1
|
Kawasaki H. Background of Insect Metamorphosis: Numerous Functions of Ecdysteroid. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70064. [PMID: 40411750 DOI: 10.1002/arch.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/26/2025]
Abstract
Insect development is mainly controlled by juvenile hormone (JH) and ecdysone, and their hemolymph titer determines the insect direction; larva, pupa, or adult. The mediators of them are Krüppel homolog 1 (Kr-h1), Broad-Complex (BR-C), and E93. They activate genes that characterize larval, pupal, and adult feature, which gives rise to the metamorphosis. Before individual ecdysis, these master factors activate target genes to produce larva, pupa, or adult. Prothoracicotropic hormone (PTTH) from the brain activates prothoracic gland (PG), resulted in the ecdysis. Other factors that activate ecdysteroid production are reported. The produced ecdysteroid was observed early stages of the last larval instar of Bombyx mori, where the ecdysteroid titer is different from previous stage. Two stages are different in JH and ecdysone titer, and the interaction of the JH and ecdysone production determines their titer. Ecdysone brings about the prominent change, which needs many gene transcriptions and the interaction of ecdysone-responsive transcription factors (ERTFs). Their target genes are successively expressed, which brings about the metamorphosis. For the activation of genes, ecdysone gives rise to chromatin remodeling and histone modification. Ecdysone and other factors bring about cell division of the wing disc of the last larval instar; for the proliferation and differentiation, which gives rise to the growth and differentiation of the wing disc for the metamorphosis. In addition, hormone-responsive miRNAs work, several ERTFs function for one gene, and the suppressive TF function along with metamorphosis. Thus, several attractive things underly around the insect metamorphosis. We will be near the understanding of the metamorphosis through these things.
Collapse
Affiliation(s)
- Hideki Kawasaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
2
|
Banu CA, Manogem EM. Development and characterization of Spodoptera mauritia ovarian primary cell culture and evaluation of fenoxycarb toxicity. In Vitro Cell Dev Biol Anim 2022; 58:788-797. [DOI: 10.1007/s11626-022-00728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
3
|
Ayisha Banu C, Manogem EM. Anti-proliferative and apoptosis-inducing effects of juvenile hormone analogue, fenoxycarb in the Sf21cell line. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105182. [PMID: 36127044 DOI: 10.1016/j.pestbp.2022.105182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
The apprehension regarding the possible environmental effects of synthetic pesticides has led to the discovery and production of environmental friendly pesticides. Insect hormone mimics, mainly juvenile hormone analogues, like fenoxycarb have acquired attention due to their greater specificity than conventional broad-range insecticides as pest control agents. The study explored the effects of the insecticide juvenile hormone analogue (JHA), fenoxycarb, on the Sf21 cell line of Spodoptera frugiperda to illustrate the mode of action. Cytotoxicity assay was conducted at different concentrations of fenoxycarb ranging from 0.5 nM to 10 μM. The results showed the concentration-and time-dependent anti-proliferative effect of fenoxycarb. The median inhibitory concentration (IC50) was calculated as 28 nM at 48 h of exposure, and IC50 and IC25 concentrations were used for further cytotoxicity screening assays. Furthermore, the significant morphological changes of the cells after 48 h revealed the development of apoptotic bodies, membrane blebbing, cell size reduction, and irregular cell aggregation; additionally, enlarged cell spaces and widely diffused apoptotic bodies were observed after 72 h of insecticide exposure. In the confocal microscopic analysis of fenoxycarb treated cells, the nucleus was observed to condense and collapse into many fragments by Hoechst-33,342. Assessment of the relative potential of the cell cycle at two concentrations (IC50& IC25) reported the concentration-and time-dependent reduction of cells in the G1 phase with an upsurge in apoptotic cells. The percentage of cells that underwent apoptotic changes, such as loss of mitochondrial membrane potential (MMP), was strictly dependent on the fenoxycarb concentration and duration of exposure. The findings confirm the presence of fenoxycarb-mediated cell proliferation inhibition and apoptosis in Sf21 cell lines.
Collapse
Affiliation(s)
- C Ayisha Banu
- Division of Insect Endocrinology, Department of Zoology, University of Calicut, 673635, Kerala, India.
| | - E M Manogem
- Department of Zoology, University of Calicut, 673635, Kerala, India.
| |
Collapse
|
4
|
Ito-Harashima S, Matsuura M, Takada E, Kawanishi M, Nakagawa Y, Yagi T. Detection of juvenile hormone agonists by a new reporter gene assay using yeast expressing Drosophila methoprene-tolerant. FEBS Open Bio 2021; 11:2774-2783. [PMID: 34407562 PMCID: PMC8487040 DOI: 10.1002/2211-5463.13277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/18/2021] [Accepted: 08/18/2021] [Indexed: 12/26/2022] Open
Abstract
Juvenile hormones (JHs) are sesquiterpenoids that play important roles in the regulation of growth, metamorphosis, and reproduction in insects. Synthetic JH agonists (JHAs) have been used as insecticides and are categorized as a class of insect growth regulators (IGRs). Natural JHs and synthetic JHAs bind to the JH receptor methoprene‐tolerant (Met), which forms a functional JH‐receptor complex with steroid receptor coactivators, such as Drosophila melanogaster Taiman (Tai). The ligand‐bound Met–Tai complex induces the transcription of JH response genes by binding to specific DNA elements referred to as JH response elements (JHREs). In the present study, we established a reporter gene assay (RGA) for detecting natural JHs and synthetic JHAs in a yeast strain expressing D. melanogaster Met and Tai. The yeast RGA system detected various juvenoid ligands in a dose‐dependent manner. The rank order of the ligand potencies of the juvenoids examined in the yeast RGA linearly correlated with those of RGAs for Met–Tai established in mammalian and insect cells. Our new yeast RGA is rapid, easy to handle, cost‐effective, and valuable for screening novel JHAs.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Mai Matsuura
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Eiji Takada
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Masanobu Kawanishi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
5
|
Ito-Harashima S, Yagi T. Reporter gene assays for screening and identification of novel molting hormone- and juvenile hormone-like chemicals. JOURNAL OF PESTICIDE SCIENCE 2021; 46:29-42. [PMID: 33746544 PMCID: PMC7953021 DOI: 10.1584/jpestics.d20-079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
A reporter gene assay (RGA) is used to investigate the activity of synthetic chemicals mimicking the molting hormones (MHs) and juvenile hormones (JHs) of insects, so-called insect growth regulators (IGRs). The MH receptor, a heterodimer of the ecdysone receptor (EcR) and ultraspiracle (USP), and the JH receptor Methoprene-tolerant (Met) are ligand-dependent transcription factors. Ligand-bound EcR-USP and Met bind to specific cis-acting DNA elements, referred to as the ecdysone-responsive element (EcRE) and the JH-responsive element (JHRE), respectively, in order to transactivate target genes. Insect hormone-induced transactivation systems have been reconstituted by the introduction of reporter genes under the control of EcRE and JHRE, or two-hybrid reporter genes, into insect, mammalian, and yeast cells expressing receptor proteins. RGA is easy to use and convenient for examining the MH- and JH-like activities of synthetic chemicals and is suitable for the high-throughput screening of novel structural classes of chemicals targeting EcR-USP and Met.
Collapse
Affiliation(s)
- Sayoko Ito-Harashima
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai city, Osaka 599–8531, Japan
| | - Takashi Yagi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai city, Osaka 599–8531, Japan
| |
Collapse
|
6
|
Rubio NR, Fish KD, Trimmer BA, Kaplan DL. In Vitro Insect Muscle for Tissue Engineering Applications. ACS Biomater Sci Eng 2019; 5:1071-1082. [PMID: 33405797 DOI: 10.1021/acsbiomaterials.8b01261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tissue engineering is primarily associated with medical disciplines, and research has thus focused on mammalian cells. For applications where clinical relevance is not a constraint, it is useful to evaluate the potential of alternative cell sources to form tissues in vitro. Specifically, skeletal muscle tissue engineering for bioactuation and cultured foods could benefit from the incorporation of invertebrate cells because of their less stringent growth requirements and other versatile features. Here, we used a Drosophila muscle cell line to demonstrate the benefits of insect cells relative to those derived from vertebrates. The cells were adapted to serum-free media, transitioned between adherent and suspension cultures, and manipulated with hormones. Furthermore, we analyzed edible scaffolds to support cell adhesion and assayed cellular protein and minerals to evaluate nutrition potential. The insect muscle cells exhibited advantageous growth patterns and hold unique functionality for tissue engineering applications beyond the medical realm.
Collapse
Affiliation(s)
- Natalie R Rubio
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Kyle D Fish
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Barry A Trimmer
- Department of Biology, Tufts University, 200 Boston Avenue #4700, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Science & Technology Center, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
7
|
Koyama T, Mendes CC, Mirth CK. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front Physiol 2013; 4:263. [PMID: 24133450 PMCID: PMC3783933 DOI: 10.3389/fphys.2013.00263] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/06/2013] [Indexed: 12/25/2022] Open
Abstract
Nutrition, via the insulin/insulin-like growth factor (IIS)/Target of Rapamycin (TOR) signaling pathway, can provide a strong molding force for determining animal size and shape. For instance, nutrition induces a disproportionate increase in the size of male horns in dung and rhinoceros beetles, or mandibles in staghorn or horned flour beetles, relative to body size. In these species, well-fed male larvae produce adults with greatly enlarged horns or mandibles, whereas males that are starved or poorly fed as larvae bear much more modest appendages. Changes in IIS/TOR signaling plays a key role in appendage development by regulating growth in the horn and mandible primordia. In contrast, changes in the IIS/TOR pathway produce minimal effects on the size of other adult structures, such as the male genitalia in fruit flies and dung beetles. The horn, mandible and genitalia illustrate that although all tissues are exposed to the same hormonal environment within the larval body, the extent to which insulin can induce growth is organ specific. In addition, the IIS/TOR pathway affects body size and shape by controlling production of metamorphic hormones important for regulating developmental timing, like the steroid molting hormone ecdysone and sesquiterpenoid hormone juvenile hormone. In this review, we discuss recent results from Drosophila and other insects that highlight mechanisms allowing tissues to differ in their sensitivity to IIS/TOR and the potential consequences of these differences on body size and shape.
Collapse
Affiliation(s)
- Takashi Koyama
- Development, Evolution and the Environment Laboratory, Instituto Gulbenkian de Ciência Oeiras, Portugal
| | | | | |
Collapse
|
8
|
Giraudo M, Califano J, Hilliou F, Tran T, Taquet N, Feyereisen R, Le Goff G. Effects of hormone agonists on Sf9 cells, proliferation and cell cycle arrest. PLoS One 2011; 6:e25708. [PMID: 21991338 PMCID: PMC3185036 DOI: 10.1371/journal.pone.0025708] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/08/2011] [Indexed: 12/19/2022] Open
Abstract
Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells.
Collapse
Affiliation(s)
- Maeva Giraudo
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- UMR 6023 CNRS-Université Blaise Pascal, Bât. Biologie A – Campus des Cézeaux, Aubière, France
| | - Jérôme Califano
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- Département des affaires réglementaires, Grasse, France
| | - Frédérique Hilliou
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
| | - Trang Tran
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- Lanaud Gestion-Pôle de Lanaud, Boisseuil, France
| | - Nathalie Taquet
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- Bioimagerie, Villeneuve Loubet, France
| | - René Feyereisen
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
| | - Gaëlle Le Goff
- Institut National de la Recherche Agronomique, UMR 1301 Interactions Biotiques et Santé Végétale, Centre National de la Recherche Scientifique, UMR 6243, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
- * E-mail:
| |
Collapse
|
9
|
Schiesari L, Kyriacou CP, Costa R. The hormonal and circadian basis for insect photoperiodic timing. FEBS Lett 2011; 585:1450-60. [PMID: 21354417 DOI: 10.1016/j.febslet.2011.02.026] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/07/2011] [Accepted: 02/21/2011] [Indexed: 01/17/2023]
Abstract
Daylength perception in temperate zones is a critical feature of insect life histories, and leads to developmental changes for resisting unfavourable seasons. The role of the neuroendocrine axis in the photoperiodic response of insects is discussed in relation to the key organs and molecules that are involved. We also discuss the controversial issue of the possible involvement of the circadian clock in photoperiodicity. Drosophila melanogaster has a shallow photoperiodic response that leads to reproductive arrest in adults, yet the unrivalled molecular genetic toolkit available for this model insect should allow the systematic molecular and neurobiological dissection of this complex phenotype.
Collapse
|
10
|
Shao HL, Zheng WW, Liu PC, Wang Q, Wang JX, Zhao XF. Establishment of a new cell line from lepidopteran epidermis and hormonal regulation on the genes. PLoS One 2008; 3:e3127. [PMID: 18769621 PMCID: PMC2518862 DOI: 10.1371/journal.pone.0003127] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 08/07/2008] [Indexed: 11/19/2022] Open
Abstract
When an insect molts, old cuticle on the outside of the integument is shed by apolysis and a new cuticle is formed under the old one. This process is completed by the epidermal cells which are controlled by 20-hydroxyecdysone (20E) and juvenile hormone. To understand the molecular mechanisms of integument remolding and hormonal regulation on the gene expression, an epidermal cell line from the 5th instar larval integument of Helicoverpa armigera was established and named HaEpi. The cell line has been cultured continuously for 82 passages beginning on June 30, 2005 until now. Cell doubling time was 64 h. The chromosomes were granular and the chromosome mode was from 70 to 76. Collagenase I was used to detach the cells from the flask bottom. Non-self pathogen AcMNPV induced the cells to apoptosis. The cell line was proved to be an epidermal cell line based on its unique gene expression pattern. It responded to 20E and the non-steroidal ecdysone agonist RH-2485. Its gene expression could be knocked down using RNA interference. Various genes in the cell line were investigated based on their response to 20E. This new cell line represents a platform for investigating the 20E signaling transduction pathway, the immune response mechanism in lepidopteran epidermis and interactions of the genes.
Collapse
Affiliation(s)
- Hong-Lian Shao
- School of Life Sciences, Shandong University, Jinan, China
| | - Wei-Wei Zheng
- School of Life Sciences, Shandong University, Jinan, China
| | - Peng-Cheng Liu
- School of Life Sciences, Shandong University, Jinan, China
| | - Qian Wang
- School of Life Sciences, Shandong University, Jinan, China
| | - Jin-Xing Wang
- School of Life Sciences, Shandong University, Jinan, China
| | - Xiao-Fan Zhao
- School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
11
|
Shingleton AW, Das J, Vinicius L, Stern DL. The temporal requirements for insulin signaling during development in Drosophila. PLoS Biol 2005; 3:e289. [PMID: 16086608 PMCID: PMC1184592 DOI: 10.1371/journal.pbio.0030289] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Accepted: 06/17/2005] [Indexed: 11/19/2022] Open
Abstract
Recent studies have indicated that the insulin-signaling pathway controls body and organ size in Drosophila, and most metazoans, by signaling nutritional conditions to the growing organs. The temporal requirements for insulin signaling during development are, however, unknown. Using a temperature-sensitive insulin receptor (Inr) mutation in Drosophila, we show that the developmental requirements for Inr activity are organ specific and vary in time. Early in development, before larvae reach the "critical size" (the size at which they commit to metamorphosis and can complete development without further feeding), Inr activity influences total development time but not final body and organ size. After critical size, Inr activity no longer affects total development time but does influence final body and organ size. Final body size is affected by Inr activity from critical size until pupariation, whereas final organ size is sensitive to Inr activity from critical size until early pupal development. In addition, different organs show different sensitivities to changes in Inr activity for different periods of development, implicating the insulin pathway in the control of organ allometry. The reduction in Inr activity is accompanied by a two-fold increase in free-sugar levels, similar to the effect of reduced insulin signaling in mammals. Finally, we find that varying the magnitude of Inr activity has different effects on cell size and cell number in the fly wing, providing a potential linkage between the mode of action of insulin signaling and the distinct downstream controls of cell size and number. We present a model that incorporates the effects of the insulin-signaling pathway into the Drosophila life cycle. We hypothesize that the insulin-signaling pathway controls such diverse effects as total developmental time, total body size and organ size through its effects on the rate of cell growth, and proliferation in different organs.
Collapse
|
12
|
Decombel L, Smagghe G, Tirry L. ACTION OF MAJOR INSECTICIDE GROUPS ON INSECT CELL LINES OF THE BEET ARMYWORM, SPODOPTERA EXIGUA, COMPARED WITH LARVICIDAL TOXICITY. ACTA ACUST UNITED AC 2004; 40:43-51. [PMID: 14753848 DOI: 10.1290/1543-706x(2004)40<43:aomigo>2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In a first series of experiments, the biological response of a continuous cell line of the beet armyworm, Spodoptera exigua, was tested with different groups of insecticides with different modes of actions: acetylcholinesterase inhibitors, acetycholine receptor agonists, inhibitors and uncouplers of oxidative phosphorylation, site I electron transport inhibitors, gamma-aminobutyric acid receptor inhibitors, chitin synthesis inhibitors, and juvenile hormone analogues. From the concentration response curves, 50% inhibition concentration (IC(50)) values were calculated. The most active compound in vitro was pyridaben with an IC(50) value of 0.0083 ppm. In a second series of experiments, the toxicity of these insecticide groups was determined on third-instar larvae of S. exigua, and lethal concentration with 50% kill (LC(50)) values were used in the evaluation of their in vivo biological activity. Toxicity bioassays showed that lufenuron was the most toxic (LC(50) = 0.098 ppm). To explain the discrepancies in biological responses in vitro with insect cells compared with in vivo conditions with whole third-instar larvae, the significance of different detoxifying enzyme systems was tested. P(450) monooxygenases, esterases, and glutathione S-transferases were measured in third-instar larvae and cells of S. exigua. Data are discussed in terms of the usefulness of insect cell cultures as tools in the screening for novel insecticide actions.
Collapse
Affiliation(s)
- Luc Decombel
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | |
Collapse
|
13
|
Abu-Qare AW, Abou-Donia MB. A solid phase extraction reversed-phase HPLC method for the simultaneous determination of methoprene, permethrin and selected metabolites in rat plasma and urine. Biomed Chromatogr 2001; 15:464-70. [PMID: 11746243 DOI: 10.1002/bmc.97] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A method was validated and applied for the analysis of the insect growth regulator methoprene [Isopropyl (2E,4E)-11-methoxy-3,7,11-trimethyldodeca-2,4-dienoate], its metabolite methoprene acid, the insecticide permethrin [3-(2,2-dichloro-ethenyl)-2,2-dimethylcyclopropanecarboxylic acid(3-phenoxyphenyl)methylester], and two of its metabolites, m-phenoxybenzyl alcohol and m-phenoxybenzoic acid, in rat plasma and urine using solid-phase extraction and reversed-phase high performance liquid chromatography. The analytes were separated using gradient of 55-100% acetonitrile in water (pH 4.0) at a flow rate ranging between 0.6 and 1.0 mL/min over a period of 20 min, and UV detection at 210 and 254 nm. The retention times ranged from 7.3 to 18.4 min. The limits of detection ranged between 50 and 100 ng/ml, while limits of quantitation were 100-150 ng/mL. Average percentage recovery of five spiked plasma samples was 83.6 +/- 3.9, 80.1 +/- 5.4, 82.1 +/- 4.4, 83.7 +/- 3.9 and 83.1 +/- 4.7, and from urine 79.3 +/- 4.3, 82.0 +/- 5.4, 80.7 +/- 4.2, 78.9 +/- 5.7 and 83.9 +/- 4.5 for methoprene, methoprene acid, permethrin, m-phenoxybenzyl alcohol and m-phenoxybenzoic acid, respectively. The method was linear and reproducible over the range of 100-1000 ng/mL. This method was applied to analyze the above chemicals and metabolites following their combined administration in rats.
Collapse
Affiliation(s)
- A W Abu-Qare
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|