Markley JL, Travers F, Balny C. Lack of evidence for a tetrahedral intermediate in the hydrolysis of nitroanilide substrates by serine proteinases. Subzero-temperature stopped-flow experiments.
EUROPEAN JOURNAL OF BIOCHEMISTRY 1981;
120:477-85. [PMID:
6460615 DOI:
10.1111/j.1432-1033.1981.tb05726.x]
[Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have used a stopped-flow apparatus to reinvestigate reports, based on the observation of "burst" kinetics, of an intermediate prior to the acyl-enzyme complex in hydrolysis reactions of anilides catalyzed by trypsin and elastase [M. W. Hunkapiller, M. D. Forgac and J. H. Richards (1976) Biochemistry 15, 5581-5588; D. D. Petkov (1978) Biochim. Biophys. Acta, 523, 538-541; A. L. Fink and P. Meehan (1979) Proc. Natl Acad. Sci. USA, 76, 1566-1569; P. Compton and A. L. Fink (1980) Biochem. Biophys. Res. Commun. 93, 427-431]. We studied the hydrolysis of several anilide substrates by bovine and porcine trypsin and porcine elastase between -30 degrees C and 20 degrees C. In no case did we record true "burst" kinetics. We show that confusion spectral changes can arise from incomplete mixing, thermal gradients, or heterogeneity of the substrate. We conclude that there is no solid spectroscopic evidence at present for the existence of a tetrahedral intermediate in the hydrolysis of amides by serine proteinases. The substrate N-acetyl-L-alanyl-L-prolyl-L-alanine 4-nitroanilide is a mixture of two isomers trans and cis about the L-alanyl-L-propyl peptide bond. It appears that elastase hydrolysis the cis isomer more rapidly than the trans isomer and this could lead to false "burst" kinetics. We describe the construction of the stopped-flow apparatus designed for cryoenzymology used for this work that has novel features and is adaptable to a variety of spectrophotometers. Solutions can be handled under anaerobic conditions. A window allows the drive syringes to be observed or exposed to light for photochemical experiments. The apparatus operates over the temperature range -35 degrees C to + 25 degrees C. The dead time is under 5 ms. A recording system is described that permits one to follow reactions over a wide time scale covering half-time of the order of several milliseconds to hours.
Collapse