1
|
Zhang J, Choi EH, Tworak A, Salom D, Leinonen H, Sander CL, Hoang TV, Handa JT, Blackshaw S, Palczewska G, Kiser PD, Palczewski K. Photic generation of 11- cis-retinal in bovine retinal pigment epithelium. J Biol Chem 2019; 294:19137-19154. [PMID: 31694912 DOI: 10.1074/jbc.ra119.011169] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Photoisomerization of the 11-cis-retinal chromophore of rod and cone visual pigments to an all-trans-configuration is the initiating event for vision in vertebrates. The regeneration of 11-cis-retinal, necessary for sustained visual function, is an endergonic process normally conducted by specialized enzyme systems. However, 11-cis-retinal also can be formed through reverse photoisomerization from all-trans-retinal. A nonvisual opsin known as retinal pigment epithelium (RPE)-retinal G-protein-coupled receptor (RGR) was previously shown to mediate visual chromophore regeneration in photic conditions, but conflicting results have cast doubt on its role as a photoisomerase. Here, we describe high-level production of 11-cis-retinal from RPE membranes stimulated by illumination at a narrow band of wavelengths. This activity was associated with RGR and enhanced by cellular retinaldehyde-binding protein (CRALBP), which binds the 11-cis-retinal produced by RGR and prevents its re-isomerization to all-trans-retinal. The activity was recapitulated with cells heterologously expressing RGR and with purified recombinant RGR. Using an RGR variant, K255A, we confirmed that a Schiff base linkage at Lys-255 is critical for substrate binding and isomerization. Single-cell RNA-Seq analysis of the retina and RPE tissue confirmed that RGR is expressed in human and bovine RPE and Müller glia, whereas mouse RGR is expressed in RPE but not in Müller glia. These results provide key insights into the mechanisms of physiological retinoid photoisomerization and suggest a novel mechanism by which RGR, in concert with CRALBP, regenerates the visual chromophore in the RPE under sustained light conditions.
Collapse
Affiliation(s)
- Jianye Zhang
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Elliot H Choi
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Aleksander Tworak
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - David Salom
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Henri Leinonen
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| | - Christopher L Sander
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697.,Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - James T Handa
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | | | - Philip D Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California 92697.,Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California 90822
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California 92697
| |
Collapse
|
2
|
Dos Santos L, Téllez S CA, Sousa MPJ, Azoia NG, Cavaco-Paulo AM, Martin AA, Favero PP. In vivo confocal Raman spectroscopy and molecular dynamics analysis of penetration of retinyl acetate into stratum corneum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 174:279-285. [PMID: 27960141 DOI: 10.1016/j.saa.2016.11.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/17/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE The purpose of this study is to elucidate the behavior of retinyl acetate in penetrating human skin without the presence of enhancers by using confocal Raman spectroscopy and molecular dynamics simulation. METHODS In this study, in vivo confocal Raman spectroscopy was combined with molecular dynamics simulation to investigate the transdermal permeation of the aqueous suspension of retinyl acetate. RESULTS Permeation was measured after 30min, and retinyl acetate was found up to 20μm deep inside the stratum corneum. The delivery of retinyl acetate inside a skin membrane model was studied by molecular dynamics. The membrane model that was used represented normal young skin containing a lipid bilayer with 25% ceramide, 36% fatty acid, 30% cholesterol, and 6% cholesterol sulfate. CONCLUSION Spectroscopy data indicate that retinyl acetate permeates into the stratum corneum. Molecular dynamics data showed that retinyl acetate permeates in the membrane model and that their final location is deep inside the lipid bilayer. We showed, for the first time, a correlation between Raman permeation data and computational data.
Collapse
Affiliation(s)
- Laurita Dos Santos
- Laboratory of Biomedical Vibrational Spectroscopy, University of Vale do Paraíba, 12224-000 São José dos Campos, SP, Brazil.
| | - Claudio A Téllez S
- Laboratory of Biomedical Vibrational Spectroscopy, University of Vale do Paraíba, 12224-000 São José dos Campos, SP, Brazil
| | - Mariane P J Sousa
- Laboratory of Biomedical Vibrational Spectroscopy, University of Vale do Paraíba, 12224-000 São José dos Campos, SP, Brazil
| | - Nuno G Azoia
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | | | - Airton A Martin
- Laboratory of Biomedical Vibrational Spectroscopy, University of Vale do Paraíba, 12224-000 São José dos Campos, SP, Brazil
| | - Priscila P Favero
- Laboratory of Biomedical Vibrational Spectroscopy, University of Vale do Paraíba, 12224-000 São José dos Campos, SP, Brazil
| |
Collapse
|
3
|
Reboul E. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients 2013; 5:3563-81. [PMID: 24036530 PMCID: PMC3798921 DOI: 10.3390/nu5093563] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/15/2022] Open
Abstract
Vitamin A deficiency is a public health problem in most developing countries, especially in children and pregnant women. It is thus a priority in health policy to improve preformed vitamin A and/or provitamin A carotenoid status in these individuals. A more accurate understanding of the molecular mechanisms of intestinal vitamin A absorption is a key step in this direction. It was long thought that β-carotene (the main provitamin A carotenoid in human diet), and thus all carotenoids, were absorbed by a passive diffusion process, and that preformed vitamin A (retinol) absorption occurred via an unidentified energy-dependent transporter. The discovery of proteins able to facilitate carotenoid uptake and secretion by the enterocyte during the past decade has challenged established assumptions, and the elucidation of the mechanisms of retinol intestinal absorption is in progress. After an overview of vitamin A and carotenoid fate during gastro-duodenal digestion, our focus will be directed to the putative or identified proteins participating in the intestinal membrane and cellular transport of vitamin A and carotenoids across the enterocyte (i.e., Scavenger Receptors or Cellular Retinol Binding Proteins, among others). Further progress in the identification of the proteins involved in intestinal transport of vitamin A and carotenoids across the enterocyte is of major importance for optimizing their bioavailability.
Collapse
Affiliation(s)
- Emmanuelle Reboul
- INRA, UMR1260, Nutrition, Obesity and Risk of Thrombosis, Marseille F-13385, France.
| |
Collapse
|
4
|
Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Prog Lipid Res 2011; 50:388-402. [DOI: 10.1016/j.plipres.2011.07.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/24/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
|
5
|
He Q, Alexeev D, Estevez ME, McCabe SL, Calvert PD, Ong DE, Cornwall MC, Zimmerman AL, Makino CL. Cyclic nucleotide-gated ion channels in rod photoreceptors are protected from retinoid inhibition. ACTA ACUST UNITED AC 2007; 128:473-85. [PMID: 17001087 PMCID: PMC2151575 DOI: 10.1085/jgp.200609619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light.
Collapse
Affiliation(s)
- Quanhua He
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
De Cuyper M, Crabbe A, Cocquyt J, Van der Meeren P, Martins F, Santana MHA. PEGylation of phospholipids improves their intermembrane exchange rate. Phys Chem Chem Phys 2004. [DOI: 10.1039/b310461c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Fröhlich M, Brecht V, Peschka-Süss R. Parameters influencing the determination of liposome lamellarity by 31P-NMR. Chem Phys Lipids 2001; 109:103-12. [PMID: 11163348 DOI: 10.1016/s0009-3084(00)00220-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The lamellarity of liposomes influences to a great extent the encapsulation efficiency, the efflux rate of liposomally encapsulated material, and the fate of a drug after cellular uptake. 31P-NMR in combination with the use of chemical shift reagents has been described for the determination of lamellarity of liposomes and this study was performed to evaluate the applicability of 31P-NMR analysis as published in the past. To date, very few details about the required conditions throughout the measurements are known. In this study the influence of various parameters on the measurement, such as different buffers with changing ion concentrations, varying pH and different shift reagents at increasing concentrations was investigated. Results were discussed by using cryo-electronmicroscopy as a reference method. The data of this study show that 31P-NMR might not result in the correct determination of liposome lamellarity, depending on the experimental settings and the shape of the liposomes.
Collapse
Affiliation(s)
- M Fröhlich
- Department of Pharmaceutical Technology, University of Freiburg, Stefan-Meier-Str. 19, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
8
|
Abstract
The liver sinusoids, that are considered as a functional unit, harbour four types of sinusoidal cells (Ito, Kupffer, endothelial and pit cells). Dolichol content has been determined in many tissues and subcellular compartments, alteration has been reported in many types of liver injury, but until now no data are available on its content in every type of sinusoidal non-parenchymal liver cells. Dolichol and retinol metabolism might intersect in their traffic in biological membranes. Intercellular as well as intracellular exchange of retinoids is an essential element of important processes occurring in liver cells. It has been suggested that the role of dolichol, besides being a carrier of oligosaccharides in the biosynthesis of N-linked glycoproteins, may be to modify membrane fluidity and permeability, and facilitate fusion of membranes. Dolichol in the membrane is intercalated between the two-halves of the phospholipid bilayer, but its exact disposition is not known and the movement and distribution of retinoid in membranes may vary with the geometry of the membranes. Therefore the aim of this study is to obtain a global understanding of the sinusoidal system regarding dolichol and retinol content in each type of isolated rat liver sinusoidal cell, in normal conditions and after vitamin A administration. The information that can be drawn from the present results is that with normal vitamin A status of the animal, the dolichol content is almost uniform in all liver cells. After vitamin A supplementation, a great increase of dolichol, together with the known increase of retinol, can be measured only in a subpopulation of the Ito cells, the Ito-1 subfraction. Therefore in the cells that are present in the hepatic sinusoid, different pools of dolichol may have separate functions. Because retinol traffic among cells, membranes and plasma still remains to be fully understood, roles of dolichol in the exchange of vitamin A among sinusoidal liver cells are discussed.
Collapse
Affiliation(s)
- G Nanni
- Institute of General Pathology, University of Genoa, Italy
| | | | | | | |
Collapse
|
9
|
Abstract
Dolichol has been determined in many tissues but to date no data are available on liver Ito (fat storing) cells. In this note dolichol was determined in two subpopulations of liver Ito cells isolated from rats pretreated with vitamin A: Ito-1, vitamin A enriched and Ito-2, relatively poor of vitamin A. Differences were observed in the behaviour of the two fractions after vitamin A pretreatment of rats. In fact, in Ito-1 fraction dolichol increases with the increase of vitamin A, while in Ito-2 fraction it does not change significantly with the increase of vitamin A. These results, while confirming the heterogeneity of fat storing cells, are discussed as to the possible role of dolichol and vitamin A metabolism.
Collapse
Affiliation(s)
- G Nanni
- Institute of General Pathology, University of Genoa, Italy
| | | | | |
Collapse
|
10
|
Chen Y, Houghton LA, Brenna JT, Noy N. Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis-retinal. J Biol Chem 1996; 271:20507-15. [PMID: 8702792 DOI: 10.1074/jbc.271.34.20507] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rapid transport of retinoids across the interphotoreceptor matrix is a critical part of the visual cycle, since it serves to replenish bleached rhodopsin with its chromophore 11-cis-retinal. The transport of retinoids in the interphotoreceptor matrix is believed to be mediated by the interphotoreceptor retinoid-binding protein (IRBP), a protein that, in addition to possessing two retinoid-binding sites, associates in vivo with long chain fatty acids. Here, the interrelationships between binding of the two types of ligands to IRBP were studied. The composition of fatty acids associated with IRBP in bovine retina was determined, and it was found that polyunsaturated fatty acids constitute a significant fraction of those. It was further found that docosahexaenoic acid, but not palmitic acid, induced a rapid and specific release of 11-cis-retinal from one of the protein's retinoid-binding sites. Based on these results and on the additional observation that a steep concentration gradient of docosahexaenoic acid exists between photoreceptor and pigment epithelium cells, a model for the mechanism by which IRBP may target 11-cis-retinal to photoreceptor cells is proposed.
Collapse
Affiliation(s)
- Y Chen
- Division of Nutritional Sciences, Savage Hall, Cornell University, Ithaca, New York 14853-6301, USA
| | | | | | | |
Collapse
|