1
|
Sphingolipids and Cholesterol. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1372:1-14. [DOI: 10.1007/978-981-19-0394-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Singh NK, Rao GN. Emerging role of 12/15-Lipoxygenase (ALOX15) in human pathologies. Prog Lipid Res 2019; 73:28-45. [PMID: 30472260 PMCID: PMC6338518 DOI: 10.1016/j.plipres.2018.11.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
12/15-lipoxygenase (12/15-LOX) is an enzyme, which oxidizes polyunsaturated fatty acids, particularly omega-6 and -3 fatty acids, to generate a number of bioactive lipid metabolites. A large number of studies have revealed the importance of 12/15-LOX role in oxidative and inflammatory responses. The in vitro studies have demonstrated the ability of 12/15-LOX metabolites in the expression of various genes and production of cytokine related to inflammation and resolution of inflammation. The studies with the use of knockout and transgenic animals for 12/15-LOX have further shown its involvement in the pathogenesis of a variety of human diseases, including cardiovascular, renal, neurological and metabolic disorders. This review summarizes our current knowledge on the role of 12/15-LOX in inflammation and various human diseases.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, 71 S. Manassas Street Memphis, Memphis, TN 38163, USA.
| |
Collapse
|
3
|
Nagaraj V, Kazim AS, Helgeson J, Lewold C, Barik S, Buda P, Reinbothe TM, Wennmalm S, Zhang E, Renström E. Elevated Basal Insulin Secretion in Type 2 Diabetes Caused by Reduced Plasma Membrane Cholesterol. Mol Endocrinol 2016; 30:1059-1069. [PMID: 27533789 PMCID: PMC5045496 DOI: 10.1210/me.2016-1023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elevated basal insulin secretion under fasting conditions together with insufficient stimulated insulin release is an important hallmark of type 2 diabetes, but the mechanisms controlling basal insulin secretion remain unclear. Membrane rafts exist in pancreatic islet cells and spatially organize membrane ion channels and proteins controlling exocytosis, which may contribute to the regulation of insulin secretion. Membrane rafts (cholesterol and sphingolipid containing microdomains) were dramatically reduced in human type 2 diabetic and diabetic Goto-Kakizaki (GK) rat islets when compared with healthy islets. Oxidation of membrane cholesterol markedly reduced microdomain staining intensity in healthy human islets, but was without effect in type 2 diabetic islets. Intriguingly, oxidation of cholesterol affected glucose-stimulated insulin secretion only modestly, whereas basal insulin release was elevated. This was accompanied by increased intracellular Ca2+ spike frequency and Ca2+ influx and explained by enhanced single Ca2+ channel activity. These results suggest that the reduced presence of membrane rafts could contribute to the elevated basal insulin secretion seen in type 2 diabetes.
Collapse
Affiliation(s)
- Vini Nagaraj
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Abdulla S Kazim
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Johan Helgeson
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Clemens Lewold
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Satadal Barik
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Pawel Buda
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Thomas M Reinbothe
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Stefan Wennmalm
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Enming Zhang
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Erik Renström
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| |
Collapse
|
4
|
Lei D, Rames M, Zhang X, Zhang L, Zhang S, Ren G. Insights into the Tunnel Mechanism of Cholesteryl Ester Transfer Protein through All-atom Molecular Dynamics Simulations. J Biol Chem 2016; 291:14034-14044. [PMID: 27143480 PMCID: PMC4933163 DOI: 10.1074/jbc.m116.715565] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 12/31/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates cholesteryl ester (CE) transfer from the atheroprotective high density lipoprotein (HDL) cholesterol to the atherogenic low density lipoprotein cholesterol. In the past decade, this property has driven the development of CETP inhibitors, which have been evaluated in large scale clinical trials for treating cardiovascular diseases. Despite the pharmacological interest, little is known about the fundamental mechanism of CETP in CE transfer. Recent electron microscopy (EM) experiments have suggested a tunnel mechanism, and molecular dynamics simulations have shown that the flexible N-terminal distal end of CETP penetrates into the HDL surface and takes up a CE molecule through an open pore. However, it is not known whether a CE molecule can completely transfer through an entire CETP molecule. Here, we used all-atom molecular dynamics simulations to evaluate this possibility. The results showed that a hydrophobic tunnel inside CETP is sufficient to allow a CE molecule to completely transfer through the entire CETP within a predicted transfer time and at a rate comparable with those obtained through physiological measurements. Analyses of the detailed interactions revealed several residues that might be critical for CETP function, which may provide important clues for the effective development of CETP inhibitors and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Matthew Rames
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Xing Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lei Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|
5
|
Darabi M, Guillas-Baudouin I, Le Goff W, Chapman MJ, Kontush A. Therapeutic applications of reconstituted HDL: When structure meets function. Pharmacol Ther 2015; 157:28-42. [PMID: 26546991 DOI: 10.1016/j.pharmthera.2015.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reconstituted forms of HDL (rHDL) are under development for infusion as a therapeutic approach to attenuate atherosclerotic vascular disease and to reduce cardiovascular risk following acute coronary syndrome and ischemic stroke. Currently available rHDL formulations developed for clinical use contain apolipoprotein A-I (apoA-I) and one of the major lipid components of HDL, either phosphatidylcholine or sphingomyelin. Recent data have established that quantitatively minor molecular constituents of HDL particles can strongly influence their anti-atherogenic functionality. Novel rHDL formulations displaying enhanced biological activities, including cellular cholesterol efflux, may therefore offer promising prospects for the development of HDL-based, anti-atherosclerotic therapies. Indeed, recent structural and functional data identify phosphatidylserine as a bioactive component of HDL; the content of phosphatidylserine in HDL particles displays positive correlations with all metrics of their functionality. This review summarizes current knowledge of structure-function relationships in rHDL formulations, with a focus on phosphatidylserine and other negatively-charged phospholipids. Mechanisms potentially underlying the atheroprotective role of these lipids are discussed and their potential for the development of HDL-based therapies highlighted.
Collapse
Affiliation(s)
- Maryam Darabi
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | - Isabelle Guillas-Baudouin
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | - Wilfried Le Goff
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | - M John Chapman
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| | - Anatol Kontush
- UMR INSERM-UPMC 1166 ICAN, Pavillon Benjamin Delessert, Hôpital de la Pitié, 83 boulevard de l'Hôpital, 75651 Paris Cedex 13, France.
| |
Collapse
|
6
|
Koivuniemi A, Sysi-Aho M, Orešič M, Ollila S. Interfacial properties of high-density lipoprotein-like lipid droplets with different lipid and apolipoprotein A-I compositions. Biophys J 2013; 104:2193-201. [PMID: 23708359 DOI: 10.1016/j.bpj.2013.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/06/2013] [Accepted: 02/14/2013] [Indexed: 01/22/2023] Open
Abstract
The surface properties of high-density lipoproteins (HDLs) are important because different enzymes bind and carry out their functions at the surface of HDL particles during metabolic processes. However, the surface properties of HDL and other lipoproteins are poorly known because they cannot be directly measured for nanoscale particles with contemporary experimental methods. In this work, we carried out coarse-grained molecular dynamics simulations to study the concentration of core lipids in the surface monolayer and the interfacial tension of droplets resembling HDL particles. We simulated lipid droplets composed of different amounts of phospholipids, cholesterol esters (CEs), triglycerides (TGs), and apolipoprotein A-Is. Our results reveal that the amount of TGs in the vicinity of water molecules in the phospholipid monolayer is 25-50% higher compared to the amount of CEs in a lipid droplet with a mixed core of an equal amount of TG and CE. In addition, the correlation time for the exchange of molecules between the core and the monolayer is significantly longer for TGs compared to CEs. This suggests that the chemical potential of TG is lower in the vicinity of aqueous phase but the free-energy barrier for the translocation between the monolayer and the core is higher compared to CEs. From the point of view of enzymatic modification, this indicates that TG molecules are more accessible from the aqueous phase. Further, our results point out that CE molecules decrease the interfacial tension of HDL-like lipid droplets whereas TG keeps it constant while the amount of phospholipids varies.
Collapse
|
7
|
Martínez-Beamonte R, Lou-Bonafonte JM, Martínez-Gracia MV, Osada J. Sphingomyelin in high-density lipoproteins: structural role and biological function. Int J Mol Sci 2013; 14:7716-41. [PMID: 23571495 PMCID: PMC3645712 DOI: 10.3390/ijms14047716] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/20/2013] [Accepted: 03/29/2013] [Indexed: 11/16/2022] Open
Abstract
High-density lipoprotein (HDL) levels are an inverse risk factor for cardiovascular diseases, and sphingomyelin (SM) is the second most abundant phospholipid component and the major sphingolipid in HDL. Considering the marked presence of SM, the present review has focused on the current knowledge about this phospholipid by addressing its variable distribution among HDL lipoparticles, how they acquire this phospholipid, and the important role that SM plays in regulating their fluidity and cholesterol efflux from different cells. In addition, plasma enzymes involved in HDL metabolism such as lecithin-cholesterol acyltransferase or phospholipid transfer protein are inhibited by HDL SM content. Likewise, HDL SM levels are influenced by dietary maneuvers (source of protein or fat), drugs (statins or diuretics) and modified in diseases such as diabetes, renal failure or Niemann-Pick disease. Furthermore, increased levels of HDL SM have been shown to be an inverse risk factor for coronary heart disease. The complexity of SM species, described using new lipidomic methodologies, and their distribution in different HDL particles under many experimental conditions are promising avenues for further research in the future.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza E-50013, Spain; E-Mail:
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
| | - Jose M. Lou-Bonafonte
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
- Departamento de Farmacología y Fisiología, Facultad de Ciencias de la Salud y del Deporte, Universidad de Zaragoza, Huesca E-22002, Spain
| | - María V. Martínez-Gracia
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Veterinaria, Instituto de Investigación Sanitaria de Aragón-Universidad de Zaragoza, Zaragoza E-50013, Spain; E-Mail:
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid E-28029, Spain; E-Mails: (J.M.L.-B.); (M.V.M.-G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-976-761-644; Fax: +34-976-761-612
| |
Collapse
|
8
|
Ollila OHS, Lamberg A, Lehtivaara M, Koivuniemi A, Vattulainen I. Interfacial tension and surface pressure of high density lipoprotein, low density lipoprotein, and related lipid droplets. Biophys J 2013; 103:1236-44. [PMID: 22995496 DOI: 10.1016/j.bpj.2012.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/02/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022] Open
Abstract
Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively) are essentially lipid droplets surrounded by specific proteins, their main function being to transport cholesterol. Interfacial tension and surface pressure of these particles are of great interest because they are related to the shape and the stability of the droplets and to protein adsorption at the interface. Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence of interfacial tension becomes significant for particles with a radius of ∼5 nm, when the area per molecule in the surface region is <1.4 nm(2). Further, interfacial tensions in the used HDL and LDL models are essentially unaffected by single apo-proteins at the surface. Finally, interfacial tensions of lipoproteins are higher than in thermodynamically stable droplets, suggesting that HDL and LDL are kinetically trapped into a metastable state.
Collapse
|
9
|
Sorci-Thomas MG, Owen JS, Fulp B, Bhat S, Zhu X, Parks JS, Shah D, Jerome WG, Gerelus M, Zabalawi M, Thomas MJ. Nascent high density lipoproteins formed by ABCA1 resemble lipid rafts and are structurally organized by three apoA-I monomers. J Lipid Res 2012; 53:1890-909. [PMID: 22750655 PMCID: PMC3413229 DOI: 10.1194/jlr.m026674] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/29/2012] [Indexed: 12/29/2022] Open
Abstract
This report details the lipid composition of nascent HDL (nHDL) particles formed by the action of the ATP binding cassette transporter A1 (ABCA1) on apolipoprotein A-I (apoA-I). nHDL particles of different size (average diameters of ∼ 12, 10, 7.5, and <6 nm) and composition were purified by size-exclusion chromatography. Electron microscopy suggested that the nHDL were mostly spheroidal. The proportions of the principal nHDL lipids, free cholesterol, glycerophosphocholine, and sphingomyelin were similar to that of lipid rafts, suggesting that the lipid originated from a raft-like region of the cell. Smaller amounts of glucosylceramides, cholesteryl esters, and other glycerophospholipid classes were also present. The largest particles, ∼ 12 nm and 10 nm diameter, contained ∼ 43% free cholesterol, 2-3% cholesteryl ester, and three apoA-I molecules. Using chemical cross-linking chemistry combined with mass spectrometry, we found that three molecules of apoA-I in the ∼ 9-14 nm nHDL adopted a belt-like conformation. The smaller (7.5 nm diameter) spheroidal nHDL particles carried 30% free cholesterol and two molecules of apoA-I in a twisted, antiparallel, double-belt conformation. Overall, these new data offer fresh insights into the biogenesis and structural constraints involved in forming nascent HDL from ABCA1.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wittwer J, Hersberger M. The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot Essent Fatty Acids 2007; 77:67-77. [PMID: 17869078 DOI: 10.1016/j.plefa.2007.08.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 07/12/2007] [Accepted: 08/01/2007] [Indexed: 01/02/2023]
Abstract
Chronic inflammation plays a major role in atherogenesis and understanding the role of inflammation and its resolution will offer novel approaches to interfere with atherogenesis. The 15(S)-lipoxygenase (15-LOX) plays a janus-role in inflammation with pro-inflammatory and anti-inflammatory effects in cell cultures and primary cells and even opposite effects on atherosclerosis in two different animal species. There is evidence for a pro-atherosclerotic effect of 15-LOX including the direct contribution to LDL oxidation and to the recruitment of monocytes to the vessel wall, its role in angiotensin II mediated mechanisms and in vascular smooth muscle cell proliferation. In contrast to the pro-atherosclerotic effects of 15-LOX, there is also a broad line of evidence that 15-LOX metabolites of arachidonic and linoleic acid have anti-inflammatory effects. The 15-LOX arachidonic acid metabolite 15-HETE inhibits superoxide production and polymorphonuclear neutrophil (PMN) migration across cytokine-activated endothelium and can be further metabolized to the anti-inflammatory lipoxins. These promote vasorelaxation in the aorta and counteract the action of most other pro-inflammatory factors like leukotrienes and prostanoids. Anti-atherogenic properties are also reported for the linoleic acid oxidation product 13-HODE through inhibition of adhesion of several blood cells to the endothelium. Furthermore, there is evidence that 15-LOX is involved in the metabolism of the long-chain omega-3 fatty acid docosahexaenoic acid (DHA) leading to a family of anti-inflammatory resolvins and protectins. From these cell culture and animal studies the role of the 15-LOX in human atherosclerosis cannot be predicted. However, recent genetic studies characterized the 15-LOX haplotypes in Caucasians and discovered a functional polymorphism in the human 15-LOX promoter. This will now allow large studies to investigate an association of 15-LOX with coronary artery disease and to answer the question whether 15-LOX is pro- or anti-atherogenic in humans.
Collapse
Affiliation(s)
- Jonas Wittwer
- Institute of Clinical Chemistry, Center for Integrative Human Physiology, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | | |
Collapse
|
11
|
Sargis RM, Subbaiah PV. Protection of membrane cholesterol by sphingomyelin against free radical-mediated oxidation. Free Radic Biol Med 2006; 40:2092-102. [PMID: 16785023 PMCID: PMC1481651 DOI: 10.1016/j.freeradbiomed.2006.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/31/2006] [Accepted: 02/08/2006] [Indexed: 11/26/2022]
Abstract
Although the free radical-mediated oxidation of free cholesterol (FC) is critical in the generation of regulatory sterols and in atherogenesis, the physiological regulation of this process is poorly understood. We tested the hypothesis that sphingomyelin (SM), a major phospholipid of cell membranes, which is closely associated with FC, protects FC against oxidation, because of its unique structure, and affinity to the sterol. We employed phosphatidylcholine (PC) liposomes containing varying amounts of SM, and either radioactive FC or a fluorescent analog, dehydroergosterol (DHE), and determined the oxidative decay of the sterol in presence of 2,2'-azo-bis(2-amidinopropane hydrochloride) (AAPH). Incorporation of 25 mol% of SM in the liposomes inhibited the oxidation of FC or DHE by up to 50%. This inhibition was specific for SM among phospholipids, and was abolished by sphingomyelinase treatment. SM was not degraded during the oxidation reaction, and its effect was not dependent on the nature of the oxidizing agent, because it also inhibited sterol oxidation by FeSO(4)/ascorbate, and by cholesterol oxidase. These studies show that SM plays a physiological role in the regulation of cholesterol oxidation by free radicals.
Collapse
Affiliation(s)
- Robert M Sargis
- Department of Medicine, University of Illinois at Chicago, 1819 West Polk Street, M/C 797, 60612, USA
| | | |
Collapse
|
12
|
Abstract
Lipoxygenases (LOXs) form a heterogeneous family of lipid-peroxidizing enzymes, and several LOX-isoforms (12/15-LOX, 5-LOX) have been implicated in atherogenesis. However, the precise role of these enzymes is still a matter of discussion. 12/15-LOXs are capable of oxidizing lipoproteins (low-density lipoprotein (LDL), high-density lipoprotein (HDL)) to atherogenic forms, and functional inactivation of this enzyme in murine atherosclerosis models slows down lesion formation. In contrast, rabbits that overexpress this enzyme were protected from lesion formation when fed a lipid-rich diet. To contribute to this discussion, we recently investigated the impact of 12/15-LOX overexpression on in vitro foam cell formation. When 12/15-LOX-transfected J774 cells were incubated in culture with modified LDL, we found that intracellular lipid deposition was reduced in the transfected cells when compared with the corresponding control transfectants. This paper briefly summarizes the current status of knowledge on the biological activity of different LOX-isoforms in atherogenesis and will also provide novel experimental data characterizing the role of 12/15-LOX in cellular LDL modification and for in vitro foam cell formation.
Collapse
Affiliation(s)
- Hartmut Kühn
- Institute of Biochemistry, University Medicine Berlin, Berlin, Germany.
| | | | | |
Collapse
|
13
|
Specificity of the lipid-binding domain of apoC-II for the substrates and products of lipolysis. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31164-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1488:189-210. [PMID: 11082530 DOI: 10.1016/s1388-1981(00)00123-2] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Low density lipoprotein (LDL) particles are the major cholesterol carriers in circulation and their physiological function is to carry cholesterol to the cells. In the process of atherogenesis these particles are modified and they accumulate in the arterial wall. Although the composition and overall structure of the LDL particles is well known, the fundamental molecular interactions and their impact on the structure of LDL particles are not well understood. Here, the existing pieces of structural information on LDL particles are combined with computer models of the individual molecular components to give a detailed structural model and visualization of the particles. Strong evidence is presented in favor of interactions between LDL lipid constituents that lead to specific domain formation in the particles. A new three-layer model, which divides the LDL particle into outer surface, interfacial layer, and core, and which is capable of explaining some seemingly contradictory interpretations of molecular interactions in LDL particles, is also presented. A new molecular interaction model for the beta-sheet structure and phosphatidylcholine headgroups is introduced and an overall view of the tertiary structure of apolipoprotein B-100 in the LDL particles is presented. This structural information is also utilized to understand and explain the molecular characteristics and interactions of modified, atherogenic LDL particles.
Collapse
Affiliation(s)
- T Hevonoja
- Wihuri Research Institute, Kalliolinnantie 4, FIN-00140 Helsinki, Finland
| | | | | | | | | |
Collapse
|
15
|
Ruiz-Gutiérrez V, Pérez-Camino MC. Update on solid-phase extraction for the analysis of lipid classes and related compounds. J Chromatogr A 2000; 885:321-41. [PMID: 10941680 DOI: 10.1016/s0021-9673(00)00181-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article provides information on the different procedures and methodologies developed when solid-phase extraction (SPE) is used for lipid component separation. The analytical systematics, established by different authors and designed to separate groups of compounds and also specific components by using a combination of chromatographic supports and solvents are presented. The review has been divided into three parts, which we consider well defined: edible fats and oils, fatty foods and biological samples. Separations of non-polar and polar lipids is the most extensive systematic, although many other published methods have been established to isolate specific components or a reduced number of components from edible fats and oils, fatty foods or biological samples susceptible to further analysis by other quantitative techniques.
Collapse
Affiliation(s)
- V Ruiz-Gutiérrez
- Instituto de la Grasa (CSIC), Avda. Padre García Tejero, Seville, Spain.
| | | |
Collapse
|
16
|
MacLachlan J, Wotherspoon AT, Ansell RO, Brooks CJ. Cholesterol oxidase: sources, physical properties and analytical applications. J Steroid Biochem Mol Biol 2000; 72:169-95. [PMID: 10822008 DOI: 10.1016/s0960-0760(00)00044-3] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since Flegg (H.M. Flegg, An investigation of the determination of serum cholesterol by an enzymatic method, Ann. Clin. Biochem. 10 (1973) 79-84) and Richmond (W. Richmond, The development of an enzymatic technique for the assay of cholesterol in biological fluids, Scand. J. clin. Lab. Invest. 29 (1972) 25; W. Richmond, Preparation and properties of a bacterial cholesterol oxidase from Nocardia sp. and its application to enzyme assay of total cholesterol in serum, Clinical Chemistry 19 (1973) 1350-1356) first illustrated the suitability of cholesterol oxidase (COD) for the analysis of serum cholesterol, COD has risen to become the most widely used enzyme in clinical laboratories with the exception of glucose oxidase (GOD). The use is widespread because assays incorporating the enzyme are extremely simple, specific, and highly sensitive and thus offer distinct advantages over the Liebermann-Burchard analytical methodologies which employ corrosive reagents and can be prone to unreliable results due to interfering substances such as bilirubin. Individuals can now readily determine their own serum cholesterol levels with a simple disposable test kit. This review discusses COD in some detail and includes the topics: (1) The variety of bacterial sources available; (2) The various extraction/purification protocols utilised in order to obtain protein of sufficient clarification (purity) for use in food/clinical analysis; (3) Significant differences in the properties of the individual enzymes; (4) Substrate specificities of the various enzymes; (5) Examples of biological assays which have employed cholesterol oxidase as an integral part of the analysis, and the various assay protocols; (6) New steroidal products of COD. This review is not a comprehensive description of published work, but is intended to provide an account of recent and current research, and should promote further interest in the application of enzymes to analytical selectivity.
Collapse
Affiliation(s)
- J MacLachlan
- Department of Physical Sciences, Glasgow Caledonian University, City Campus, 70 Cowcaddens Road, Glasgow, UK.
| | | | | | | |
Collapse
|
17
|
Subbaiah PV, Subramanian VS, Wang K. Novel physiological function of sphingomyelin in plasma. Inhibition of lipid peroxidation in low density lipoproteins. J Biol Chem 1999; 274:36409-14. [PMID: 10593936 DOI: 10.1074/jbc.274.51.36409] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although sphingomyelin (SPH) is a major constituent of all lipoproteins, its physiological function in plasma is not known. In this study, we tested the hypothesis that SPH inhibits lipid peroxidation in low density lipoproteins (LDL) because of its effects on surface fluidity and packing density and that the relative resistance of the buoyant LDL to oxidation, compared with the dense LDL, is partly due to their higher SPH content. Depletion of SPH by treatment with SPHase resulted in shortened lag times and increased rates of oxidation in both LDL subfractions, as measured by the conjugated diene formation in the presence of Cu(2+). Oxidation of LDL by soybean lipoxygenase was similarly stimulated by the degradation of SPH. Oxidation-induced fluorescence decay of diphenylhexatriene-labeled phosphatidylcholine (PC), equilibrated with LDL-PC, was accelerated significantly by the enzymatic depletion of SPH from the lipoprotein. Oxidation of 16:0-18:2 PC in the proteoliposomes was inhibited progressively by the incorporation of increasing amounts of egg SPH into the liposomes. Treatment of SPH-containing proteoliposomes with SPHase reversed the effect of SPH, showing that the presence of intact SPH is necessary for the inhibition of oxidation. Although the incorporation of SPH into the same liposome as the PC (intrinsic SPH) protected the PC against oxidation, the addition of SPH liposomes to PC liposomes (extrinsic SPH) was not effective. Oxidation of 16:0-18:2 PC in liposomes was also inhibited by the incorporation of dipalmitoyl-PC, but not by free cholesterol. These results suggest that SPH acts as a physiological inhibitor of lipoprotein oxidation, possibly by modifying the fluidity of the phospholipid monolayer and thereby inhibiting the lateral propagation of the lipid peroxy radicals.
Collapse
Affiliation(s)
- P V Subbaiah
- Departments of Medicine and Biochemistry, Rush Medical College, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
18
|
Interfacial behavior of HDL3 spread at air/water interface. I. Dynamic properties. Colloids Surf B Biointerfaces 1999. [DOI: 10.1016/s0927-7765(99)00015-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Abstract
The cytotoxic effect of native high density lipoprotein (n-HDL) and oxidised high density lipoprotein (ox-HDL) on macrophages was studied and compared with that of low density lipoprotein (LDL). Copper-mediated oxidation of HDL and LDL was conducted in vitro and assessed by the analysis of conjugated dienes (CD). The kinetics of CD production during lipoprotein oxidation showed that HDL, relative to LDL, exhibited a shorter lag phase (47.7 +/- 17.8 vs. 82.9 +/- 24.5 min), higher diene production (242.2 +/- 23.0 vs 210.4 +/- 14.9 nmol/mg lipid) and reached maximal diene concentration in less time (100.0 +/- 35.4 vs 136.4 +/- 27.9 min). The maximal rate of CD production was 5.38 +/- 1.30 nmol/mg lipid/min for HDL and 4.42 +/- 0.60 nmol/mg lipid/min for LDL. Vitamin E concentration was higher in HDL than in LDL (2.76 +/- 0.41 vs. 2.19 +/- 0.33 micrograms alpha-tocopherol equivalent/mg lipid). Ox-HDL and oxidised LDL (ox-LDL), under the same experimental conditions, were cytotoxic to macrophages in a dose-dependent manner. At the same protein, or total mass concentration, ox-HDL was less cytotoxic than ox-LDL. However, when both lipoproteins were compared at the same lipid or cholesterol concentrations, ox-HDL was equally or more cytotoxic than ox-LDL. In conclusion, HDL is more susceptible to in vitro oxidation than LDL and the resultant modification of HDL converts this lipoprotein into a cytotoxic particle.
Collapse
Affiliation(s)
- I Hurtado
- Unitat de Lípids, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Lottin H, Motta C, Simard G. Differential effects of glycero- and sphingo-phospholipolysis on human high-density lipoprotein fluidity. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1301:127-32. [PMID: 8652647 DOI: 10.1016/0005-2760(96)00029-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study investigates the effect of enzymatic modifications of the HDL(3) surface lipid composition on their physical properties. Human HDL(3) (d: 1.125-1.21 g/ml) was treated either by an exogenous phospholipase A(2) from Crotalus adamanteus or by a sphingomyelinase from Staphylococcus aureus in the presence of albumin for various periods of time in order to obtain several degrees of hydrolysis. Glycerophospholipid hydrolysis ranged from 13 to 81% and sphingomyelinase action led to a 31-92% sphingophospholipid degradation. Physical properties of the surface of HDL(3) were examined by two spectroscopic methods: fluorescence polarisation and electron spin resonance. Glycerophospholipolysis treatment of HDL(3) enhanced the fluorescence anisotropy values (6-18%) and both relaxation correlation time (30-100%) and degree of order. All these results indicated a more rigid environment, a decreased mobility and an increased order of the surface lipids. Conversely, treatment of the HDL(3) with sphingophospholipase induced a progressive fluidization: fluorescence polarisation and degree of order decreasing down to 10% and relaxation correlation time down to 35% compared to native HDL(3). Taken together, all these observations suggest the relative importance of the two major phospholipids to modulate the fluidity and order of the surface of HDL(3) and could account for several recent physiological observations.
Collapse
Affiliation(s)
- H Lottin
- Laboratoire de Biochimie, Faculté de Medecine d'Angers, France
| | | | | |
Collapse
|
21
|
Abstract
Material dealing with the chemistry, biochemistry, and biological activities of oxysterols is reviewed for the period 1987-1995. Particular attention is paid to the presence of oxysterols in tissues and foods and to their physiological relevance.
Collapse
Affiliation(s)
- L L Smith
- University of Texas Medical Branch, Galveston 77555-0653, USA
| |
Collapse
|
22
|
Mattjus P, Bittman R, Vilchèze C, Slotte JP. Lateral domain formation in cholesterol/phospholipid monolayers as affected by the sterol side chain conformation. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1240:237-47. [PMID: 8541295 DOI: 10.1016/0005-2736(95)00179-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interaction of side-chain variable cholesterol analogues with dipalmitoylphosphatidylcholine (DPPC) or N-palmitoylsphingomyelin (N-PSPM) has been examined in monolayer membranes at the air/water interface. The sterols had either unbranched (n-series) or single methyl-branched (iso-series) side chains, with the length varying between 3 and 10 carbons (C3-C10). The efficacy of interaction between the sterols and the phospholipids was evaluated based on the ability of the sterols to form condensed sterol/phospholipid domains in the phospholipid monolayers. Domain formation was detected with monolayer fluorescence microscopy using NBD-cholesterol as the fluorescent probe. In general, a side chain length of at least 5 carbons was necessary for the unbranched sterols to form visible sterol/phospholipid domains in DPPC or N-PSPM mixed monolayers. With the iso-analogues, a side chain of at least 6 carbons was needed for sterol/phospholipid domains to form. The macroscopic domains were stable up to a certain surface pressure (ranging from 1 to 12 mN/m). At this onset phase transformation pressure, the domain line boundary dissipated, and the monolayer entered into an apparent one phase state (no clearly visible lateral domains). However, with some DPPC monolayers containing short chain sterols (n-C3, n-C4,n-C5, and i-C5), a new condensed phase appeared to form (at 20 mol%) when the monolayer was compressed beyond the phase transformation pressure. These precipitates formed at surface pressures between 6-8.3 mN/m, were clearly observable up to at least 30 mN/m. When the monolayers containing these four sterols were allowed to expand, the condensed precipitates dissolved at the same pressure at which they were formed during monolayer compression. No condensed precipitates were observed with these sterols in corresponding N-PSPM monolayers. Taken together, the results of this study emphasize the importance of the length and conformation of the cholesterol side chain in determining the efficacy of sterol/phospholipid interaction in model membranes. The major difference between DPPC and N-PSPM monolayers at different sterol compositions was mainly the lateral distribution and the size of the domains as well as the onset phase transformation pressure intervals.
Collapse
Affiliation(s)
- P Mattjus
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | |
Collapse
|
23
|
Slotte JP. Direct observation of the action of cholesterol oxidase in monolayers. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1259:180-6. [PMID: 7488639 DOI: 10.1016/0005-2760(95)00161-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The oxidation of monolayer cholesterol by cholesterol oxidase has been visualized using monolayer fluorescence microscopy. A direct microscopic visualization was possible because the lateral distribution of a lipid fluorophore, tetramethylrhodamine (TRITC)-labeled phosphatidylethanolamine, was very different in a cholesterol containing monolayer as compared with a cholestenone monolayer. The lipid fluorophore was effectively excluded from the condensed cholesterol phase, but was readily miscible in the cholestenone phase. One could therefore observe the appearance of fluorophore rich cholestenone-domains in the cholesterol monolayer as a result of the cholesterol oxidase catalyzed oxidation reaction. The oxidation experiments were performed at 22 degrees C with a monolayer surface pressure of 5 mN/m (on 50 mM Tris-HCl buffer, containing 140 mM NaCl, pH 7.4). When 40 mU/ml of cholesterol oxidase was injected beneath the monolayer under observation, it appeared that the enzyme penetrated the cholesterol monolayer at random sites and initiated the oxidation reaction. Once the oxidation reaction had commenced, it progressed rapidly and converted the condensed (cholesterol-rich) phase into an expanded (cholestenone-rich) phase. When the oxidation of cholesterol in mixed cholesterol/dimyristoylphosphatidyl-choline monolayers was visualized, it was observed that the enzyme-catalyzed oxidation started from the expanded phases (domains with higher compressibility) and the reaction eventually led to the dissipation of the boundary line between expanded and condensed phases. With time all condensed phases were dissolved and the monolayer became uniformly fluorescent. The association of TRITC-labeled cholesterol oxidase with a non-fluorescent mixed cholesterol/dimyristoylphosphatidylcholine monolayer led to the penetration (or association) of the fluorescent cholesterol oxidase into expanded phases of the mixed monolayers. The monolayer lateral domain morphology was similar whether the fluorescent probe was TRITC-PE or TRITC-labeled enzyme. It is concluded that cholesterol oxidase associated with (or penetrated to some extent into) the expanded phases of a monolayer, and carried out its oxidation reaction in the expanded phase or at the interface between expanded and condensed phases.
Collapse
Affiliation(s)
- J P Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| |
Collapse
|
24
|
Role of sphingomyelin in the regulation of cholesterol esterification in the plasma lipoproteins. Inhibition of lecithin-cholesterol acyltransferase reaction. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80707-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
Slotte JP, Ostman AL. Oxidation/isomerization of 5-cholesten-3 beta-ol and 5-cholesten-3-one to 4-cholesten-3-one in pure sterol and mixed phospholipid-containing monolayers by cholesterol oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1145:243-9. [PMID: 8431456 DOI: 10.1016/0005-2736(93)90295-b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study we have examined the cholesterol oxidase (Streptomyces cinnamomeus) catalyzed conversion of either 5-cholesten-3 beta-ol or 5-cholesten-3-one into 4-cholesten-3-one in pure sterol or mixed phospholipid-containing monolayers at the air/buffer interface. The mean molecular area requirement of 5-cholesten-3-one in a pure monolayer was slightly smaller than the comparable area required by 5-cholesten-3 beta-ol (although the collapse pressure was markedly lower for 5-cholesten-3-one), and both sterols were about equally capable of condensing the lateral packing density of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine at a lateral surface pressure of 20 mN/m. Both sterols were converted by cholesterol oxidase to 4-cholesten-3-one, the reaction being faster with 5-cholesten-3-one as compared to 5-cholesten-3-beta-ol. When the temperature-dependency of the cholesterol oxidase catalyzed conversion of the sterols to 4-cholesten-3-one was examined, the Arrhenius activation energy was calculated to +30 kJ/mol and +27 kJ/mol for 5-cholesten-3 beta-ol and 5-cholesten-3-one, respectively, when the sterols were presented to the enzyme as pure sterol monolayers at a lateral surface pressure of 20 mN/m. With a mixed monolayer containing 40 mol% sterol and 60 mol% EPC, the corresponding activation energies were +107 kJ/mol and +96 kJ/mol for 5-cholesten-3 beta-ol and 5-cholesten-3-one, respectively. With the monolayer system used, it appeared that the over all rate-limiting step in the enzyme-catalyzed conversion of 5-en-sterols to 4-en-3-one was the desorption of the sterol molecules from the monolayer into the active site of the enzyme at the interface. This appeared to be true both with pure sterol monolayers as well as with mixed monolayers containing phosphatidylcholine.
Collapse
Affiliation(s)
- J P Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | |
Collapse
|
26
|
Slotte JP. Enzyme-catalyzed oxidation of cholesterol in mixed phospholipid monolayers reveals the stoichiometry at which free cholesterol clusters disappear. Biochemistry 1992; 31:5472-7. [PMID: 1610794 DOI: 10.1021/bi00139a008] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, we have used cholesterol oxidase as a probe to study cholesterol/phospholipid interactions in mixed monolayers at the air/water interface. Mixed monolayers, containing a single phospholipid class and cholesterol at differing cholesterol/phospholipid molar ratios, were exposed to cholesterol oxidase at a lateral surface pressure of 20 mN/m (at 22 degrees C). At equimolar ratios of cholesterol to phospholipid, the average rate of cholesterol oxidation was fastest in unsaturated phosphatidylcholine mixed monolayers (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and egg yolk phosphatidylcholine), intermediate in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and slowest in sphingomyelin monolayers (egg yolk or bovine brain sphingomyelin). The average oxidation rate in mixed monolayers was not exclusively a function of monolayer packing density, since egg yolk and bovine brain sphingomyelin mixed monolayers occupied similar mean molecular areas even though the measured average oxidation rate was different with these two phospholipids. This suggests that the phospholipid acyl chain composition influenced the oxidation rate. The importance of the phospholipid acyl chain length on influencing the average oxidation rate was further examined in defined phosphatidylcholine mixed monolayers. The average oxidation rate decreased linearly with increasing acyl chain lengths (from di-8:0 to di-18:0). When the average oxidation rate was examined as a function of the cholesterol to phospholipid (C/PL) molar ratio in the monolayer, the otherwise linear function displayed a clear break at a 1:1 stoichiometry with phosphatidylcholine mixed monolayers, and at a 2:1 C/PL stoichiometry with sphingomyelin mixed monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J P Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| |
Collapse
|
27
|
Slotte JP. Substrate specificity of cholesterol oxidase from Streptomyces cinnamomeus--a monolayer study. J Steroid Biochem Mol Biol 1992; 42:521-6. [PMID: 1616882 DOI: 10.1016/0960-0760(92)90265-k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The substrate specificity of cholesterol oxidase from Streptomyces cinnamomeus was examined in oriented sterol monolayers at the air/water interface. Of the cholesterol analogues with structural alterations in the A- or B-ring that were examined, it was observed that 5 alpha-cholestan-3 beta-ol was oxidized almost as fast as cholesterol itself. When the delta-5 double bond in cholesterol was instead at the delta-4 position, the oxidation rate became 3.2-fold slower. A similar reduction in the average oxidation rate was observed when the delta-5 double bond in cholesterol was instead at the delta-7 position (5 alpha-cholest-7-en-3 beta- ol). 5,7-Cholestadien-3 beta-ol was oxidized 5.1-fold slower compared to cholesterol, whereas 3 beta-hydroxy-5-cholesten-7-one and 5 beta-cholestan-3 beta-ol were not substrates of the enzyme (also verified from the lack of H2O2-production). With C(17) side chain analogues of cholesterol, it was observed that the complete lack of the C(17) side chain (5-androsten-3 beta-ol), or the insertion of an unsaturation at delta-24 (desmosterol), or even an ethyl group at C(24)(24b-ethyl-5,22- cholestadien-3 beta-ol) had no appreciable effects on sterol oxidation rate, implying that the enzyme did not recognize the side chain in oriented sterol monolayers. This study has shown that the sterol monolayer system is a good technique to examine sterol/cholesterol oxidase interactions, since both the orientation of the substrate molecules, and the quality of the interface can be mastered.
Collapse
Affiliation(s)
- J P Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| |
Collapse
|
28
|
Adsorption of apolipoprotein A-IV to phospholipid monolayers spread at the air/water interface. A model for its labile binding to high density lipoproteins. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50376-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Slotte JP. Cholesterol oxidase susceptibility of cholesterol and 5-androsten-3 beta-ol in pure sterol monolayers and in mixed monolayers containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1124:23-8. [PMID: 1543722 DOI: 10.1016/0005-2760(92)90121-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study has examined the importance of the isocaproic side chain at C-17 of cholesterol to sterol/phospholipid interactions in monolayer membranes and to the cholesterol oxidase-susceptibility of cholesterol in pure and mixed monolayers at the air/water interface. The interactions between cholesterol or 5-androsten-3 beta-ol (which lacks the C-17 side chain) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in monolayers indicated that 5-androsten-3 beta-ol was not very efficient in causing condensation of the monolayer packing of POPC. Whereas cholesterol condensed the packing of POPC at all molar fractions examined (i.e., 0.25, 0.50 and 0.75 with regard to POPC), 5-androsten-3 beta-ol caused a slight condensing effect on POPC packing only in the equimolar mixture. The mean molecular area requirement of 5-androsten-3 beta-ol (in pure sterol monolayers at different lateral surface pressures) was 2.2-6.7% less than that observed for cholesterol. The pure 5-androsten-3 beta-ol monolayer also collapsed at lower lateral surface pressures compared with the pure cholesterol monolayer (34 mN/m and 45 mN/m, respectively). The cholesterol oxidase (Streptomyces sp.) catalyzed oxidation of cholesterol or 5-androsten-3 beta-ol in pure monolayers in the air/water interface (10 mN/m) proceeded with very similar rates, indicating that the enzyme did not recognize that the C-17 side chain of 5-androsten-3 beta-ol was missing. The oxidation of cholesterol or 5-androsten-3 beta-ol in mixed POPC-containing monolayers (equimolar mixture) also revealed similar reaction rates, although the reaction was slower in the mixed monolayer compared with the pure sterol monolayer. When the oxidation of cholesterol and 5-androsten-3 beta-ol was examined by monitoring the production of H2O2 (the sterol was solubilized in 2-propanol and the assay conducted in phosphate buffer), the maximal reaction rate observed with 5-androsten-3 beta-ol was only about 41% of that measured with cholesterol. From the cholesterol oxidase point-of-view, it can be concluded that the enzyme did not recognize the C-17 side chain of cholesterol (or lack of it in 5-androsten-3 beta-ol), when the sterol was properly oriented as a monolayer at the air/water interface. However, when the substrate was presented to the enzyme in a less controlled orientation (organic solvent in water), 5-androsten-3 beta-ol may have oriented itself unfavorably compared with the orientation of cholesterol, thereby leading to slower oxidation rates.
Collapse
Affiliation(s)
- J P Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| |
Collapse
|
30
|
Slotte JP. Enzyme-catalyzed oxidation of cholesterol in pure monolayers at the air/water interface. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1123:326-33. [PMID: 1536872 DOI: 10.1016/0005-2760(92)90014-m] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mean molecular area vs. lateral surface pressure isotherms were determined for monolayers containing cholesterol, 4-cholesten-3-one (cholestenone), or binary mixtures of the two. At all lateral surface pressures examined, cholestenone had a larger mean molecular area requirement than cholesterol. Results with the binary mixtures of cholesterol and cholestenone suggested that the sterols did not mix ideally (non additive mean molecular area) with each other in the monolayer; the observed mean molecular area for mixtures was less than would be expected based on ideal mixing. The mixed sterol monolayers also displayed a reduction in the lateral collapse pressure which appeared to be a linear function of the mole fraction of cholestenone in the monolayer, suggesting that cholesterol and cholestenone were completely miscible in the mixed monolayer. The pure cholesterol monolayer was next used to examine the cholesterol oxidase-catalyzed (Brevibacterium sp.) oxidation of cholesterol to cholestenone at different lateral surface pressures at 22 degrees C. The difference in mean molecular area requirements of cholesterol and cholestenone was directly used to convert monolayer area changes (at constant lateral surface pressure) into average reaction rates. It was observed that the average catalytic activity of cholesterol oxidase increased linearly with increased lateral surface pressure in the range of 1 to 20 mN/m. In addition, the enzyme was capable to oxidize cholesterol in monolayers with a lateral surface pressure close to the collapse pressure of cholesterol monolayers (collapse pressure 45 mN/m; oxidation was observed at 40 mN/m). The adsorption of cholesterol oxidase to an inert sterol monolayer film at low surface pressures (around 9 mN/m) was marginal, although clearly detectable at very low (0.5-4 mN/m) lateral surface pressures, suggesting that the enzyme did not penetrate deeply into the monolayer in order to reach the 3 beta-hydroxy group of cholesterol. This interpretation is further supported by the finding that a maximally compressed cholesterol monolayer (40 mN/m) was readily susceptible to enzyme-catalyzed oxidation. It is concluded that cholesterol oxidase is capable of oxidizing cholesterol in laterally expanded monolayers as well as in tightly packed monolayers, where the lateral surface pressure is close to the collapse pressure. The kinetic results suggested that the rate-limiting step in the overall process was the substrate availability per surface area (or surface concentration) at the water/lipid interface.
Collapse
Affiliation(s)
- J P Slotte
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| |
Collapse
|
31
|
Aviram M. Low density lipoprotein modification by cholesterol oxidase induces enhanced uptake and cholesterol accumulation in cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48482-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|