1
|
Liebermann DG, Jungwirth J, Riven I, Barak Y, Levy D, Horovitz A, Haran G. From Microstates to Macrostates in the Conformational Dynamics of GroEL: A Single-Molecule Förster Resonance Energy Transfer Study. J Phys Chem Lett 2023:6513-6521. [PMID: 37440608 PMCID: PMC10388350 DOI: 10.1021/acs.jpclett.3c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.
Collapse
|
2
|
Abstract
Chaperonins are nanomachines that facilitate protein folding by undergoing energy (ATP)-dependent movements that are coordinated in time and space owing to complex allosteric regulation. They consist of two back-to-back stacked oligomeric rings with a cavity at each end where protein substrate folding can take place. Here, we focus on the GroEL/GroES chaperonin system from Escherichia coli and, to a lesser extent, on the more poorly characterized eukaryotic chaperonin CCT/TRiC. We describe their various functional (allosteric) states and how they are affected by substrates and allosteric effectors that include ATP, ADP, nonfolded protein substrates, potassium ions, and GroES (in the case of GroEL). We also discuss the pathways of intra- and inter-ring allosteric communication by which they interconvert and the coupling between allosteric transitions and protein folding reactions.
Collapse
Affiliation(s)
- Ranit Gruber
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
3
|
Dissection of the ATP-dependent conformational change cycle of a group II chaperonin. J Mol Biol 2013; 426:447-59. [PMID: 24120682 DOI: 10.1016/j.jmb.2013.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 11/21/2022]
Abstract
Group II chaperonin captures an unfolded protein while in its open conformation and then mediates the folding of the protein during ATP-driven conformational change cycle. In this study, we performed kinetic analyses of the group II chaperonin from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TKS1-Cpn), by stopped-flow fluorometry and stopped-flow small-angle X-ray scattering to reveal the reaction cycle. Two TKS1-Cpn variants containing a Trp residue at position 265 or position 56 exhibit nearly the same fluorescence kinetics induced by rapid mixing with ATP. Fluorescence started to increase immediately after the start of mixing and reached a maximum at 1-2s after mixing. Only in the presence of K(+) that a gradual decrease in fluorescence was observed after the initial peak. Similar results were obtained by stopped-flow small-angle X-ray scattering. A rapid fluorescence increase, which reflects nucleotide binding, was observed for the mutant containing a Trp residue near the ATP binding site (K485W), irrespective of the presence or absence of K(+). Without K(+), a small, rapid fluorescence decrease followed the initial increase, and then a gradual decrease was observed. In contrast, with K(+), a large, rapid fluorescence decrease occurred just after the initial increase, and then the fluorescence gradually increased. Finally, we observed ATP binding signal and also subtle conformational change in an ATPase-deficient mutant with K485W mutation. Based on these results, we propose a reaction cycle model for group II chaperonins.
Collapse
|
4
|
Marzen S, Garcia HG, Phillips R. Statistical mechanics of Monod-Wyman-Changeux (MWC) models. J Mol Biol 2013; 425:1433-60. [PMID: 23499654 DOI: 10.1016/j.jmb.2013.03.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 11/27/2022]
Abstract
The 50th anniversary of the classic Monod-Wyman-Changeux (MWC) model provides an opportunity to survey the broader conceptual and quantitative implications of this quintessential biophysical model. With the use of statistical mechanics, the mathematical implementation of the MWC concept links problems that seem otherwise to have no ostensible biological connection including ligand-receptor binding, ligand-gated ion channels, chemotaxis, chromatin structure and gene regulation. Hence, a thorough mathematical analysis of the MWC model can illuminate the performance limits of a number of unrelated biological systems in one stroke. The goal of our review is twofold. First, we describe in detail the general physical principles that are used to derive the activity of MWC molecules as a function of their regulatory ligands. Second, we illustrate the power of ideas from information theory and dynamical systems for quantifying how well the output of MWC molecules tracks their sensory input, giving a sense of the "design" constraints faced by these receptors.
Collapse
Affiliation(s)
- Sarah Marzen
- Department of Physics, University of California Berkeley, Berkeley, CA 94720-7300, USA
| | | | | |
Collapse
|
5
|
Zhang Q, Chen J, Kuwajima K, Zhang HM, Xian F, Young NL, Marshall AG. Nucleotide-induced conformational changes of tetradecameric GroEL mapped by H/D exchange monitored by FT-ICR mass spectrometry. Sci Rep 2013; 3:1247. [PMID: 23409238 PMCID: PMC3570780 DOI: 10.1038/srep01247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022] Open
Abstract
Here we employ hydrogen/deuterium exchange mass spectrometry (HDX-MS) to access E. coli chaperonin GroEL conformation. The ~800 kDa tetradecameric GroEL plays an essential role in the proper folding of many proteins. Previous studies of the structural dynamics of GroEL upon ATP binding have been inconsistent, showing either minimal or major allosteric changes. Our results, based on the native, non-mutated, protein under physiological conditions in solution demonstrate substantial changes in conformation and/or flexibility upon ATP binding. We capture the pivotal step in its functional cycle by use of a non-hydrolyzable ATP analog, ATPγS, to mimic the ATP-bound GroEL state. Comparison of HDX-MS results for apo GroEL and GroEL-ATPγS enables the characterization of the nucleotide-regulated conformational changes throughout the entire protein with high sequence resolution. The 14-mer GroEL complex is the largest protein assembly yet accessed by HDX-MS, with sequence resolution of segments of as few as five amino acids.
Collapse
Affiliation(s)
- Qian Zhang
- Florida State University, Department of Chemistry, Tallahassee, FL 32306, USA
- These authors contributed equally to this work
| | - Jin Chen
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- These authors contributed equally to this work
| | - Kunihiro Kuwajima
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Department of Functional Molecular Science, School of Physical Sciences, Graduate University for Advanced Studies (Sokendai), 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Hui-Min Zhang
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Feng Xian
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Nicolas L. Young
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| | - Alan G. Marshall
- Florida State University, Department of Chemistry, Tallahassee, FL 32306, USA
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310, USA
| |
Collapse
|
6
|
Baaklini I, Wong MJH, Hantouche C, Patel Y, Shrier A, Young JC. The DNAJA2 substrate release mechanism is essential for chaperone-mediated folding. J Biol Chem 2012; 287:41939-54. [PMID: 23091061 DOI: 10.1074/jbc.m112.413278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNAJA1 (DJA1/Hdj2) and DNAJA2 (DJA2) are the major J domain partners of human Hsp70/Hsc70 chaperones. Although they have overall similarity with the well characterized type I co-chaperones from yeast and bacteria, they are biologically distinct, and their functional mechanisms are poorly characterized. We identified DJA2-specific activities in luciferase folding and repression of human ether-a-go-go-related gene (HERG) trafficking that depended on its expression levels in cells. Mutations in different internal domains of DJA2 abolished these effects. Using purified proteins, we addressed the mechanistic defects. A mutant lacking the region between the zinc finger motifs (DJA2-Δm2) was able to bind substrate similar to wild type but was incapable of releasing substrate during its transfer to Hsc70. The equivalent mutation in DJA1 also abolished its substrate release. A DJA2 mutant (DJA-221), which had its C-terminal dimerization region replaced by that of DJA1, was inactive but retained its ability to release substrate. The release mechanism required the J domain and ATP hydrolysis by Hsc70, although the nucleotide dependence diverged between DJA2 and DJA1. Limited proteolysis suggested further conformational differences between the two wild-type co-chaperones and the mutants. Our results demonstrate an essential role of specific DJA domains in the folding mechanism of Hsc70.
Collapse
Affiliation(s)
- Imad Baaklini
- Department of Biochemistry, McGill University and Groupe de Recherche Axé sur la Structure des Protéines, Montreal, Quebec H3G 0B1, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Pereira JH, Ralston CY, Douglas NR, Kumar R, Lopez T, McAndrew RP, Knee KM, King JA, Frydman J, Adams PD. Mechanism of nucleotide sensing in group II chaperonins. EMBO J 2011; 31:731-40. [PMID: 22193720 DOI: 10.1038/emboj.2011.468] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 11/28/2011] [Indexed: 11/09/2022] Open
Abstract
Group II chaperonins mediate protein folding in an ATP-dependent manner in eukaryotes and archaea. The binding of ATP and subsequent hydrolysis promotes the closure of the multi-subunit rings where protein folding occurs. The mechanism by which local changes in the nucleotide-binding site are communicated between individual subunits is unknown. The crystal structure of the archaeal chaperonin from Methanococcus maripaludis in several nucleotides bound states reveals the local conformational changes associated with ATP hydrolysis. Residue Lys-161, which is extremely conserved among group II chaperonins, forms interactions with the γ-phosphate of ATP but shows a different orientation in the presence of ADP. The loss of the ATP γ-phosphate interaction with Lys-161 in the ADP state promotes a significant rearrangement of a loop consisting of residues 160-169. We propose that Lys-161 functions as an ATP sensor and that 160-169 constitutes a nucleotide-sensing loop (NSL) that monitors the presence of the γ-phosphate. Functional analysis using NSL mutants shows a significant decrease in ATPase activity, suggesting that the NSL is involved in timing of the protein folding cycle.
Collapse
Affiliation(s)
- Jose H Pereira
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen B, Sysoeva TA, Chowdhury S, Nixon BT. Regulation and action of the bacterial enhancer-binding protein AAA+ domains. Biochem Soc Trans 2008; 36:89-93. [PMID: 18208392 PMCID: PMC2692754 DOI: 10.1042/bst0360089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial EBPs (enhancer-binding proteins) play crucial roles in regulating cellular responses to environmental changes, in part by providing efficient control over sigma(54)-dependent gene transcription. The AAA+ (ATPase associated with various cellular activites) domain of the EBPs, when assembled into a ring, uses energy from ATP binding, hydrolysis and product release to remodel the sigma(54)-RNAP (RNA polymerase) holoenzyme so that it can transition from closed to open form at promoter DNA. The assembly, and hence activity, of these ATPases are regulated by many different signal transduction mechanisms. Recent advances in solution scattering techniques, when combined with high-resolution structures and biochemical data, have enabled us to obtain mechanistic insights into the regulation and action of a subset of these sigma(54) activators: those whose assembly into ring form is controlled by two-component signal transduction. We review (i) experimental considerations of applying the SAXS (small-angle X-ray scattering)/WAXS (wide-angle X-ray scattering) technique, (ii) distinct regulation mechanisms of the AAA+ domains of three EBPs by similar two-component signal transduction receiver domains, and (iii) major conformational changes and correlated sigma(54)-binding activity of an isolated EBP AAA+ domain in the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- Baoyu Chen
- Integrative Biosciences Graduate Degree Program – Chemical Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Tatyana A. Sysoeva
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Saikat Chowdhury
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
9
|
Asymmetry of the GroEL-GroES complex under physiological conditions as revealed by small-angle x-ray scattering. Biophys J 2007; 94:1392-402. [PMID: 17981896 DOI: 10.1529/biophysj.107.114710] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the well-known functional importance of GroEL-GroES complex formation during the chaperonin cycle, the stoichiometry of the complex has not been clarified. The complex can occur either as an asymmetric 1:1 GroEL-GroES complex or as a symmetric 1:2 GroEL-GroES complex, although it remains uncertain which type is predominant under physiological conditions. To resolve this question, we studied the structure of the GroEL-GroES complex under physiological conditions by small-angle x-ray scattering, which is a powerful technique to directly observe the structure of the protein complex in solution. We evaluated molecular structural parameters, the radius of gyration and the maximum dimension of the complex, from the x-ray scattering patterns under various nucleotide conditions (3 mM ADP, 3 mM ATP gamma S, and 3 mM ATP in 10 mM MgCl(2) and 100 mM KCl) at three different temperatures (10 degrees C, 25 degrees C, and 37 degrees C). We then compared the experimentally observed scattering patterns with those calculated from the known x-ray crystallographic structures of the GroEL-GroES complex. The results clearly demonstrated that the asymmetric complex must be the major species stably present in solution under physiological conditions. On the other hand, in the presence of ATP (3 mM) and beryllium fluoride (10 mM NaF and 300 microM BeCl(2)), we observed the formation of a stable symmetric complex, suggesting the existence of a transiently formed symmetric complex during the chaperonin cycle.
Collapse
|
10
|
Chen B, Doucleff M, Wemmer DE, De Carlo S, Huang HH, Nogales E, Hoover TR, Kondrashkina E, Guo L, Nixon BT. ATP ground- and transition states of bacterial enhancer binding AAA+ ATPases support complex formation with their target protein, sigma54. Structure 2007; 15:429-40. [PMID: 17437715 PMCID: PMC2680074 DOI: 10.1016/j.str.2007.02.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/01/2006] [Accepted: 02/22/2007] [Indexed: 11/28/2022]
Abstract
Transcription initiation by the sigma54 form of bacterial RNA polymerase requires hydrolysis of ATP by an enhancer binding protein (EBP). We present SAS-based solution structures of the ATPase domain of the EBP NtrC1 from Aquifex aeolicus in different nucleotide states. Structures of apo protein and that bound to AMPPNP or ADP-BeF(x) (ground-state mimics), ADP-AlF(x) (a transition-state mimic), or ADP (product) show substantial changes in the position of the GAFTGA loops that contact polymerase, particularly upon conversion from the apo state to the ADP-BeF(x) state, and from the ADP-AlF(x) state to the ADP state. Binding of the ATP analogs stabilizes the oligomeric form of the ATPase and its binding to sigma54, with ADP-AlF(x) having the largest effect. These data indicate that ATP binding promotes a conformational change that stabilizes complexes between EBPs and sigma54, while subsequent hydrolysis and phosphate release drive the conformational change needed to open the polymerase/promoter complex.
Collapse
Affiliation(s)
- Baoyu Chen
- Integrative Biosciences Graduate Degree Program – Chemical Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michaeleen Doucleff
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David E. Wemmer
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sacha De Carlo
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hector H. Huang
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eva Nogales
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Elena Kondrashkina
- BioCAT at APS/Argonne National Lab, Illinois Institute of Technology, 9700 S. Cass Ave, Argonne, IL 60439, USA
| | - Liang Guo
- BioCAT at APS/Argonne National Lab, Illinois Institute of Technology, 9700 S. Cass Ave, Argonne, IL 60439, USA
| | - B. Tracy Nixon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Yoshida T, Iizuka R, Itami K, Yasunaga T, Sakuraba H, Ohshima T, Yohda M, Maruyama T. Comparative analysis of the protein folding activities of two chaperonin subunits of Thermococcus strain KS-1: the effects of beryllium fluoride. Extremophiles 2006; 11:225-35. [PMID: 17072688 DOI: 10.1007/s00792-006-0026-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 08/31/2006] [Indexed: 10/24/2022]
Abstract
We conducted a comparative analysis of the effects of beryllium fluoride (BeFx) on protein folding mediated by the alpha- and beta-subunit homooligomers (alpha16mer or beta16mer) from the hyperthermophilic archaeum Thermococcus strain KS-1. BeFx inhibited the ATPase activities of both alpha16mer and beta16mer with equal efficiency. This indicated that BeFx replaces the gamma-phosphate of chaperonin-bound ATP, thereby forming a stable chaperonin-ADP-BeFx complex. In the presence of ATP and BeFx, both of the two chaperonin subunits mediated green fluorescent protein (GFP) folding. Gel filtration chromatography revealed that the refolded GFP was retained by both chaperonins. Protease digestion and electron microscopic analyses showed that both chaperonin-ADP-BeFx complexes of the two subunits adopted a symmetric closed conformation with the built-in lids of both rings closed and that protein folding took place in their central cavities. These data indicated that basic protein folding mechanisms of alpha16mer and beta16mer are likely similar although there were some apparent differences. While beta16mer-mediated GFP refolding in the presence of ATP-BeFx that proceeded more rapidly than in the presence of ATP alone and reached a twofold higher plateau than that achieved with AMP-PNP, the folding mediated by the alpha16mer that proceeded with much lower yields. A mutant of alpha16mer, trapalpha, which traps the unfolded and partially folded substrate protein, did not affect the ATP-BeFx-dependent GFP folding by beta16mer but it suppressed that mediated by alpha16mer to the level of spontaneous folding. These results suggested that beta16mer differed from the alpha16mer in nucleotide binding affinity or the rate of nucleotide hydrolysis.
Collapse
Affiliation(s)
- Takao Yoshida
- Research Program for Marine Biology and Ecology, Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kuwajima K, Inobe T, Arai M. The allosteric transition of the chaperonin groel fromescherichia coli as studied by solution X-ray scattering. Macromol Res 2006. [DOI: 10.1007/bf03218504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Iizuka R, Yoshida T, Ishii N, Zako T, Takahashi K, Maki K, Inobe T, Kuwajima K, Yohda M. Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine". J Biol Chem 2005; 280:40375-83. [PMID: 16183634 DOI: 10.1074/jbc.m506785200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lid's conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on alpha-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that alpha-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that alpha-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced alpha-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, alpha-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.
Collapse
Affiliation(s)
- Ryo Iizuka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Taguchi H, Tsukuda K, Motojima F, Koike-Takeshita A, Yoshida M. BeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers. J Biol Chem 2004; 279:45737-43. [PMID: 15347650 DOI: 10.1074/jbc.m406795200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coupling with ATP hydrolysis and cooperating with GroES, the double ring chaperonin GroEL assists the folding of other proteins. Here we report novel GroEL-GroES complexes formed in fluoroberyllate (BeF(x)) that can mimic the phosphate part of the enzyme-bound nucleotides. In ATP, BeF(x) stops the functional turnover of GroEL by preventing GroES release and produces a symmetric 1:2 GroEL-GroES complex in which both GroEL rings contain ADP.BeF(x) and an encapsulated substrate protein. In ADP, the substrate protein-loaded GroEL cannot bind GroES. In ADP plus BeF(x), however, it can bind GroES to form a stable 1:1 GroEL-GroES complex in which one of GroEL rings contains ADP.BeF(x) and an encapsulated substrate protein. This 1:1 GroEL-GroES complex is converted into the symmetric 1:2 GroEL-GroES complex when GroES is supplied in ATP plus BeF(x). Thus, BeF(x) stabilizes two GroEL-GroES complexes; one with a single folding chamber and the other with double folding chambers. These results shed light on the intermediate ADP.P(i) nucleotide states in the functional cycle of GroEL.
Collapse
Affiliation(s)
- Hideki Taguchi
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, 226-8503, Japan
| | | | | | | | | |
Collapse
|
15
|
Inobe T, Kuwajima K. Phi value analysis of an allosteric transition of GroEL based on a single-pathway model. J Mol Biol 2004; 339:199-205. [PMID: 15123431 DOI: 10.1016/j.jmb.2004.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 03/08/2004] [Accepted: 03/08/2004] [Indexed: 11/29/2022]
Abstract
There are currently two contradictory models for the kinetics of the ATP-induced GroEL allosteric transition occurring around 20 microM ATP. One model, proposed by Horovitz et al. demonstrates the existence of two parallel pathways for the allosteric transition and an abrupt ATP-dependent switch from one pathway to the other. The other model, which was proposed by the present authors, shows no need to assume the parallel pathways, and a combination of the transition-state theory and the Monod-Wyman-Changeux model of allostery can explain the kinetics as well as the equilibrium of the transition. The discrepancy appears to be due to whether we regard the transition as reversible or irreversible. Thus, here we have investigated the reversibility of the allosteric transition between 0 microM and 70 microM ATP by the use of a stopped-flow double-jump technique, which has allowed us to monitor the kinetics of the reverse reaction from the relaxed state at a high ATP concentration to the tense state at a low ATP concentration. The tryptophan fluorescence of a tryptophan-inserted variant of GroEL was used to follow the kinetics. As a result, the allosteric transition was shown to be a reversible process, supporting the validity of our model. We also show that the structural environment around the ATP-binding site of GroEL in the transition state is very similar to that in the relaxed state (Phi=0.9) by using a Phi value analysis in the kinetic Monod-Wyman-Changeux model, which is analogous to the mutational Phi value analysis in protein folding.
Collapse
Affiliation(s)
- Tomonao Inobe
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
16
|
Chaudhry C, Farr GW, Todd MJ, Rye HS, Brunger AT, Adams PD, Horwich AL, Sigler PB. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics. EMBO J 2003; 22:4877-87. [PMID: 14517228 PMCID: PMC204461 DOI: 10.1093/emboj/cdg477] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Productive cis folding by the chaperonin GroEL is triggered by the binding of ATP but not ADP, along with cochaperonin GroES, to the same ring as non-native polypeptide, ejecting polypeptide into an encapsulated hydrophilic chamber. We examined the specific contribution of the gamma-phosphate of ATP to this activation process using complexes of ADP and aluminium or beryllium fluoride. These ATP analogues supported productive cis folding of the substrate protein, rhodanese, even when added to already-formed, folding-inactive cis ADP ternary complexes, essentially introducing the gamma-phosphate of ATP in an independent step. Aluminium fluoride was observed to stabilize the association of GroES with GroEL, with a substantial release of free energy (-46 kcal/mol). To understand the basis of such activation and stabilization, a crystal structure of GroEL-GroES-ADP.AlF3 was determined at 2.8 A. A trigonal AlF3 metal complex was observed in the gamma-phosphate position of the nucleotide pocket of the cis ring. Surprisingly, when this structure was compared with that of the previously determined GroEL-GroES-ADP complex, no other differences were observed. We discuss the likely basis of the ability of gamma-phosphate binding to convert preformed GroEL-GroES-ADP-polypeptide complexes into the folding-active state.
Collapse
Affiliation(s)
- Charu Chaudhry
- Department of Molecular Biophysics and Biochemistry and Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|