDa) is impaired during deformation of tissue-engineered skeletal muscle, suggesting a role for impaired diffusion in the aetiology of deep tissue injury. However, the influence of deformation on diffusion of smaller molecules on its aetiology is less clear. This motivated the present study designed to investigate the influence of deformation of skeletal muscle on the diffusion of water, which can be measured with diffusion tensor magnetic resonance imaging (MRI). It could be predicted that this approach will provide valuable information on the diffusion of small molecules. Additionally the relationship between muscle temperature and diffusion was investigated. During deformation of the tibialis anterior a decrease of the apparent diffusion coefficient (ADC) was observed (7.2+/-3.9%). The use of a finite element model showed that no correlation existed between the maximum shear strain and the decrease of the ADC. The ADC in the uncompressed gastrocnemius muscle decreased with 5.9+/-3.7%. In an additional experiment a clear correlation was obtained between the decrease of the ADC and the relative temperature change of skeletal muscle tissue as measured by MRI. Taken together, it was concluded that (1) the decreased diffusion of water was not a direct effect of tissue deformation and (2) that it is likely that the observed decreased ADC during deformation was a result of a decreased muscle temperature. The present study therefore provides evidence that diffusion of small molecules, particularly oxygen and carbon dioxide, is not impaired during deformation of skeletal muscle tissue.
Collapse
Affiliation(s)
- Bastiaan J van Nierop
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
42
|
Anisotropic dynamic changes in the pore network structure, fluid diffusion and fluid flow in articular cartilage under compression. Biomaterials 2010; 31:3117-28. [PMID: 20144846 DOI: 10.1016/j.biomaterials.2010.01.102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
A compression cell designed to fit inside an NMR spectrometer was used to investigate the in situ mechanical strain response, structural changes to the internal pore structure, and the diffusion and flow of interstitial water in full-thickness cartilage samples as it was deforming dynamically under a constant compressive load (pressure). We distinguish between the hydrostatic pressure acting on the interstitial fluid and the pore pressure acting on the cartilage fibril network. Our results show that properties related to the pore matrix microstructure such as diffusion and hydraulic conductivity are strongly influenced by the hydrostatic pressure in the interstitial fluid of the dynamically deforming cartilage which differ significantly from the properties measured under static i.e. equilibrium loading conditions (when the hydrostatic pressure has relaxed back to zero). The magnitude of the hydrostatic fluid pressure also appears to affect the way cartilage's pore matrix changes during deformation with implications for the diffusion and flow-driven fluid transport through the deforming pore matrix. We also show strong evidence for a highly anisotropic pore structure and deformational dynamics that allows cartilage to deform without significantly altering the axial porosity of the matrix even at very large strains. The insensitivity of the axial porosity to compressive strain may be playing a critical function in directing the flow of pressurized interstitial fluid in the compressed cartilage to the surface, to support the load, and provide a protective interfacial fluid film that 'weeps' out from the deforming tissue and thereby enhances the (elasto)hydrodynamic efficacy of sliding joints. Our results appear to show a close synergy between the structure of cartilage and both the hydrodynamic and boundary lubrication mechanisms.
Collapse
|
43
|
Chahine NO, Albro MB, Lima EG, Wei VI, Dubois CR, Hung CT, Ateshian GA. Effect of dynamic loading on the transport of solutes into agarose hydrogels. Biophys J 2009; 97:968-75. [PMID: 19686643 DOI: 10.1016/j.bpj.2009.05.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 04/09/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022] Open
Abstract
In functional tissue engineering, the application of dynamic loading has been shown to improve the mechanical properties of chondrocyte-seeded agarose hydrogels relative to unloaded free swelling controls. The goal of this study is to determine the effect of dynamic loading on the transport of nutrients in tissue-engineered constructs. To eliminate confounding effects, such as nutrient consumption in cell-laden disks, this study examines the response of solute transport due to loading using a model system of acellular agarose disks and dextran in phosphate-buffered saline (3 and 70 kDa). An examination of the passive diffusion response of dextran in agarose confirms the applicability of Fick's law of diffusion in describing the behavior of dextran. Under static loading, the application of compressive strain decreased the total interstitial volume available for the 70 kDa dextran, compared to free swelling. Dynamic loading significantly enhanced the rate of solute uptake into agarose disks, relative to static loading. Moreover, the steady-state concentration under dynamic loading was found to be significantly greater than under static loading, for larger-molecular-mass dextran (70 kDa). This experimental finding confirms recent theoretical predictions that mechanical pumping of a porous tissue may actively transport solutes into the disk against their concentration gradient. The results of this study support the hypothesis that the application of dynamic loading in the presence of growth factors of large molecular weight may result in both a mechanically and chemically stimulating environment for tissue growth.
Collapse
Affiliation(s)
- Nadeen O Chahine
- Biomechanics & Bioengineering Research Laboratory, Feinstein Institute for Medical Research, North Shore Long Island Jewish Health System, Manhasset, New York, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Silvast TS, Kokkonen HT, Jurvelin JS, Quinn TM, Nieminen MT, Töyräs J. Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular cartilage. Phys Med Biol 2009; 54:6823-36. [PMID: 19864699 DOI: 10.1088/0031-9155/54/22/005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Charged contrast agents have been used both in vitro and in vivo for estimation of the fixed charge density (FCD) in articular cartilage. In the present study, the effects of molecular size and charge on the diffusion and equilibrium distribution of several magnetic resonance imaging (MRI) and computed tomography (CT) contrast agents were investigated. Full thickness cartilage disks (Ø = 4.0 mm, n = 64) were prepared from fresh bovine patellae. Contrast agent (gadopentetate: Magnevist((R)), gadodiamide: Omniscan, ioxaglate: Hexabrix or sodium iodide: NaI) diffusion was allowed either through the articular surface or through the deep cartilage. CT imaging of the samples was conducted before contrast agent administration and after 1, 5, 9, 16, 25 and 29 h (and with three samples after 2, 3, 4 and 5 days) diffusion using a clinical peripheral quantitative computed tomography (pQCT) instrument. With all contrast agents, the diffusion through the deep cartilage was slower when compared to the diffusion through the articular surface. With ioxaglate, gadopentetate and gadodiamide it took over 29 h for diffusion to reach the near-equilibrium state. The slow diffusion of the contrast agents raise concerns regarding the validity of techniques for FCD estimation, as these contrast agents may not reach the equilibrium state that is assumed. However, since cartilage composition, i.e. deep versus superficial, had a significant effect on diffusion, imaging of the nonequilibrium diffusion process might enable more accurate assessment of cartilage integrity.
Collapse
Affiliation(s)
- Tuomo S Silvast
- Department of Clinical Neurophysiology, Kuopio University Hospital, PO Box 1777, 70211 Kuopio, Finland.
| | | | | | | | | | | |
Collapse
|
45
|
Yuan TY, Jackson AR, Huang CY, Gu WY. Strain-dependent oxygen diffusivity in bovine annulus fibrosus. J Biomech Eng 2009; 131:074503. [PMID: 19640139 DOI: 10.1115/1.3127254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The intervertebral disk (IVD) is the largest avascular structure in the human body. Transport of small molecules in IVD is mainly through diffusion from the endplates and the peripheral blood vessels surrounding IVD. Studies have investigated the structure, chemical components, and water content in IVD, but to our knowledge no study has investigated the effect of mechanical loading on oxygen transport in IVD. The objective of this study was to determine the strain-dependent behavior of oxygen diffusivity in IVD tissue. A one-dimensional steady-state diffusion experiment was designed and performed to determine the oxygen diffusivity in bovine annulus fibrosus (AF). The oxygen diffusivity was calculated using equation derived from Fick's law. A total of 20 AF specimens (d=6 mm, h approximately 0.5 mm) from bovine coccygeal IVD were used to determine oxygen diffusivity at three levels of compressive strain. The average oxygen diffusivity (mean+/-SD) of bovine AF in the axial direction was 1.43+/-0.242 x 10(-5) cm(2)/s (n=20) at 4.68+/-1.67% compressive strain level, 1.05+/-0.282 x 10(-5) cm(2)/s (n=20) at 14.2+/-1.50% strain level, and 7.71+/-1.63 x 10(-6) cm(2)/s (n=20) at 23.7+/-1.34% strain level. There was a significant decrease in oxygen diffusivity with increasing level of compressive strain (ANOVA, p<0.05). Oxygen diffusivity of bovine AF in the axial direction has been determined. The mechanical loading has a significant effect on oxygen transport in IVD tissues. This study is important in understanding nutritional transport in IVD tissues and related disk degeneration.
Collapse
Affiliation(s)
- T-Y Yuan
- Department of Biomedical Engineering, Tissue Biomechanics Laboratory, University of Miami, Coral Gables, FL 33146, USA
| | | | | | | |
Collapse
|
46
|
Ng KW, Mauck RL, Wang CCB, Kelly TAN, Ho MMY, Chen FH, Ateshian GA, Hung CT. Duty Cycle of Deformational Loading Influences the Growth of Engineered Articular Cartilage. Cell Mol Bioeng 2009; 2:386-394. [PMID: 20703332 DOI: 10.1007/s12195-009-0070-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
This study examines how variations in the duty cycle (the duration of applied loading) of deformational loading can influence the mechanical properties of tissue engineered cartilage constructs over one month in bioreactor culture. Dynamic loading was carried out with three different duty cycles: 1 h on/1 h off for a total of 3 h loading/day, 3 h continuous loading, or 6 h of continuous loading per day, with all loading performed 5 days/week. All loaded groups showed significant increases in Young's modulus after one month (vs. free swelling controls), but only loading for a continuous 3 and 6 h showed significant increases in dynamic modulus by this time point. Histological analysis showed that dynamic loading can increase cartilage oligomeric matrix protein (COMP) and collagen types II and IX, as well as prevent the formation of a fibrous capsule around the construct. Type II and IX collagen deposition increased with increased with duration of applied loading. These results point to the efficacy of dynamic deformational loading in the mechanical preconditioning of engineered articular cartilage constructs. Furthermore, these results highlight the ability to dictate mechanical properties with variations in mechanical input parameters, and the possible importance of other cartilage matrix molecules, such as COMP, in establishing the functional material properties of engineered constructs.
Collapse
Affiliation(s)
- Kenneth W Ng
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, MC8904, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Domowicz MS, Cortes M, Henry JG, Schwartz NB. Aggrecan modulation of growth plate morphogenesis. Dev Biol 2009; 329:242-57. [PMID: 19268444 DOI: 10.1016/j.ydbio.2009.02.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 02/02/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
Abstract
Chick and mouse embryos with heritable deficiencies of aggrecan exhibit severe dwarfism and premature death, demonstrating the essential involvement of aggrecan in development. The aggrecan-deficient nanomelic (nm) chick mutant E12 fully formed growth plate (GP) is devoid of matrix and exhibits markedly altered cytoarchitecture, proliferative capacity, and degree of cell death. While differentiation of chondroblasts to pre-hypertrophic chondrocytes (IHH expression) is normal up to E6, the extended periosteum expression pattern of PTCH (a downstream effector of IHH) indicates altered propagation of IHH signaling, as well as accelerated down-regulation of FGFR3 expression, decreased BrdU incorporation and higher levels of ERK phosphorylation, all indicating early effects on FGF signaling. By E7 reduced IHH expression and premature expression of COL10A1 foreshadow the acceleration of hypertrophy observed at E12. By E8, exacerbated co-expression of IHH and COL10A1 lead to delayed separation and establishment of the two GPs in each element. By E9, increased numbers of cells express P-SMAD1/5/8, indicating altered BMP signaling. These results indicate that the IHH, FGF and BMP signaling pathways are altered from the very beginning of GP formation in the absence of aggrecan, thereby inducing premature hypertrophic chondrocyte maturation, leading to the nanomelic long bone growth disorder.
Collapse
Affiliation(s)
- Miriam S Domowicz
- Departments of Pediatrics and Biochemistry and Molecular Biology, Committee on Developmental Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
48
|
Nicodemus G, Shiplet K, Kaltz S, Bryant S. Dynamic compressive loading influences degradation behavior of PEG-PLA hydrogels. Biotechnol Bioeng 2009; 102:948-59. [DOI: 10.1002/bit.22105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Abstract
Cartilaginous tissues, such as articular cartilage and intervertebral disc, are avascular tissues which rely on transport for cellular nutrition. Comprehensive knowledge of transport properties in such tissues is therefore necessary in the understanding of nutritional supply to cells. Furthermore, poor cellular nutrition in cartilaginous tissues is believed to be a primary source of tissue degeneration, which may result in osteoarthritis (OA) or disc degeneration. In this mini-review, we present an overview of the current status of the study of transport properties and behavior in cartilaginous tissues. The mechanisms of transport in these tissues, as well as experimental approaches to measuring transport properties and results obtained are discussed. The current status of bioreactors used in cartilage tissue engineering is also presented.
Collapse
Affiliation(s)
- Ar Jackson
- Tissue Biomechanics Lab, Dept of Biomedical Engineering, University of Miami, Coral Gables, FL
| | | |
Collapse
|
50
|
Larsen C, Ostergaard J, Larsen SW, Jensen H, Jacobsen S, Lindegaard C, Andersen PH. Intra-articular depot formulation principles: role in the management of postoperative pain and arthritic disorders. J Pharm Sci 2009; 97:4622-54. [PMID: 18306275 DOI: 10.1002/jps.21346] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The joint cavity constitutes a discrete anatomical compartment that allows for local drug action after intra-articular injection. Drug delivery systems providing local prolonged drug action are warranted in the management of postoperative pain and not least arthritic disorders such as osteoarthritis. The present review surveys various themes related to the accomplishment of the correct timing of the events leading to optimal drug action in the joint space over a desired time period. This includes a brief account on (patho)physiological conditions and novel potential drug targets (and their location within the synovial space). Particular emphasis is paid to (i) the potential feasibility of various depot formulation principles for the intra-articular route of administration including their manufacture, drug release characteristics and in vivo fate, and (ii) how release, mass transfer and equilibrium processes may affect the intra-articular residence time and concentration of the active species at the ultimate receptor site.
Collapse
Affiliation(s)
- Claus Larsen
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|