1
|
Skowyra ML, Feng P, Rapoport TA. Towards solving the mystery of peroxisomal matrix protein import. Trends Cell Biol 2024; 34:388-405. [PMID: 37743160 PMCID: PMC10957506 DOI: 10.1016/j.tcb.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
Peroxisomes are vital metabolic organelles that import their lumenal (matrix) enzymes from the cytosol using mobile receptors. Surprisingly, the receptors can even import folded proteins, but the underlying mechanism has been a mystery. Recent results reveal how import receptors shuttle cargo into peroxisomes. The cargo-bound receptors move from the cytosol across the peroxisomal membrane completely into the matrix by a mechanism that resembles transport through the nuclear pore. The receptors then return to the cytosol through a separate retrotranslocation channel, leaving the cargo inside the organelle. This cycle concentrates imported proteins within peroxisomes, and the energy for cargo import is supplied by receptor export. Peroxisomal protein import thus fundamentally differs from other previously known mechanisms for translocating proteins across membranes.
Collapse
Affiliation(s)
- Michael L Skowyra
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Peiqiang Feng
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Tom A Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Cells 2023; 12:2054. [PMID: 37626864 PMCID: PMC10453029 DOI: 10.3390/cells12162054] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.
Collapse
Affiliation(s)
- Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Neda S. Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| | - Radovan Dvorsky
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
- Center for Interdisciplinary Biosciences, P. J. Šafárik University, 040 01 Košice, Slovakia
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.M.); (N.S.K.J.)
| |
Collapse
|
3
|
Abstract
Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.
Collapse
Affiliation(s)
- Markus Rudowitz
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
4
|
Rüttermann M, Gatsogiannis C. Good things come to those who bait: the peroxisomal docking complex. Biol Chem 2023; 404:107-119. [PMID: 36117327 DOI: 10.1515/hsz-2022-0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
Abstract
Peroxisomal integrity and function are highly dependent on its membrane and soluble (matrix) components. Matrix enzymes are imported post-translationally in a folded or even oligomeric state, via a still mysterious protein translocation mechanism. They are guided to peroxisomes via the Peroxisomal Targeting Signal (PTS) sequences which are recognized by specific cytosolic receptors, Pex5, Pex7 and Pex9. Subsequently, cargo-loaded receptors bind to the docking complex in an initial step, followed by channel formation, cargo-release, receptor-recycling and -quality control. The docking complexes of different species share Pex14 as their core component but differ in composition and oligomeric state of Pex14. Here we review and highlight the latest insights on the structure and function of the peroxisomal docking complex. We summarize differences between yeast and mammals and then we integrate this knowledge into our current understanding of the import machinery.
Collapse
Affiliation(s)
- Maximilian Rüttermann
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms Universität Münster, D-48149 Münster, Germany
| |
Collapse
|
5
|
Judy RM, Sheedy CJ, Gardner BM. Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis. Cells 2022; 11:2067. [PMID: 35805150 PMCID: PMC9265785 DOI: 10.3390/cells11132067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/01/2023] Open
Abstract
The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.
Collapse
Affiliation(s)
| | | | - Brooke M. Gardner
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; (R.M.J.); (C.J.S.)
| |
Collapse
|
6
|
Yu W, Lin M, Peng M, Yan H, Wang J, Zhou J, Lu G, Wang Z, Shim WB. Fusarium verticillioides FvPex8 Is a Key Component of the Peroxisomal Docking/Translocation Module That Serves Important Roles in Fumonisin Biosynthesis but Not in Virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:803-814. [PMID: 33749306 DOI: 10.1094/mpmi-10-20-0273-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peroxisomes are ubiquitous organelles in eukaryotes that fulfill various important metabolic functions. In this study, we investigated the role of docking/translocation module (DTM) peroxins, mainly FvPex8, FvPex13, FvPex14, and FvPex33, in Fusarium verticillioides development, virulence, and fumonisin B1 (FB1) biosynthesis. Protein interaction experiments suggested that FvPex13 serves as the central DTM subunit in F. verticillioides. Notably, FvPex8 and FvPex14 did not show direct interaction in our experiments. We generated gene-deletion mutants (ΔFvpex8, ΔFvpex13, ΔFvpex14, ΔFvpex33, ΔFvpex33/14) and further examined the functional role of these peroxins. Deletion mutants exhibited disparity in carbon nutrient utilization and defect in cell-wall integrity when stress agents were applied. Under nutrient starvation, mutants also showed higher levels of lipid droplet accumulation. Particularly, ΔFvpex8 mutant showed significant FB1 reduction and altered expression of key FB1 biosynthesis genes. However, FvPex13 was primarily responsible for asexual conidia reproduction and virulence, while the ΔFvpex33/14 double mutant also showed a virulence defect. In summary, our study suggests that FvPex13 is the central component of DTM, with direct physical interaction with other DTM peroxins, and regulates peroxisome membrane biogenesis as well as PTS1- and PTS2-mediated transmembrane cargo transportation. Importantly, we also characterized FvPex8 as a key component in F. verticillioides DTM that affects peroxisome function and FB1 biosynthesis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wenying Yu
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mei Lin
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minghui Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, U.S.A
| | - Jiajia Wang
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Zhou
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, U.S.A
| |
Collapse
|
7
|
Bürgi J, Ekal L, Wilmanns M. Versatile allosteric properties in Pex5-like tetratricopeptide repeat proteins to induce diverse downstream function. Traffic 2021; 22:140-152. [PMID: 33580581 DOI: 10.1111/tra.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 01/11/2023]
Abstract
Proteins composed of tetratricopeptide repeat (TPR) arrays belong to the α-solenoid tandem-repeat family that have unique properties in terms of their overall conformational flexibility and ability to bind to multiple protein ligands. The peroxisomal matrix protein import receptor Pex5 comprises two TPR triplets that recognize protein cargos with a specific C-terminal Peroxisomal Targeting Signal (PTS) 1 motif. Import of PTS1-containing protein cargos into peroxisomes through a transient pore is mainly driven by allosteric binding, coupling and release mechanisms, without a need for external energy. A very similar TPR architecture is found in the functionally unrelated TRIP8b, a regulator of the hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channel. TRIP8b binds to the HCN ion channel via a C-terminal sequence motif that is nearly identical to the PTS1 motif of Pex5 receptor cargos. Pex5, Pex5-related Pex9, and TRIP8b also share a less conserved N-terminal domain. This domain provides a second protein cargo-binding site and plays a distinct role in allosteric coupling of initial cargo loading by PTS1 motif-mediated interactions and different downstream functional readouts. The data reviewed here highlight the overarching role of molecular allostery in driving the diverse functions of TPR array proteins, which could form a model for other α-solenoid tandem-repeat proteins involved in translocation processes across membranes.
Collapse
Affiliation(s)
- Jérôme Bürgi
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Lakhan Ekal
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany.,University Hamburg Clinical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Abstract
Blobel and coworkers discovered in 1978 that peroxisomal proteins are synthesized on free ribosomes in the cytosol and thus provided the grounds for the conception of peroxisomes as self-containing organelles. Peroxisomes are highly adaptive and versatile organelles carrying out a wide variety of metabolic functions. A striking feature of the peroxisomal import machinery is that proteins can traverse the peroxisomal membrane in a folded and even oligomeric state via cycling receptors. We outline essential steps of peroxisomal matrix protein import, from targeting of the proteins to the peroxisomal membrane, their translocation via transient pores and export of the corresponding cycling import receptors with emphasis on the situation in yeast. Peroxisomes can contribute to the adaptation of cells to different environmental conditions. This is realized by changes in metabolic functions and thus the enzyme composition of the organelles is adopted according to the cellular needs. In recent years, it turned out that this organellar diversity is based on an elaborate regulation of gene expression and peroxisomal protein import. The latter is in the focus of this review that summarizes our knowledge on the composition and function of the peroxisomal protein import machinery with emphasis on novel alternative protein import pathways.
Collapse
Affiliation(s)
- Thomas Walter
- Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry, Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
9
|
Barros-Barbosa A, Ferreira MJ, Rodrigues TA, Pedrosa AG, Grou CP, Pinto MP, Fransen M, Francisco T, Azevedo JE. Membrane topologies of PEX13 and PEX14 provide new insights on the mechanism of protein import into peroxisomes. FEBS J 2018; 286:205-222. [PMID: 30414318 DOI: 10.1111/febs.14697] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 01/19/2023]
Abstract
PEX13 and PEX14 are two core components of the so-called peroxisomal docking/translocation module, the transmembrane hydrophilic channel through which newly synthesized peroxisomal proteins are translocated into the organelle matrix. The two proteins interact with each other and with PEX5, the peroxisomal matrix protein shuttling receptor, through relatively well characterized domains. However, the topologies of these membrane proteins are still poorly defined. Here, we subjected proteoliposomes containing PEX13 or PEX14 and purified rat liver peroxisomes to protease-protection assays and analyzed the protected protein fragments by mass spectrometry, Edman degradation and western blotting using antibodies directed to specific domains of the proteins. Our results indicate that PEX14 is a bona fide intrinsic membrane protein with a Nin -Cout topology, and that PEX13 adopts a Nout -Cin topology, thus exposing its carboxy-terminal Src homology 3 [SH3] domain into the organelle matrix. These results reconcile several enigmatic findings previously reported on PEX13 and PEX14 and provide new insights into the organization of the peroxisomal protein import machinery. ENZYMES: Trypsin, EC3.4.21.4; Proteinase K, EC3.4.21.64; Tobacco etch virus protease, EC3.4.22.44.
Collapse
Affiliation(s)
- Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Cláudia P Grou
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Manuel P Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal
| | - Marc Fransen
- Departement Cellulaire en Moleculaire Geneeskunde, KU Leuven - Universiteit Leuven, Belgium
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
10
|
Chen X, Devarajan S, Danda N, Williams C. Insights into the Role of the Peroxisomal Ubiquitination Machinery in Pex13p Degradation in the Yeast Hansenula polymorpha. J Mol Biol 2018; 430:1545-1558. [PMID: 29694833 DOI: 10.1016/j.jmb.2018.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022]
Abstract
The import of matrix proteins into peroxisomes in yeast requires the action of the ubiquitin-conjugating enzyme Pex4p and a complex consisting of the ubiquitin E3 ligases Pex2p, Pex10p and Pex12p. Together, this peroxisomal ubiquitination machinery is thought to ubiquitinate the cycling receptor protein Pex5p and members of the Pex20p family of co-receptors, a modification that is required for receptor recycling. However, recent reports have demonstrated that this machinery plays a role in additional peroxisome-associated processes. Hence, our understanding of the function of these proteins in peroxisome biology is still incomplete. Here, we identify a role for the peroxisomal ubiquitination machinery in the degradation of the peroxisomal membrane protein Pex13p. Our data demonstrate that Pex13p levels build up in cells lacking members of this machinery and also establish that Pex13p undergoes rapid degradation in wild-type cells. Furthermore, we show that Pex13p is ubiquitinated in wild-type cells and also establish that Pex13p ubiquitination is reduced in cells lacking a functional peroxisomal E3 ligase complex. Finally, deletion of PEX2 causes Pex13p to build up at the peroxisomal membrane. Taken together, our data provide further evidence that the role of the peroxisomal ubiquitination machinery in peroxisome biology goes much deeper than receptor recycling alone.
Collapse
Affiliation(s)
- Xin Chen
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Srishti Devarajan
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Natasha Danda
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands
| | - Chris Williams
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, the Netherlands.
| |
Collapse
|
11
|
Brown T, Brown N, Stollar EJ. Most yeast SH3 domains bind peptide targets with high intrinsic specificity. PLoS One 2018; 13:e0193128. [PMID: 29470497 PMCID: PMC5823434 DOI: 10.1371/journal.pone.0193128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/04/2018] [Indexed: 01/07/2023] Open
Abstract
A need exists to develop bioinformatics for predicting differences in protein function, especially for members of a domain family who share a common fold, yet are found in a diverse array of proteins. Many domain families have been conserved over large evolutionary spans and representative genomic data during these periods are now available. This allows a simple method for grouping domain sequences to reveal common and unique/specific binding residues. As such, we hypothesize that sequence alignment analysis of the yeast SH3 domain family across ancestral species in the fungal kingdom can determine whether each member encodes specific information to bind unique peptide targets. With this approach, we identify important specific residues for a given domain as those that show little conservation within an alignment of yeast domain family members (paralogs) but are conserved in an alignment of its direct relatives (orthologs). We find most of the yeast SH3 domain family members have maintained unique amino acid conservation patterns that suggest they bind peptide targets with high intrinsic specificity through varying degrees of non-canonical recognition. For a minority of domains, we predict a less diverse binding surface, likely requiring additional factors to bind targets specifically. We observe that our predictions are consistent with high throughput binding data, which suggests our approach can probe intrinsic binding specificity in any other interaction domain family that is maintained during evolution.
Collapse
Affiliation(s)
- Tom Brown
- Math and Computer Science Department, Eastern New Mexico University, Portales, NM, United States of America
| | - Nick Brown
- Portales High School, Portales, NM, United States of America
| | - Elliott J. Stollar
- Physical Sciences Department, Eastern New Mexico University, Portales, NM, United States of America
- * E-mail:
| |
Collapse
|
12
|
Incarbone M, Ritzenthaler C, Dunoyer P. Peroxisomal Targeting as a Sensitive Tool to Detect Protein-Small RNA Interactions through in Vivo Piggybacking. FRONTIERS IN PLANT SCIENCE 2018; 9:135. [PMID: 29479364 PMCID: PMC5812032 DOI: 10.3389/fpls.2018.00135, 10.3389/fphys.2018.00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 06/26/2024]
Abstract
Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.
Collapse
Affiliation(s)
| | | | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
13
|
Incarbone M, Ritzenthaler C, Dunoyer P. Peroxisomal Targeting as a Sensitive Tool to Detect Protein-Small RNA Interactions through in Vivo Piggybacking. FRONTIERS IN PLANT SCIENCE 2018; 9:135. [PMID: 29479364 PMCID: PMC5812032 DOI: 10.3389/fpls.2018.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 05/09/2023]
Abstract
Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.
Collapse
|
14
|
Kalel VC, Erdmann R. Unraveling of the Structure and Function of Peroxisomal Protein Import Machineries. Subcell Biochem 2018; 89:299-321. [PMID: 30378029 DOI: 10.1007/978-981-13-2233-4_13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisomes are dynamic organelles of eukaryotic cells performing a wide range of functions including fatty acid oxidation, peroxide detoxification and ether-lipid synthesis in mammals. Peroxisomes lack their own DNA and therefore have to import proteins post-translationally. Peroxisomes can import folded, co-factor bound and even oligomeric proteins. The involvement of cycling receptors is a special feature of peroxisomal protein import. Complex machineries of peroxin (PEX) proteins mediate peroxisomal matrix and membrane protein import. Identification of PEX genes was dominated by forward genetic techniques in the early 90s. However, recent developments in proteomic techniques has revolutionized the detailed characterization of peroxisomal protein import. Here, we summarize the current knowledge on peroxisomal protein import with emphasis on the contribution of proteomic approaches to our understanding of the composition and function of the peroxisomal protein import machineries.
Collapse
Affiliation(s)
- Vishal C Kalel
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Ralf Erdmann
- Department of Systems Biochemistry, Faculty of Medicine, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
15
|
Francisco T, Rodrigues TA, Dias AF, Barros-Barbosa A, Bicho D, Azevedo JE. Protein transport into peroxisomes: Knowns and unknowns. Bioessays 2017; 39. [PMID: 28787099 DOI: 10.1002/bies.201700047] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the "plunger" - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the "barrel" - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the "barrel" is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.
Collapse
Affiliation(s)
- Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana F Dias
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Diana Bicho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Schwerter DP, Grimm I, Platta HW, Erdmann R. ATP-driven processes of peroxisomal matrix protein import. Biol Chem 2017; 398:607-624. [PMID: 27977397 DOI: 10.1515/hsz-2016-0293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
Abstract
In peroxisomal matrix protein import two processes directly depend on the binding and hydrolysis of ATP, both taking place at the late steps of the peroxisomal import cycle. First, ATP hydrolysis is required to initiate a ubiquitin-transfer cascade to modify the import (co-)receptors. These receptors display a dual localization in the cytosol and at the peroxisomal membrane, whereas only the membrane bound fraction receives the ubiquitin modification. The second ATP-dependent process of the import cycle is carried out by the two AAA+-proteins Pex1p and Pex6p. These ATPases form a heterohexameric complex, which is recruited to the peroxisomal import machinery by the membrane anchor protein Pex15p. The Pex1p/Pex6p complex recognizes the ubiquitinated import receptors, pulls them out of the membrane and releases them into the cytosol. There the deubiquitinated receptors are provided for further rounds of import. ATP binding and hydrolysis are required for Pex1p/Pex6p complex formation and receptor export. In this review, we summarize the current knowledge on the peroxisomal import cascade. In particular, we will focus on the ATP-dependent processes, which are so far best understood in the model organism Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Daniel P Schwerter
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| | - Immanuel Grimm
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum
| | - Ralf Erdmann
- Abteilung für Systembiochemie, Institut für Biochemie und Pathobiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, Universitätsstr. 150, D-44780 Bochum
| |
Collapse
|
17
|
Effelsberg D, Cruz-Zaragoza LD, Schliebs W, Erdmann R. Pex9p is a new yeast peroxisomal import receptor for PTS1-containing proteins. J Cell Sci 2016; 129:4057-4066. [PMID: 27678487 DOI: 10.1242/jcs.195271] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/20/2022] Open
Abstract
Peroxisomal proteins carrying a type 1 peroxisomal targeting signal (PTS1) are recognized by the well-conserved cycling import receptor Pex5p. The yeast YMR018W gene encodes a Pex5p paralog and newly identified peroxin that is involved in peroxisomal import of a subset of matrix proteins. The new peroxin was designated Pex9p, and it interacts with the docking protein Pex14p and a subclass of PTS1-containing peroxisomal matrix enzymes. Unlike Pex5p, Pex9p is not expressed in glucose- or ethanol-grown cells, but it is strongly induced by oleate. Under these conditions, Pex9p acts as a cytosolic and membrane-bound peroxisome import receptor for both malate synthase isoenzymes, Mls1p and Mls2p. The inducible Pex9p-dependent import pathway provides a mechanism for the oleate-inducible peroxisomal targeting of malate synthases. The existence of two distinct PTS1 receptors, in addition to two PTS2-dependent import routes, contributes to the adaptive metabolic capacity of peroxisomes in response to environmental changes and underlines the role of peroxisomes as multi-purpose organelles. The identification of different import routes into peroxisomes contributes to the molecular understanding of how regulated protein targeting can alter the function of organelles according to cellular needs.
Collapse
Affiliation(s)
- Daniel Effelsberg
- Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Luis Daniel Cruz-Zaragoza
- Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Wolfgang Schliebs
- Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany
| | - Ralf Erdmann
- Abteilung Systembiochemie, Institut für Biochemie und Pathobiochemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, Bochum D-44780, Germany
| |
Collapse
|
18
|
Gkourtsa A, van den Burg J, Avula T, Hochstenbach F, Distel B. Binding of a proline-independent hydrophobic motif by the Candida albicans Rvs167-3 SH3 domain. Microbiol Res 2016; 190:27-36. [PMID: 27393996 DOI: 10.1016/j.micres.2016.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
Src-homology 3 (SH3) domains are small protein-protein interaction modules. While most SH3 domains bind to proline-x-x-proline (PxxP) containing motifs in their binding partners, some SH3 domains recognize motifs other than proline-based sequences. Recently, we showed that the SH3 domain of Candida albicans Rvs167-3 binds peptides enriched in hydrophobic residues and containing a single proline residue (RΦxΦxΦP, where x is any amino acid and Φ is a hydrophobic residue). Here, we demonstrate that the proline in this motif is not required for Rvs167-3 SH3 recognition. Through mutagenesis studies we show that binding of the peptide ligand involves the conserved tryptophan in the canonical PxxP binding pocket as well as residues in the extended n-Src loop of Rvs167-3 SH3. Our studies establish a novel, proline-independent, binding sequence for Rvs167-3 SH3 (RΦxΦxΦ) that is comprised of a positively charged residue (arginine) and three hydrophobic residues.
Collapse
Affiliation(s)
- Areti Gkourtsa
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Janny van den Burg
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Teja Avula
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Frans Hochstenbach
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Emmanouilidis L, Gopalswamy M, Passon DM, Wilmanns M, Sattler M. Structural biology of the import pathways of peroxisomal matrix proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:804-13. [DOI: 10.1016/j.bbamcr.2015.09.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022]
|
20
|
The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure 2015; 23:1783-1800. [DOI: 10.1016/j.str.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 01/03/2023]
|
21
|
Kurochkina N, Guha U, Lu Z. SH Domains and Epidermal Growth Factor Receptors. SH DOMAINS 2015:133-158. [DOI: 10.1007/978-3-319-20098-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Woodward AW, Fleming WA, Burkhart SE, Ratzel SE, Bjornson M, Bartel B. A viable Arabidopsis pex13 missense allele confers severe peroxisomal defects and decreases PEX5 association with peroxisomes. PLANT MOLECULAR BIOLOGY 2014; 86:201-214. [PMID: 25008153 PMCID: PMC4142595 DOI: 10.1007/s11103-014-0223-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/01/2014] [Indexed: 05/29/2023]
Abstract
Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.
Collapse
Affiliation(s)
- Andrew W. Woodward
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA. Department of Biology, University of Mary Hardin-Baylor, Belton, TX 76513, USA
| | - Wendell A. Fleming
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Sarah E. Burkhart
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Sarah E. Ratzel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Marta Bjornson
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | - Bonnie Bartel
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| |
Collapse
|
23
|
Lanyon-Hogg T, Hooper J, Gunn S, Warriner SL, Baker A. PEX14 binding to Arabidopsis PEX5 has differential effects on PTS1 and PTS2 cargo occupancy of the receptor. FEBS Lett 2014; 588:2223-9. [PMID: 24879895 PMCID: PMC4065332 DOI: 10.1016/j.febslet.2014.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/16/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022]
Abstract
The interaction between Arabidopsis PEX5 and PEX14N is independent of cargo binding. The affinity of a PTS1 peptide for PEX5 is unaffected by PEX14N binding. Arabidopsis PEX5 complexes PTS1 and PTS2 cargoes. PEX5 and 7 co-isolate with PEX14N, but the PTS2 cargo thiolase does not. PEX14N does not unload canonical PTS1 cargo peptide in vitro but may play a role in PTS2 release.
PEX5 acts as a cycling receptor for import of PTS1 proteins into peroxisomes and as a co-receptor for PEX7, the PTS2 receptor, but the mechanism of cargo unloading has remained obscure. Using recombinant protein domains we show PEX5 binding to the PEX14N-terminal domain (PEX14N) has no effect on the affinity of PEX5 for a PTS1 containing peptide. PEX5 can form a complex containing both recombinant PTS1 cargo and endogenous PEX7-thiolase simultaneously but isolation of the complex via the PEX14 construct resulted in an absence of thiolase, suggesting a possible role for PEX14 in the unloading of PTS2 cargos. pMDH1physically interacts with PEX5 by pull down (View interaction) PEX5Cbinds to PEX14N by filter binding (View interaction) PEX14Nbinds to PEX5C by pull down (View interaction) PEX14Nphysically interacts with PEX7 by pull down (View interaction) PEX5physically interacts with PEX7 by pull down (View interaction) DCI1physically interacts with PEX5 by pull down (View interaction) PEX5physically interacts with thiolase PTS2-cargo by pull down (View interaction) pMDH1physically interacts with PEX7 by pull down (View interaction) DCI1physically interacts with thiolase PTS2-cargo by pull down (View interaction) DCI1physically interacts with PEX7 by pull down (View interaction) PEX14Nphysically interacts with PEX5 by pull down (View interaction)
Collapse
Affiliation(s)
- Thomas Lanyon-Hogg
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Jacob Hooper
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah Gunn
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK; School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | | | - Alison Baker
- Centre for Plant Sciences, Irene Manton Building, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
24
|
Neuhaus A, Kooshapur H, Wolf J, Meyer NH, Madl T, Saidowsky J, Hambruch E, Lazam A, Jung M, Sattler M, Schliebs W, Erdmann R. A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes. J Biol Chem 2013; 289:437-48. [PMID: 24235149 DOI: 10.1074/jbc.m113.499707] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57-71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.
Collapse
Affiliation(s)
- Alexander Neuhaus
- From the Institut für Physiologische Chemie, Abteilung Systembiochemie, Ruhr-Universität Bochum, D-44780 Bochum
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hasan S, Platta HW, Erdmann R. Import of proteins into the peroxisomal matrix. Front Physiol 2013; 4:261. [PMID: 24069002 PMCID: PMC3781343 DOI: 10.3389/fphys.2013.00261] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/03/2013] [Indexed: 12/03/2022] Open
Abstract
Peroxisomes constitute a dynamic compartment in all nucleated cells. They fulfill diverse metabolic tasks in response to environmental changes and cellular demands. This adaptation is implemented by modulation of the enzyme content of the organelles, which is accomplished by dynamically operating peroxisomal protein transport machineries. Soluble import receptors recognize their newly synthesized cargo proteins in the cytosol and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the matrix, where the receptor is ubiquitinated and exported back to the cytosol for further rounds of matrix protein import. This review discusses the recent progress in our understanding of the peroxisomal matrix protein import and its regulation by ubiquitination events as well as the current view on the translocation mechanism of folded proteins into peroxisomes. This article is part of a Special Issue entitled: Origin and spatiotemporal dynamics of the peroxisomal endomembrane system.
Collapse
Affiliation(s)
- Sohel Hasan
- Systembiochemie, Medizinische Fakultät, Ruhr-Universität Bochum Bochum, Germany
| | | | | |
Collapse
|
26
|
Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat--store 'em up or burn 'em down. Genetics 2013; 193:1-50. [PMID: 23275493 PMCID: PMC3527239 DOI: 10.1534/genetics.112.143362] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipid droplets (LDs) and peroxisomes are central players in cellular lipid homeostasis: some of their main functions are to control the metabolic flux and availability of fatty acids (LDs and peroxisomes) as well as of sterols (LDs). Both fatty acids and sterols serve multiple functions in the cell—as membrane stabilizers affecting membrane fluidity, as crucial structural elements of membrane-forming phospholipids and sphingolipids, as protein modifiers and signaling molecules, and last but not least, as a rich carbon and energy source. In addition, peroxisomes harbor enzymes of the malic acid shunt, which is indispensable to regenerate oxaloacetate for gluconeogenesis, thus allowing yeast cells to generate sugars from fatty acids or nonfermentable carbon sources. Therefore, failure of LD and peroxisome biogenesis and function are likely to lead to deregulated lipid fluxes and disrupted energy homeostasis with detrimental consequences for the cell. These pathological consequences of LD and peroxisome failure have indeed sparked great biomedical interest in understanding the biogenesis of these organelles, their functional roles in lipid homeostasis, interaction with cellular metabolism and other organelles, as well as their regulation, turnover, and inheritance. These questions are particularly burning in view of the pandemic development of lipid-associated disorders worldwide.
Collapse
|
27
|
Zawaira A, Shibayama Y. A simple recipe for the non-expert bioinformaticist for building experimentally-testable hypotheses for proteins with no known homologs. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2012; 13:185-200. [PMID: 22956349 DOI: 10.1007/s10969-012-9141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/08/2012] [Indexed: 06/01/2023]
Abstract
The study of the protein-protein interactions (PPIs) of unique ORFs is a strategy for deciphering the biological roles of unique ORFs of interest. For uniform reference, we define unique ORFs as those for which no matching protein is found after PDB-BLAST search with default parameters. The uniqueness of the ORFs generally precludes the straightforward use of structure-based approaches in the design of experiments to explore PPIs. Many open-source bioinformatics tools, from the commonly-used to the relatively esoteric, have been built and validated to perform analyses and/or predictions of sorts on proteins. How can these available tools be combined into a protocol that helps the non-expert bioinformaticist researcher to design experiments to explore the PPIs of their unique ORF? Here we define a pragmatic protocol based on accessibility of software to achieve this and we make it concrete by applying it on two proteins-the ImuB and ImuA' proteins from Mycobacterium tuberculosis. The protocol is pragmatic in that decisions are made largely based on the availability of easy-to-use freeware. We define the following basic and user-friendly software pathway to build testable PPI hypotheses for a query protein sequence: PSI-PRED → MUSTER → metaPPISP → ASAView and ConSurf. Where possible, other analytical and/or predictive tools may be included. Our protocol combines the software predictions and analyses with general bioinformatics principles to arrive at consensus, prioritised and testable PPI hypotheses.
Collapse
Affiliation(s)
- Alexander Zawaira
- Gene Expression and Biophysics Group, Synthetic Biology, ERA, CSIR Biosciences, Brummeria, Pretoria, South Africa.
| | | |
Collapse
|
28
|
Teyra J, Sidhu SS, Kim PM. Elucidation of the binding preferences of peptide recognition modules: SH3 and PDZ domains. FEBS Lett 2012; 586:2631-7. [PMID: 22691579 DOI: 10.1016/j.febslet.2012.05.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/15/2012] [Indexed: 12/20/2022]
Abstract
Peptide-binding domains play a critical role in regulation of cellular processes by mediating protein interactions involved in signalling. In recent years, the development of large-scale technologies has enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. These efforts have provided significant insights into the binding specificities of these modular domains. Many research groups have taken advantage of this unprecedented volume of specificity data and have developed a variety of new algorithms for the prediction of binding specificities of peptide-binding domains and for the prediction of their natural binding targets. This knowledge has also been applied to the design of synthetic peptide-binding domains in order to rewire protein-protein interaction networks. Here, we describe how these experimental technologies have impacted on our understanding of peptide-binding domain specificities and on the elucidation of their natural ligands. We discuss SH3 and PDZ domains as well characterized examples, and we explore the feasibility of expanding high-throughput experiments to other peptide-binding domains.
Collapse
Affiliation(s)
- Joan Teyra
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada ON M5S 3E1
| | | | | |
Collapse
|
29
|
Volkmer R, Tapia V, Landgraf C. Synthetic peptide arrays for investigating protein interaction domains. FEBS Lett 2012; 586:2780-6. [PMID: 22576123 DOI: 10.1016/j.febslet.2012.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 11/28/2022]
Abstract
Synthetic peptide array technology was first developed in the early 1990s by Ronald Frank. Since then the technique has become a powerful tool for high throughput approaches in biology and biochemistry. Here, we focus on peptide arrays applied to investigate the binding specificity of protein interaction domains such as WW, SH3, and PDZ domains. We describe array-based methods used to reveal domain networks in yeast, and briefly review rules as well as ideas about the synthesis and application of peptide arrays. We also provide initial results of a study designed to investigate the nature and evolution of SH3 domain interaction networks in eukaryotes.
Collapse
Affiliation(s)
- Rudolf Volkmer
- Institut für Medizinische Immunologie Berlin, Molecular Libraries and Recognition Group, Charité-Universitätsmedizin Berlin, Hessische Str. 3-4, 10115 Berlin, Germany.
| | | | | |
Collapse
|
30
|
Volkmer R, Kretzschmar I, Tapia V. Mapping receptor–ligand interactions with synthetic peptide arrays: Exploring the structure and function of membrane receptors. Eur J Cell Biol 2012; 91:349-56. [DOI: 10.1016/j.ejcb.2011.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 11/25/2022] Open
|
31
|
Deckers M, Emmrich K, Girzalsky W, Awa WL, Kunau WH, Erdmann R. Targeting of Pex8p to the peroxisomal importomer. Eur J Cell Biol 2010; 89:924-31. [DOI: 10.1016/j.ejcb.2010.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Galland N, Michels PAM. Comparison of the peroxisomal matrix protein import system of different organisms. Exploration of possibilities for developing inhibitors of the import system of trypanosomatids for anti-parasite chemotherapy. Eur J Cell Biol 2010; 89:621-37. [PMID: 20435370 DOI: 10.1016/j.ejcb.2010.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/28/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022] Open
Abstract
In recent decades, research on peroxisome biogenesis has been particularly boosted since the role of these organelles in metabolism became unraveled. Indeed in plants, yeasts and fungi, peroxisomes play an important role in the adaptation of metabolism during developmental processes and/or altered environmental conditions. In mammals their importance is illustrated by the fact that several severe human inherited diseases have been identified as peroxisome biogenesis disorders (PBD). Particularly interesting are the glycosomes - peroxisome-like organelles in trypanosomatids where the major part of the glycolytic pathway is sequestered - because it was demonstrated that proper compartmentalization of matrix proteins inside glycosomes is essential for the parasite. Although the overall process of peroxisome biogenesis seems well conserved between species, careful study of the literature reveals nonetheless many differences at various steps. In this review, we present a comparison of the first two steps of peroxisome biogenesis - receptor loading and docking at the peroxisomal membrane - in yeasts, mammals, plants and trypanosomatids and highlight major differences in the import process between species despite the conservation of (some of) the proteins involved. Some of the unique features of the process as it occurs in trypanosomatids will be discussed with regard to the possibilities for exploiting them for the development of compounds that could specifically disturb interactions between trypanosomatid peroxins. This strategy could eventually lead to the discovery of drugs against the diseases caused by these parasites.
Collapse
Affiliation(s)
- Nathalie Galland
- Research Unit for Tropical Diseases, de Duve Institute, Brussels, Belgium
| | | |
Collapse
|
33
|
Dutta S, Rittinger K. Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1. PLoS One 2010; 5:e10478. [PMID: 20454568 PMCID: PMC2864300 DOI: 10.1371/journal.pone.0010478] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/12/2010] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) have been known for a long time to play important roles in host defense against microbial infections. In addition, it has become apparent that they also perform regulatory roles in signal transduction and cell proliferation. The source of these chemicals are members of the NOX family of NADPH oxidases that are found in a variety of tissues. NOX1, an NADPH oxidase homologue that is most abundantly expressed in colon epithelial cells, requires the regulatory subunits NOXO1 (NOX organizing protein 1) and NOXA1 (NOX activating protein 1), as well as the flavocytochrome component p22(phox) for maximal activity. Unlike NOX2, the phagocytic NADPH oxidase whose activity is tightly repressed in the resting state, NOX1 produces superoxide constitutively at low levels. These levels can be further increased in a stimulus-dependent manner, yet the molecular details regulating this activity are not fully understood. Here we present the first quantitative characterization of the interactions made between the cytosolic regulators NOXO1 and NOXA1 and membrane-bound p22(phox). Using isothermal titration calorimetry we show that the isolated tandem SH3 domains of NOXO1 bind to p22(phox) with high affinity, most likely adopting a superSH3 domain conformation. In contrast, complex formation is severely inhibited in the presence of the C-terminal tail of NOXO1, suggesting that this region competes for binding to p22(phox) and thereby contributes to the regulation of superoxide production. Furthermore, we provide data indicating that the molecular details of the interaction between NOXO1 and NOXA1 is significantly different from that between the homologous proteins of the phagocytic oxidase, suggesting that there are important functional differences between the two systems. Taken together, this study provides clear evidence that the assembly of the NOX1 oxidase complex can be regulated through reversible protein-protein interactions.
Collapse
Affiliation(s)
- Sujit Dutta
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Katrin Rittinger
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| |
Collapse
|
34
|
Getting a camel through the eye of a needle: the import of folded proteins by peroxisomes. Biol Cell 2010; 102:245-63. [PMID: 20146669 DOI: 10.1042/bc20090159] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peroxisomes are a family of organelles which have many unusual features. They can arise de novo from the endoplasmic reticulum by a still poorly characterized process, yet possess a unique machinery for the import of their matrix proteins. As peroxisomes lack DNA, their function, which is highly variable and dependent on developmental and/or environmental conditions, is determined by the post-translational import of specific metabolic enzymes in folded or oligomeric states. The two classes of matrix targeting signals for peroxisomal proteins [PTS1 (peroxisomal targeting signal 1) and PTS2] are recognized by cytosolic receptors [PEX5 (peroxin 5) and PEX7 respectively] which escort their cargo proteins to, or possibly across, the peroxisome membrane. Although the membrane translocation mechanism remains unclear, it appears to be driven by thermodynamically favourable binding interactions. Recycling of the receptors from the peroxisome membrane requires ATP hydrolysis for two linked processes: ubiquitination of PEX5 (and the PEX7 co-receptors in yeast) and the function of two peroxisome-associated AAA (ATPase associated with various cellular activities) ATPases, which play a role in recycling or turnover of the ubiquitinated receptors. This review summarizes and integrates recent findings on peroxisome matrix protein import from yeast, plant and mammalian model systems, and discusses some of the gaps in our understanding of this remarkable protein transport system.
Collapse
|
35
|
Tonikian R, Xin X, Toret CP, Gfeller D, Landgraf C, Panni S, Paoluzi S, Castagnoli L, Currell B, Seshagiri S, Yu H, Winsor B, Vidal M, Gerstein MB, Bader GD, Volkmer R, Cesareni G, Drubin DG, Kim PM, Sidhu SS, Boone C. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol 2009; 7:e1000218. [PMID: 19841731 PMCID: PMC2756588 DOI: 10.1371/journal.pbio.1000218] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 09/04/2009] [Indexed: 11/23/2022] Open
Abstract
A genome-scale specificity and interaction map for yeast SH3 domain-containing proteins reveal how family members show selective binding to target proteins and predicts the dynamic localization of new candidate endocytosis proteins. SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes. Significant diversity exists in protein structure and function, yet certain structural domains are used repeatedly across species to execute similar functions. The SH3 domain is one such common structural domain. It is found in signaling proteins and mediates protein–protein interactions by binding to short peptide sequences generally composed of proline. To investigate both the generality and selectivity of peptide binding by SH3 domains, we examined peptide specificity for almost all SH3 domains encoded within the proteome of the budding yeast, Saccharomyces cerevisiae, using a range of experimental methods. We found that although most of the intrinsic binding specificity for SH3 domains can be summarized by the two previously described canonical binding modes, each individual SH3 domain that we studied utilizes unique features of its cognate ligand to achieve binding selectivity. Moreover, some domains exhibit binding specificities that are distinct from the two canonical classes. We integrated peptide-SH3 domain binding data from three complementary screening techniques using a Bayesian statistical model to generate a protein–protein interaction network for the budding yeast SH3 domain family. This network was highly enriched in endocytosis proteins and their interactions. By examining these interactions in detail, we show that our SH3 domain network can be used to predict the temporal localization of several previously uncharacterized proteins to dynamic complexes that orchestrate the process of endocytosis.
Collapse
Affiliation(s)
- Raffi Tonikian
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xiaofeng Xin
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher P. Toret
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - David Gfeller
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Christiane Landgraf
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simona Panni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Cell Biology, University of Calabria, Rende, Italy
| | - Serena Paoluzi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Bridget Currell
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Haiyuan Yu
- Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara Winsor
- CNRS et Université de Strasbourg UMR7156, Génétique moléculaire, Génomique et Microbiologie, Strasbourg, France
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark B. Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
| | - Gary D. Bader
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Volkmer
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Research Institute “Fondazione Santa Lucia”, Rome, Italy
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - Philip M. Kim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - Sachdev S. Sidhu
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - Charles Boone
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| |
Collapse
|
36
|
Volkmer R. Synthesis and application of peptide arrays: quo vadis SPOT technology. Chembiochem 2009; 10:1431-42. [PMID: 19437530 DOI: 10.1002/cbic.200900078] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rudolf Volkmer
- Institut für Medizinische Immunologie, AG Molekulare Bibliotheken, Charité-Universitätsmedizin Berlin, Hessische Strasse 3-4, 10115 Berlin, Germany.
| |
Collapse
|
37
|
Vyas J, Nowling RJ, Maciejewski MW, Rajasekaran S, Gryk MR, Schiller MR. A proposed syntax for Minimotif Semantics, version 1. BMC Genomics 2009; 10:360. [PMID: 19656396 PMCID: PMC2733157 DOI: 10.1186/1471-2164-10-360] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 08/05/2009] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most important developments in bioinformatics over the past few decades has been the observation that short linear peptide sequences (minimotifs) mediate many classes of cellular functions such as protein-protein interactions, molecular trafficking and post-translational modifications. As both the creators and curators of a database which catalogues minimotifs, Minimotif Miner, the authors have a unique perspective on the commonalities of the many functional roles of minimotifs. There is an obvious usefulness in standardizing functional annotations both in allowing for the facile exchange of data between various bioinformatics resources, as well as the internal clustering of sets of related data elements. With these two purposes in mind, the authors provide a proposed syntax for minimotif semantics primarily useful for functional annotation. RESULTS Herein, we present a structured syntax of minimotifs and their functional annotation. A syntax-based model of minimotif function with established minimotif sequence definitions was implemented using a relational database management system (RDBMS). To assess the usefulness of our standardized semantics, a series of database queries and stored procedures were used to classify SH3 domain binding minimotifs into 10 groups spanning 700 unique binding sequences. CONCLUSION Our derived minimotif syntax is currently being used to normalize minimotif covalent chemistry and functional definitions within the MnM database. Analysis of SH3 binding minimotif data spanning many different studies within our database reveals unique attributes and frequencies which can be used to classify different types of binding minimotifs. Implementation of the syntax in the relational database enables the application of many different analysis protocols of minimotif data and is an important tool that will help to better understand specificity of minimotif-driven molecular interactions with proteins.
Collapse
Affiliation(s)
- Jay Vyas
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305 USA.
| | | | | | | | | | | |
Collapse
|
38
|
Brown LA, Baker A. Shuttles and cycles: transport of proteins into the peroxisome matrix (review). Mol Membr Biol 2008; 25:363-75. [PMID: 18651315 DOI: 10.1080/09687680802130583] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Peroxisomes are organelles that carry out diverse biochemical processes in eukaryotic cells, including the core pathways of beta-oxidation of lipid molecules and detoxification of reactive oxygen species. In multicellular organisms defects in peroxisome assembly result in multiple biochemical and developmental abnormalities. As peroxisomes do not contain genetic material, their protein content, and therefore function, is determined by the import of nuclearly encoded proteins from the cytosol and, presumably, removal of damaged or obsolete proteins. Import of matrix proteins can be broken down into four steps: targeting signal recognition by the cycling import receptors; receptor-cargo docking at the peroxisome membrane; translocation and cargo unloading; and receptor recycling. Import is mediated by a set of evolutionarily conserved proteins called peroxins that have been identified primarily via genetic screens, but knowledge of their biochemical activities remains largely unresolved. Recent studies have filled in some of the blanks regarding receptor recycling and the role of ubiquitination but outstanding questions remain concerning the nature of the translocon and its ability to accommodate folded, even oligomeric proteins, and the mechanism of cargo unloading and turnover of peroxisomal proteins. This review seeks to integrate recent findings from yeast, mammalian and plant systems to present an up to date account of how proteins enter the peroxisome matrix.
Collapse
|
39
|
Hilpert K, Winkler DFH, Hancock REW. Cellulose-bound Peptide Arrays: Preparation and Applications. Biotechnol Genet Eng Rev 2007; 24:31-106. [DOI: 10.1080/02648725.2007.10648093] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Stanley WA, Wilmanns M. Dynamic architecture of the peroxisomal import receptor Pex5p. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1592-8. [PMID: 17141887 DOI: 10.1016/j.bbamcr.2006.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 11/29/2022]
Abstract
The majority of peroxisomal matrix proteins are recognized by the import receptor Pex5p. The receptor is dynamic in terms of its overall architecture and association with the peroxisomal membrane. It participates in different protein complexes during the translocation of cargos from the cytosol to the peroxisomal matrix. Its sequence comprises two structurally and functionally autonomous parts. The N-terminal segment interacts with several peroxins that assemble into distinct protein complexes during cargo translocation. Despite evidence for alpha-helical binding motifs for some of these components (Pex13p, Pex14p) its overall appearance is that of a molten globule and folding/unfolding transitions may play a critical role in its function. In contrast, most of the C-terminal part of the receptor folds into a ring-like alpha-helical structure and binds folded and functionally intact peroxisomal targets that bear a C-terminal peroxisomal targeting signal type-1. Some of these targets also bind to secondary binding sites of the receptor.
Collapse
Affiliation(s)
- Will A Stanley
- EMBL-Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | |
Collapse
|
41
|
Azevedo JE, Schliebs W. Pex14p, more than just a docking protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1574-84. [PMID: 17046076 DOI: 10.1016/j.bbamcr.2006.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 08/29/2006] [Accepted: 09/04/2006] [Indexed: 01/01/2023]
Abstract
After binding newly synthesized peroxisomal matrix proteins in the cytosol, the second task of Pex5p, the peroxisomal cycling receptor, is to carry these proteins to the peroxisomal membrane. Defining the nature of the events that occur at this membrane system and which ultimately result in the translocation of the cargo proteins into the matrix of the organelle and in the recycling of Pex5p back to the cytosol, is one of the major goals of the research in this field. Presently, it is generally accepted that all these steps are promoted by a large protein complex embedded in the peroxisomal membrane. This docking/translocation machinery or importomer, as it is often called, comprises many different peroxins of which one of the best characterized is Pex14p. Here, we review data regarding this membrane peroxin with emphasis on the interactions that it establishes with Pex5p. The available evidence suggests that the key to understand how folded proteins are capable of passing an apparently impermeable membrane may largely reside in this pair of peroxins.
Collapse
Affiliation(s)
- Jorge E Azevedo
- Instituto de Biologia Molecular e Celular (IBMC) and Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Univ. do Porto, Portugal.
| | | |
Collapse
|
42
|
Williams C, Distel B. Pex13p: docking or cargo handling protein? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1585-91. [PMID: 17056133 DOI: 10.1016/j.bbamcr.2006.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 11/20/2022]
Abstract
The Src homology 3 (SH3) domain-containing peroxisomal membrane protein Pex13p is an essential component of the import machinery for matrix proteins and forms a binding site for the peroxisomal targeting type I (PTS1) receptor Pex5p. The interaction between these two proteins can be described as novel in several ways. In the yeasts Saccharomyces cerevisiae and Pichia pastoris, the SH3 domain itself is responsible for the interaction but not via the typical P-x-x-P motifs that are common to SH3 ligands as Pex5p lacks such a motif. Instead, a region of Pex5p containing a W-x-x-x-F/Y motif is crucial for this binding. In mammals, again W-x-x-x-F/Y motifs appear to be important for the interaction but the SH3 domain seems not to be the site for Pex5p binding, this being located in the N-terminus of Pex13p. Despite these differences in the details of the Pex13p-Pex5p interaction, the association of the two proteins is a crucial step in Pex5p-mediated protein import into peroxisomes in both yeasts and mammals.
Collapse
Affiliation(s)
- Chris Williams
- Department of Medical Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
43
|
Ma K, Forbes JG, Gutierrez-Cruz G, Wang K. Titin as a Giant Scaffold for Integrating Stress and Src Homology Domain 3-mediated Signaling Pathways. J Biol Chem 2006; 281:27539-56. [PMID: 16766517 DOI: 10.1074/jbc.m604525200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The richness of proline sequences in titins qualifies these giant proteins as the largest source of intrinsically disordered structures in nature. An extensive search and analysis for Src homology domain 3 (SH3) ligand motifs revealed a myriad of broadly distributed SH3 ligand motifs, with the highest density in the PEVK segments of human titin. Besides the canonical class I and II motifs with opposite orientations, novel overlapping motifs consisting of one or more of each canonical motif are abundant. Experimentally, the binding affinity and critical residues of these putative titin-based SH3 ligands toward nebulin SH3 and other SH3-containing proteins in muscle and non-muscle cell extracts were validated with peptide array technology and by the sarcomere distribution of SH3-containing proteins. A 28-mer overlapping motif-containing PEVK module binds to nebulin SH3 in and around the canonical cleft, especially to the acidic residues in the loops, as revealed by NMR titration. Molecular dynamics and molecular docking studies indicated that the overlapping motif can bind in opposite orientations with comparable energy and contact areas and predicts correctly orientation-specific contacts in NMR data. We propose that the overlap ligand motifs are a new class of ligands with innate ability to dictate SH3 domain orientation and to facilitate the rate, strength, and stereospecificity of receptor interactions. Proline-rich sequences of titins are candidates as major hubs of SH3-dependent signaling pathways. The interplay of elasticity and dense clustering of mixed receptor orientations in titin PEVK segment have important implications for the mechanical sensing, force sensitivity, and inter-adapter interactions in signaling pathways.
Collapse
Affiliation(s)
- Kan Ma
- Muscle Proteomics and Nanotechnology Section, Laboratory of Muscle Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
44
|
Schiller MR, Chakrabarti K, King GF, Schiller NI, Eipper BA, Maciejewski MW. Regulation of RhoGEF activity by intramolecular and intermolecular SH3 domain interactions. J Biol Chem 2006; 281:18774-86. [PMID: 16644733 DOI: 10.1074/jbc.m512482200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoGEFs are central controllers of small G-proteins in cells and are regulated by several mechanisms. There are at least 22 human RhoGEFs that contain SH3 domains, raising the possibility that, like several other enzymes, SH3 domains control the enzymatic activity of guanine nucleotide exchange factor (GEF) domains through intra- and/or intermolecular interactions. The structure of the N-terminal SH3 domain of Kalirin was solved using NMR spectroscopy, and it folds much like other SH3 domains. However, NMR chemical shift mapping experiments showed that this Kalirin SH3 domain is unique, containing novel cooperative binding site(s) for intramolecular PXXP ligands. Intramolecular Kalirin SH3 domain/ligand interactions, as well as binding of the Kalirin SH3 domain to the adaptor protein Crk, inhibit the GEF activity of Kalirin. This study establishes a novel molecular mechanism whereby intramolecular and intermolecular Kalirin SH3 domain/ligand interactions modulate GEF activity, a regulatory mechanism that is likely used by other RhoGEF family members.
Collapse
Affiliation(s)
- Martin R Schiller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06019-4301, USA.
| | | | | | | | | | | |
Collapse
|
45
|
le Maire A, Weber T, Saunier S, Broutin I, Antignac C, Ducruix A, Dardel F. Solution NMR structure of the SH3 domain of human nephrocystin and analysis of a mutation-causing juvenile nephronophthisis. Proteins 2006; 59:347-55. [PMID: 15723349 DOI: 10.1002/prot.20344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human nephrocystin is a protein associated with juvenile NPH, an autosomal recessive, inherited kidney disease responsible for chronic renal failure in children. It contains an SH3 domain involved in signaling pathways controlling cell adhesion and cytoskeleton organization. The solution structure of this domain was solved by triple resonance NMR spectroscopy. Within the core, the structure is similar to those previously reported for other SH3 domains but exhibits a number of specific noncanonical features within the polyproline ligand binding site. Some of the key conserved residues are missing, and the N-Src loop exhibits an unusual twisted geometry, which results in a narrowing of the binding groove. This is induced by the replacement of a conserved Asp, Asn, or Glu residue by a Pro at one side of the N-Src loop. A systematic survey of other SH3 domains also containing a Pro at this position reveals that most of them belong to proteins involved in cell adhesion or motility. A variant of this domain, which carries a point mutation causing NPH, was also analyzed. This change, L180P, although it corresponds to a nonconserved and solvent-exposed position, causes a complete loss of the tertiary structure. Similar effects are also observed with the L180A variant. This could be a context-dependent effect resulting from an interaction between neighboring charged side-chains.
Collapse
Affiliation(s)
- Albane le Maire
- Laboratoire de Cristallographie et RMN Biologiques, UMR8015 CNRS, Faculté de Pharmacie, Université Paris 5, Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Madrid K, Jardim A. Peroxin 5-peroxin 14 association in the protozoan Leishmania donovani involves a novel protein-protein interaction motif. Biochem J 2006; 391:105-14. [PMID: 15929724 PMCID: PMC1237144 DOI: 10.1042/bj20050328] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Import of proteins with a PTS1 (peroxisomal targeting signal 1) into the Leishmania glycosomal organelle involves docking of a PTS1-laden LdPEX5 [Leishmania donovani PEX5 (peroxin 5)] receptor to LdPEX14 on the surface of the glycosomal membrane. In higher eukaryotes, the PEX5-PEX14 interaction is mediated by a conserved diaromatic WXXXY/F motif. Site-directed and deletion mutageneses of the three WXXXY/F repeats in LdPEX5 did not abolish the LdPEX5-LdPEX14 association. Analysis of the equilibrium dissociation constant (K(d)) revealed that ldpex5-W53A (Trp53-->Ala), ldpex5-W293A, ldpex5-W176,293A and ldpex5-W53,176,293A mutant receptors were capable of binding LdPEX14 with affinities comparable with wild-type LdPEX5. That the diaromatic motifs were not required for the LdPEX5-LdPEX14 interaction was further verified by deletion analysis that showed that ldpex5 deletion mutants or ldpex5 fragments lacking the WXXXY/F motifs retained LdPEX14 binding activity. Mapping studies of LdPEX5 indicated that the necessary elements required for LdPEX14 association were localized to a region between residues 290 and 323. Finally, mutational analysis of LdPEX14 confirmed that residues 23-63, which encompass the conserved signature sequence AX2FLX7SPX6FLKGKGL/V present in all PEX14 proteins, are essential for LdPEX5 binding.
Collapse
Affiliation(s)
- Kleber P. Madrid
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Armando Jardim
- Institute of Parasitology, McGill University, Macdonald Campus, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Li X, Liu X, Sun F, Gao J, Zhou H, Gao GF, Bartlam M, Rao Z. Crystal structure of the N-terminal SH3 domain of mouse βPIX, p21-activated kinase-interacting exchange factor. Biochem Biophys Res Commun 2006; 339:407-14. [PMID: 16307729 DOI: 10.1016/j.bbrc.2005.10.212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 10/24/2005] [Indexed: 11/25/2022]
Abstract
The mouse betaPIX-SH3 domain, residues 8-63 of P21-activated kinase interacting exchange factor, has been characterized by X-ray diffraction. Crystals belonging to space group P3(2)21 diffracted to 2.0 A and the structure was phased by the single-wavelength anomalous diffraction method. The domain is a compact beta-barrel with an overall conformation similar to the general SH3 structure. The X-ray structure shows mouse betaPIX-SH3 domain binding the way in which the betaPIX characteristic amino acids do so for an unconventional ligand binding surface. This arrangement provides a rationale for the unusual ligand recognition motif exhibited by mouse betaPIX-SH3 domain. Comparison with another SH3/peptide complex shows that the recognition mode of the mouse betaPIX-SH3 domain should be very similar to the RXXK ligand binding mode. The unique large and planar hydrophobic pocket may contribute to the promiscuity of betaPIX-SH3 domain resulting in its multiple biological functions.
Collapse
Affiliation(s)
- Xiaofeng Li
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Reichman C, Singh K, Liu Y, Singh S, Li H, Fajardo JE, Fiser A, Birge RB. Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Oncogene 2005; 24:8187-99. [PMID: 16158059 DOI: 10.1038/sj.onc.1208988] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To gain a better understanding of how Crk II regulates the function of the Abl tyrosine kinase, we explored the function of the C-terminal linker and SH3 domain, a region of Crk II that is still poorly understood. Molecular modeling, tryptophan fluorescence, and covariation sequence alignment indicate that the Crk-SH3-C has a unique binding groove and RT loop not observed in typical SH3 domains. Based on these models, we made a series of mutations in the linker and in residues predicted to destabilize the putative binding pocket and RT loop. In Abl transactivation assays, Y222F and P225A mutations in the linker resulted in strong transactivation of Abl by Crk II. However, mutations predicted to be at the surface of the Crk SH3-C were not activators of Abl. Interestingly, combinations of activating mutations of Crk II with mutations in the highly conserved PNAY sequence in the SH3-C inactivated the activating mutations, suggesting that the SH3-C is necessary for activation. Our data provide insight into the role of highly conserved residues in the Crk-SH3-C, suggesting a mechanism for how the linker and the Crk-SH3-C function in the transactivation of the Abl tyrosine kinase.
Collapse
Affiliation(s)
- Charles Reichman
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schell-Steven A, Stein K, Amoros M, Landgraf C, Volkmer-Engert R, Rottensteiner H, Erdmann R. Identification of a novel, intraperoxisomal pex14-binding site in pex13: association of pex13 with the docking complex is essential for peroxisomal matrix protein import. Mol Cell Biol 2005; 25:3007-18. [PMID: 15798189 PMCID: PMC1069607 DOI: 10.1128/mcb.25.8.3007-3018.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The peroxisomal docking complex is a key component of the import machinery for matrix proteins. The core protein of this complex, Pex14, is thought to represent the initial docking site for the import receptors Pex5 and Pex7. Associated with this complex is a fraction of Pex13, another essential component of the import machinery. Here we demonstrate that Pex13 directly binds Pex14 not only via its SH3 domain but also via a novel intraperoxisomal site. Furthermore, we demonstrate that Pex5 also contributes to the association of Pex13 with Pex14. Peroxisome function was affected only mildly by mutations within the novel Pex14 interaction site of Pex13 or by the non-Pex13-interacting mutant Pex5(W204A). However, when these constructs were tested in combination, PTS1-dependent import and growth on oleic acid were severely compromised. When the SH3 domain-mediated interaction of Pex13 with Pex14 was blocked on top of that, PTS2-dependent matrix protein import was completely compromised and Pex13 was no longer copurified with the docking complex. We conclude that the association of Pex13 with Pex14 is an essential step in peroxisomal protein import that is enabled by two direct interactions and by one that is mediated by Pex5, a result which indicates a novel, receptor-independent function of Pex5.
Collapse
Affiliation(s)
- Annette Schell-Steven
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Genetic and proteomic approaches have led to the identification of 32 proteins, collectively called peroxins, which are required for the biogenesis of peroxisomes. Some are responsible for the division and inheritance of peroxisomes; however, most peroxins have been implicated in the topogenesis of peroxisomal proteins. Peroxisomal membrane and matrix proteins are synthesized on free ribosomes in the cytosol and are imported post-translationally into pre-existing organelles (Lazarow PB & Fujiki Y (1985) Annu Rev Cell Biol1, 489-530). Progress has been made in the elucidation of how these proteins are targeted to the organelle. In addition, the understanding of the composition of the peroxisomal import apparatus and the order of events taking place during the cascade of peroxisomal protein import has increased significantly. However, our knowledge on the basic principles of peroxisomal membrane protein insertion or translocation of peroxisomal matrix proteins across the peroxisomal membrane is rather limited. The latter is of particular interest as the peroxisomal import machinery accommodates folded, even oligomeric, proteins, which distinguishes this apparatus from the well characterized translocons of other organelles. Furthermore, the origin of the peroxisomal membrane is still enigmatic. Recent observations suggest the existence of two classes of peroxisomal membrane proteins. Newly synthesized class I proteins are directly targeted to and inserted into the peroxisomal membrane, while class II proteins reach their final destination via the endoplasmic reticulum or a subcompartment thereof, which would be in accord with the idea that the peroxisomal membrane might be derived from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Ines Heiland
- Ruhr-Universität Bochum, Institut für Physiologische Chemie, Bochum, Germany
| | | |
Collapse
|