1
|
Shinde PS, Shinde VS, Rueping M. Electrochemical low valent cobalt-catalyzed addition of aryl and vinyl chlorides to α-ketoamides via C-Cl bond activation. Chem Commun (Camb) 2024; 60:3826-3829. [PMID: 38497225 DOI: 10.1039/d4cc00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The development of an electrochemical cobalt catalyzed C-Cl bond activation at room temperature for the nucleophilic addition of aryl and vinyl chlorides to α-ketoamides is described. The overall method operates through an electrochemically induced low valent cobalt catalyst that oxidatively adds to aryl or vinyl chlorides affording medicinally important 3-hydroxy oxindole and 3-hydroxypyrrolidinone scaffolds. The development of an enantioselective version using a chiral pyrox ligand is also demonstrated.
Collapse
Affiliation(s)
- Prashant S Shinde
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia.
| | - Valmik S Shinde
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia.
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India.
| | - Magnus Rueping
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
2
|
Luo X, Yang D, He X, Wang S, Zhang D, Xu J, Pao CW, Chen JL, Lee JF, Cong H, Lan Y, Alhumade H, Cossy J, Bai R, Chen YH, Yi H, Lei A. Valve turning towards on-cycle in cobalt-catalyzed Negishi-type cross-coupling. Nat Commun 2023; 14:4638. [PMID: 37532729 PMCID: PMC10397345 DOI: 10.1038/s41467-023-40269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/14/2023] [Indexed: 08/04/2023] Open
Abstract
Ligands and additives are often utilized to stabilize low-valent catalytic metal species experimentally, while their role in suppressing metal deposition has been less studied. Herein, an on-cycle mechanism is reported for CoCl2bpy2 catalyzed Negishi-type cross-coupling. A full catalytic cycle of this kind of reaction was elucidated by multiple spectroscopic studies. The solvent and ligand were found to be essential for the generation of catalytic active Co(I) species, among which acetonitrile and bipyridine ligand are resistant to the disproportionation events of Co(I). Investigations, based on Quick-X-Ray Absorption Fine Structure (Q-XAFS) spectroscopy, Electron Paramagnetic Resonance (EPR), IR allied with DFT calculations, allow comprehensive mechanistic insights that establish the structural information of the catalytic active cobalt species along with the whole catalytic Co(I)/Co(III) cycle. Moreover, the acetonitrile and bipyridine system can be further extended to the acylation, allylation, and benzylation of aryl zinc reagents, which present a broad substrate scope with a catalytic amount of Co salt. Overall, this work provides a basic mechanistic perspective for designing cobalt-catalyzed cross-coupling reactions.
Collapse
Affiliation(s)
- Xu Luo
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Dali Yang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Xiaoqian He
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P.R. China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Dongchao Zhang
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Jiaxin Xu
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Hengjiang Cong
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P.R. China
| | - Hesham Alhumade
- K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Chemical and Materials Engineering, Faculty of Engineering, Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Janine Cossy
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, CNRS, PSL University, 75005, Paris, France.
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, P.R. China.
| | - Yi-Hung Chen
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China.
| | - Hong Yi
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China.
- Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P.R. China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P.R. China.
| |
Collapse
|
3
|
Robinson SG, Sigman MS. Integrating Electrochemical and Statistical Analysis Tools for Molecular Design and Mechanistic Understanding. Acc Chem Res 2020; 53:289-299. [PMID: 31920070 DOI: 10.1021/acs.accounts.9b00527] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Medicinal chemistry campaigns set the foundation for streamlined molecular design strategies through the development of quantitative structure-activity models. Our group's enduring underlying interest in reaction mechanism propelled our adaption of a similar strategy to unite mechanistic interrogation and catalyst optimization by relating reaction outputs to molecular descriptors. Through collaborative opportunities, we have recently expanded these predictive statistical modeling tools to electrocatalysis and the design of redox-active organic molecules for application as electrolytes in nonaqueous redox flow batteries. Utilizing small, strategically designed data sets for a given core structure, we develop predictive statistical models that enable rapid virtual screening campaigns to identify analogues with enhanced properties. This process relates structural parameters to the output of interest, providing insight into the structural features that influence the output under study. Furthermore, the weighting of the coefficients for each parameter in the model can furnish mechanistic insight. Such a synergistic implementation of experimental and computational tools for mechanistic insight provides a means of forecasting properties of analogues without necessitating the synthesis and analysis of each molecule of interest. Through collaborative efforts, we have demonstrated the effectiveness of these tools for predicting diverse outputs such as stability, redox potential, and nonaqueous solubility. In this Account, we outline our entry into the field of organic electrochemistry and the implementation of statistical modeling tools for designing organic electrolytes. Through these projects we were exposed to the power of electrochemical techniques as a mechanistic tool, which has provided access to critical information that would otherwise be difficult to obtain. Utilizing electroanalytical techniques, we have quantified the rates of disproportionation of a variety of cobalt complexes and developed statistical models that provide critical insight into understanding of fundamental processes involved in the disproportionation of organometallic complexes. Electroanalytical tools have also been effective in elucidating the active catalyst oxidation state in different catalytic organometallic systems for C-H functionalization. Thus, our foray into electrolyte design and electrocatalysis, in which the statistical modeling tools developed for mechanistic insight were applied in a new context, came full circle to the core foundation of our group: mechanistic understanding.
Collapse
Affiliation(s)
- Sophia G. Robinson
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Sandford C, Fries LR, Ball TE, Minteer SD, Sigman MS. Mechanistic Studies into the Oxidative Addition of Co(I) Complexes: Combining Electroanalytical Techniques with Parameterization. J Am Chem Soc 2019; 141:18877-18889. [DOI: 10.1021/jacs.9b10771] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher Sandford
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Lydia R. Fries
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tyler E. Ball
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Labbé E, Buriez O. Fundamental Input of Analytical Electrochemistry in the Determination of Intermediates and Reaction Mechanisms in Electrosynthetic Processes. ChemElectroChem 2019. [DOI: 10.1002/celc.201900045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Eric Labbé
- PASTEURDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne Université CNRS 75005 Paris France
| | - Olivier Buriez
- PASTEURDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne Université CNRS 75005 Paris France
| |
Collapse
|
6
|
Hickey DP, Sandford C, Rhodes Z, Gensch T, Fries LR, Sigman MS, Minteer SD. Investigating the Role of Ligand Electronics on Stabilizing Electrocatalytically Relevant Low-Valent Co(I) Intermediates. J Am Chem Soc 2019; 141:1382-1392. [DOI: 10.1021/jacs.8b12634] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Hickey
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Christopher Sandford
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Zayn Rhodes
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tobias Gensch
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Lydia R. Fries
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Barde E, Guérinot A, Cossy J. Cobalt-Catalyzed Cross-Coupling of α-Bromo Amides with Grignard Reagents. Org Lett 2017; 19:6068-6071. [PMID: 29090940 DOI: 10.1021/acs.orglett.7b02848] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cobalt-catalyzed cross-coupling between α-bromo amides and Grignard reagents is disclosed. The reaction is general and allows access to a large variety of α-aryl and β,γ-unsaturated amides. Some mechanistic investigations have been undertaken to determine the nature of the intermediate species.
Collapse
Affiliation(s)
- E Barde
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231, ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin 75231 Paris Cedex 05, France
| | - A Guérinot
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231, ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin 75231 Paris Cedex 05, France
| | - J Cossy
- Laboratoire de Chimie Organique, Institute of Chemistry, Biology and Innovation (CBI)-UMR 8231, ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin 75231 Paris Cedex 05, France
| |
Collapse
|
8
|
Lionetti D, Day VW, Blakemore JD. Synthesis and Electrochemical Properties of Half-Sandwich Rhodium and Iridium Methyl Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Davide Lionetti
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - Victor W. Day
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| | - James D. Blakemore
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Chau F, Amatore C, Labbé E, Buriez O. Revisiting the Complex Osmocene Electro-Oxidation Mechanism. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Nuter F, Dimé AKD, Chen C, Bounaadja L, Mouray E, Florent I, Six Y, Buriez O, Marinetti A, Voituriez A. Access to new endoperoxide derivatives by electrochemical oxidation of substituted 3-azabicyclo[4.1.0]hept-4-enes. Chemistry 2015; 21:5584-93. [PMID: 25703453 DOI: 10.1002/chem.201406138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Indexed: 11/11/2022]
Abstract
A series of substituted 3-azabicyclo[4.1.0]hept-4-ene derivatives were prepared and analysed by cyclic voltammetry. Preparative aerobic electrochemical oxidation reactions were then carried out. Three original endoperoxides were isolated, characterised and subjected to antimalarial and cytotoxicity activity assays.
Collapse
Affiliation(s)
- Frédérick Nuter
- Institut de Chimie des Substances Naturelles, (CNRS) UPR 2301, Centre de Recherche de Gif - 1, av. de la Terrasse, 91198 Gif-sur-Yvette (France)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ward AL, Elbaz L, Kerr JB, Arnold J. Nonprecious metal catalysts for fuel cell applications: electrochemical dioxygen activation by a series of first row transition metal tris(2-pyridylmethyl)amine complexes. Inorg Chem 2012; 51:4694-706. [PMID: 22458367 DOI: 10.1021/ic2026957] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of divalent first row triflate complexes supported by the ligand tris(2-pyridylmethyl)amine (TPA) have been investigated as oxygen reduction catalysts for fuel cell applications. [(TPA)M(2+)](n+) (M = Mn, Fe, Co, Ni, and Cu) derivatives were synthesized and characterized by X-ray crystallography, cyclic voltammetry, NMR spectroscopy, magnetic susceptibility, IR spectroscopy, and conductance measurements. The stoichiometric and electrochemical O(2) reactivities of the series were examined. Rotating-ring disk electrode (RRDE) voltammetry was used to examine the catalytic activity of the complexes on a carbon support in acidic media, emulating fuel cell performance. The iron complex displayed a selectivity of 89% for four-electron conversion and demonstrated the fastest reaction kinetics, as determined by a kinetic current of 7.6 mA. Additionally, the Mn, Co, and Cu complexes all showed selective four-electron oxygen reduction (<28% H(2)O(2)) at onset potentials (~0.44 V vs RHE) comparable to state of the art molecular catalysts, while being straightforward to access synthetically and derived from nonprecious metals.
Collapse
Affiliation(s)
- Ashleigh L Ward
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
12
|
Martins NCT, Guedes da Silva MFC, Wanke R, Pombeiro AJL. Electrocatalytic reduction of organohalides mediated by the dihalo-molybdenum phosphinic complexes trans-[MoX2(Ph2PCH2CH2PPh2)2] (X = I, Br)—A mechanistic study by cyclic voltammetry digital simulation. Dalton Trans 2009:4772-7. [DOI: 10.1039/b811393a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Polleux L, Labbé E, Buriez O, Périchon J. CoI- and Co0-Bipyridine Complexes Obtained by Reduction of CoBr2bpy: Electrochemical Behaviour and Investigation of Their Reactions with Aromatic Halides and Vinylic Acetates. Chemistry 2005; 11:4678-86. [PMID: 15915519 DOI: 10.1002/chem.200400971] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The electrochemical behaviour of CoBr(2)bpy (bpy=2,2'-bipyridine) catalyst precursor in acetonitrile has been studied, revealing its possible reduction into the corresponding Co(I) and Co(0) complexes. These low-valent cobalt species appear to be stable on the time scale of cyclic voltammetry. In the presence of aromatic halides, both complexes undergo oxidative addition, the latter Co(0) species allowing the activation of poorly reactive aromatic chlorides. The arylcobalt(III) and arylcobalt(II) obtained are reduced at the same potential as the original Co(II) and Co(I) complexes, respectively, resulting in the observation of overall ECE mechanisms in both cases. The electrochemical study shows that vinylic acetates competitively react with electrogenerated Co(0) species, leading to a labile complex. Preparative scale electrolyses carried out from solutions containing aromatic halides (ArX), vinyl acetate (vinylOAc) and a catalytic amount of CoBr(2)bpy lead to a mixture of biaryl (Ar-Ar) and arene (ArH) as long as the potential is set on the plateau of the Co(II) right arrow over left arrow Co(I) reduction wave. The coupling product (Ar-vinyl) is formed only if the electrolysis is performed on the plateau of the Co(I)/Co(0) reduction wave. A mechanism is proposed for the overall cobalt-catalyzed coupling reaction between aromatic halides and allylic acetates.
Collapse
Affiliation(s)
- Laurent Polleux
- Laboratoire d'Electrochimie, Catalyse et Synthèse Organique (LECSO), UMR CNRS 7582, Thiais, France
| | | | | | | |
Collapse
|
14
|
Mechanism(s) of the cobalt-catalyzed electrochemical coupling between aromatic halides and allylic acetates. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2003.07.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Gomes P, Gosmini C, Périchon J. New chemical cross-coupling between aryl halides and allylic acetates using a cobalt catalyst. Org Lett 2003; 5:1043-5. [PMID: 12659569 DOI: 10.1021/ol0340641] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The cobalt-catalyzed coupling reaction of aromatic halides and allylic acetates proceeds readily under mild conditions in the presence of the appropriate reducing agent to produce allylaromatic derivatives either in pure acetonitrile (aryl bromides) or in an acetonitrile/pyridine mixture (aryl chlorides).
Collapse
Affiliation(s)
- Paulo Gomes
- Laboratoire d'Electrochimie, Catalyse et Synthèse Organique, UMR 7582, Université Paris 12-CNRS 2, Rue Henri Dunant, F-94320 Thiais, France
| | | | | |
Collapse
|
16
|
Gomes P, Gosmini C, Périchon J. Cobalt-catalyzed direct electrochemical cross-coupling between aryl or heteroaryl halides and allylic acetates or carbonates. J Org Chem 2003; 68:1142-5. [PMID: 12558447 DOI: 10.1021/jo026421b] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electroreduction of a mixture of functionalized aromatic or heteroaromatic bromides or chlorides and allylic compounds such as acetates or carbonates in an electrochemical cell fitted with a sacrificial iron anode affords, in the presence of cobalt halide associated with pyridine as ligand in acetonitrile or DMF, the corresponding coupling product in good yields.
Collapse
Affiliation(s)
- Paulo Gomes
- Laboratoire d'Electrochimie, Catalyze et Synthèse Organique, UMR 7582, Université Paris 12-CNRS, 2, Rue Henri Dunant, F-94320 Thiais, France
| | | | | |
Collapse
|
17
|
Buriez O, Kazmierski I, Périchon J. An electrochemical approach for the preparation of aryl compounds of cobalt(II). J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)01259-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Gomes P, Fillon H, Gosmini C, Labbé E, Périchon J. Synthesis of unsymmetrical biaryls by electroreductive cobalt-catalyzed cross-coupling of aryl halides. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)01030-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Stability and reactivity of electrogenerated cobalt(I) towards aryl halides in the presence of additives such as vinyl acetate or methyl vinyl ketone. J Electroanal Chem (Lausanne) 2001. [DOI: 10.1016/s0022-0728(01)00492-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Fillon H, Gosmini C, Nédélec JY, Périchon J. Electrosynthesis of functionalized organodizinc compounds from aromatic dihalides via a cobalt catalysis in acetonitrile/pyridine as solvent. Tetrahedron Lett 2001. [DOI: 10.1016/s0040-4039(01)00597-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|