1
|
Marcoli R, Symonds JE, Walker SP, Battershill CN, Bird S. Characterising the Physiological Responses of Chinook Salmon ( Oncorhynchus tshawytscha) Subjected to Heat and Oxygen Stress. BIOLOGY 2023; 12:1342. [PMID: 37887052 PMCID: PMC10604766 DOI: 10.3390/biology12101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
In New Zealand, during the hottest periods of the year, some salmon farms in the Marlborough Sounds reach water temperatures above the optimal range for Chinook salmon. High levels of mortality are recorded during these periods, emphasising the importance of understanding thermal stress in this species. In this study, the responses of Chinook salmon (Oncorhynchus tshawytscha) to chronic, long-term changes in temperature and dissolved oxygen were investigated. This is a unique investigation due to the duration of the stress events the fish were exposed to. Health and haematological parameters were analysed alongside gene expression results to determine the effects of thermal stress on Chinook salmon. Six copies of heat shock protein 90 (HSP90) were discovered and characterised: HSP90AA1.1a, HSP90AA1.2a, HSP90AA1.1b, HSP90AA1.2b, HSP90AB1a and HSP90AB1b, as well as two copies of SOD1, named SOD1a and SOD1b. The amino acid sequences contained features similar to those found in other vertebrate HSP90 and SOD1 sequences, and the phylogenetic tree and synteny analysis provided conclusive evidence of their relationship to other vertebrate HSP90 and SOD1 genes. Primers were designed for qPCR to enable the expression of all copies of HSP90 and SOD1 to be analysed. The expression studies showed that HSP90 and SOD1 were downregulated in the liver and spleen in response to longer term exposure to high temperatures and lower dissolved oxygen. HSP90 was also downregulated in the gill; however, the results for SOD1 expression in the gill were not conclusive. This study provides important insights into the physiological and genetic responses of Chinook salmon to temperature and oxygen stress, which are critical for developing sustainable fish aquaculture in an era of changing global climates.
Collapse
Affiliation(s)
- Roberta Marcoli
- Centre for Sustainable Tropical Fisheries, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia;
- ARC Research Hub for Supercharging Tropical Aquaculture through Genetic Solutions, James Cook University, Townsville, QLD 4811, Australia
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| | - Jane E. Symonds
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | - Seumas P. Walker
- Cawthron Institute, Nelson 7010, New Zealand; (J.E.S.); (S.P.W.)
| | | | - Steve Bird
- School of Science, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand;
| |
Collapse
|
2
|
Moustafa A, Perbandt M, Liebau E, Betzel C, Falke S. Crystal structure of an extracellular superoxide dismutase from Onchocerca volvulus and implications for parasite-specific drug development. Acta Crystallogr F Struct Biol Commun 2022; 78:232-240. [PMID: 35647680 PMCID: PMC9158661 DOI: 10.1107/s2053230x22005350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Superoxide dismutases (SODs) are metalloproteins that are responsible for the dismutation of superoxide anion radicals. SODs are consequently protective against oxidative damage to cellular components. Among other protective mechanisms, the filarial parasite Onchocerca volvulus has a well developed defense system to scavenge toxic free radicals using SODs during migration and sojourning of the microfilariae and adult worms in the human body. O. volvulus is responsible for the neglected disease onchocerciasis or `river blindness'. In the present study, an extracellular Cu/Zn-SOD from O. volvulus (OvEC-SOD) was cloned, purified and crystallized to obtain structural insight into an attractive drug target with the potential to combat onchocerciasis. The recombinant OvEC-SOD forms a dimer and the protein structure was solved and refined to 1.55 Å resolution by X-ray crystallography. Interestingly, a sulfate ion supports the coordination of the conserved copper ion. The overall protein shape was verified by small-angle X-ray scattering. The enzyme shows a different surface charge distribution and different termini when compared with the homologous human SOD. A distinct hydrophobic cleft to which both protomers of the dimer contribute was utilized for a docking approach with compounds that have previously been identified as SOD inhibitors to highlight the potential for individual structure-based drug development.
Collapse
Affiliation(s)
- Amr Moustafa
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Markus Perbandt
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Eva Liebau
- Institut für Zoophysiologie, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Christian Betzel
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| | - Sven Falke
- Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
3
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
4
|
Butler KE, Takinami Y, Rainczuk A, Baker ES, Roberts BR. Utilizing Ion Mobility-Mass Spectrometry to Investigate the Unfolding Pathway of Cu/Zn Superoxide Dismutase. Front Chem 2021; 9:614595. [PMID: 33634076 PMCID: PMC7900566 DOI: 10.3389/fchem.2021.614595] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
Native mass spectrometry has emerged as a powerful tool for structural biology as it enables the evaluation of molecules as they occur in their physiological conditions. Ion mobility spectrometry-mass spectrometry (IMS-MS) has shown essential in these analyses as it allows the measurement of the shape of a molecule, denoted as its collision cross section (CCS), and mass. The structural information garnered from native IMS-MS provides insight into the tertiary and quaternary structure of proteins and can be used to validate NMR or crystallographic X-ray structures. Additionally, due to the rapid nature (millisecond measurements) and ability of IMS-MS to analyze heterogeneous solutions, it can be used to address structural questions not possible with traditional structural approaches. Herein, we applied multiple solution conditions to systematically denature bovine Cu/Zn-superoxide dismutase (SOD1) and assess its unfolding pathway from the holo-dimer to the holo-monomer, single-metal monomer, and apo-monomer. Additionally, we compared and noted 1–2% agreement between CCS values from both drift tube IMS and trapped IMS for the SOD1 holo-monomer and holo-dimer. The observed CCS values were in excellent agreement with computational CCS values predicted from the homo-dimer crystal structure, showcasing the ability to use both IMS-MS platforms to provide valuable structural information for molecular modeling of protein interactions and structural assessments.
Collapse
Affiliation(s)
- Karen E Butler
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | | | | | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Blaine R Roberts
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neuroscience, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
5
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| | - James B. Hilton
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3052 Australia
- Atomic Medicine Initiative The University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| |
Collapse
|
6
|
Abstract
Copper is a redox-active transition metal ion required for the function of many essential human proteins. For biosynthesis of proteins coordinating copper, the metal may bind before, during or after folding of the polypeptide. If the metal binds to unfolded or partially folded structures of the protein, such coordination may modulate the folding reaction. The molecular understanding of how copper is incorporated into proteins requires descriptions of chemical, thermodynamic, kinetic and structural parameters involved in the formation of protein-metal complexes. Because free copper ions are toxic, living systems have elaborate copper-transport systems that include particular proteins that facilitate efficient and specific delivery of copper ions to target proteins. Therefore, these pathways become an integral part of copper protein folding in vivo. This review summarizes biophysical-molecular in vitro work assessing the role of copper in folding and stability of copper-binding proteins as well as protein-protein copper exchange reactions between human copper transport proteins. We also describe some recent findings about the participation of copper ions and copper proteins in protein misfolding and aggregation reactions in vitro.
Collapse
|
7
|
Peng X, Cashman NR, Plotkin SS. Prediction of Misfolding-Specific Epitopes in SOD1 Using Collective Coordinates. J Phys Chem B 2018; 122:11662-11676. [PMID: 30351123 DOI: 10.1021/acs.jpcb.8b07680] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a global, collective coordinate bias into molecular dynamics simulations that partially unfolds a protein, in order to predict misfolding-specific epitopes based on the regions that locally unfold. Several metrics are used to measure local disorder, including solvent exposed surface area (SASA), native contacts ( Q), and root mean squared fluctuations (RMSF). The method is applied to Cu, Zn superoxide dismutase (SOD1). For this protein, the processes of monomerization, metal loss, and conformational unfolding due to microenvironmental stresses are all separately taken into account. Several misfolding-specific epitopes are predicted, and consensus epitopes are calculated. These predicted epitopes are consistent with the "lower-resolution" peptide sequences used to raise disease-specific antibodies, but the epitopes derived from collective coordinates contain shorter, more refined sequences for the key residues constituting the epitope.
Collapse
Affiliation(s)
- Xubiao Peng
- Department of Physics and Astronomy , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada.,Center for Quantum Technology Research, School of Physics , Beijing Institute of Technology , Haidian, Beijing 100081 , China
| | - Neil R Cashman
- Brain Research Centre , University of British Columbia , Vancouver , British Columbia V6T 2B5 , Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, and Genome Sciences and Technology Program , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
8
|
Habibi M, Plotkin SS, Rottler J. Soft Vibrational Modes Predict Breaking Events during Force-Induced Protein Unfolding. Biophys J 2018; 114:562-569. [PMID: 29414701 PMCID: PMC5985024 DOI: 10.1016/j.bpj.2017.11.3781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/04/2017] [Accepted: 11/27/2017] [Indexed: 01/03/2023] Open
Abstract
We investigate the correlation between soft vibrational modes and unfolding events in simulated force spectroscopy of proteins. Unfolding trajectories are obtained from molecular dynamics simulations of a Gō model of a monomer of a mutant of superoxide dismutase 1 protein containing all heavy atoms in the protein, and a normal mode analysis is performed based on the anisotropic network model. We show that a softness map constructed from the superposition of the amplitudes of localized soft modes correlates with unfolding events at different stages of the unfolding process. Soft residues are up to eight times more likely to undergo disruption of native structure than the average amino acid. The memory of the softness map is retained for extensions of up to several nanometers, but decorrelates more rapidly during force drops.
Collapse
Affiliation(s)
- Mona Habibi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada.
| | - Jörg Rottler
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada; Quantum Matter Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nat Commun 2017; 8:1881. [PMID: 29192167 PMCID: PMC5709426 DOI: 10.1038/s41467-017-01996-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Prion-like misfolding of superoxide dismutase 1 (SOD1) is associated with the disease ALS, but the mechanism of misfolding remains unclear, partly because misfolding is difficult to observe directly. Here we study the most misfolding-prone form of SOD1, reduced un-metallated monomers, using optical tweezers to measure unfolding and refolding of single molecules. We find that the folding is more complex than suspected, resolving numerous previously undetected intermediate states consistent with the formation of individual β-strands in the native structure. We identify a stable core of the protein that unfolds last and refolds first, and directly observe several distinct misfolded states that branch off from the native folding pathways at specific points after the formation of the stable core. Partially folded intermediates thus play a crucial role mediating between native and non-native folding. These results suggest an explanation for SOD1's propensity for prion-like misfolding and point to possible targets for therapeutic intervention.
Collapse
|
10
|
The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Molecules 2017; 22:molecules22091429. [PMID: 28850080 PMCID: PMC6151412 DOI: 10.3390/molecules22091429] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1) associated to amyotrophic lateral sclerosis (ALS). SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.
Collapse
|
11
|
Habibi M, Rottler J, Plotkin SS. The unfolding mechanism of monomeric mutant SOD1 by simulated force spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28629863 DOI: 10.1016/j.bbapap.2017.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mechanical unfolding of mutated apo, disulfide-reduced, monomeric superoxide dismutase 1 protein (SOD1) has been simulated via force spectroscopy techniques, using both an all-atom (AA), explicit solvent model and a coarse-grained heavy-atom Gō (HA-Gō) model. The HA-Gō model was implemented at two different pulling speeds for comparison. The most-common sequence of unfolding in the AA model agrees well with the most-common unfolding sequence of the HA-Gō model, when the same normalized pulling rate was used. Clustering of partially-native structures as the protein unfolds shows that the AA and HA-Gō models both exhibit a dominant pathway for early unfolding, which eventually bifurcates repeatedly to multiple branches after the protein is about half-unfolded. The force-extension curve exhibits multiple force drops, which are concomitant with jumps in the local interaction potential energy between specific β-strands in the protein. These sudden jumps in the potential energy coincide with the dissociation of specific pairs of β-strands, and thus intermediate unfolding events. The most common sequence of β-strand dissociation in the unfolding pathway of the AA model is β-strands 5, 4, 8, 7, 1, 2, then finally β-strands 3 and 6. The observation that β-strand 5 is among the first to unfold here, but the last to unfold in simulations of loop-truncated SOD1, could imply the existence of an evolutionary compensation mechanism, which would stabilize β-strands flanking long loops against their entropic penalty by strengthening intramolecular interactions. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Mona Habibi
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Jörg Rottler
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
12
|
Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Solid-State NMR of PEGylated Proteins. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Tommaso Martelli
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| | - Tatiana Kozyreva
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| | - Caterina Bernacchioni
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| |
Collapse
|
13
|
Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Solid-State NMR of PEGylated Proteins. Angew Chem Int Ed Engl 2016; 55:2446-9. [PMID: 26756539 DOI: 10.1002/anie.201510148] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 11/10/2022]
Abstract
PEGylated proteins are widely used in biomedicine but, in spite of their importance, no atomic-level information is available since they are generally resistant to structural characterization approaches. PEGylated proteins are shown here to yield highly resolved solid-state NMR spectra, which allows assessment of the structural integrity of proteins when PEGylated for therapeutic or diagnostic use.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Tommaso Martelli
- Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Tatiana Kozyreva
- Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Caterina Bernacchioni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy. .,Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
14
|
Leal SS, Cristóvão JS, Biesemeier A, Cardoso I, Gomes CM. Aberrant zinc binding to immature conformers of metal-free copper-zinc superoxide dismutase triggers amorphous aggregation. Metallomics 2015; 7:333-46. [PMID: 25554447 DOI: 10.1039/c4mt00278d] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Superoxide dismutase 1 (SOD1) is a Cu/Zn metalloenzyme that aggregates in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Correct metal insertion during SOD1 biosynthesis is critical to prevent misfolding; however Zn(2+) can bind to the copper-site leading to an aberrantly metallated protein. These effects of Zn(2+) misligation on SOD1 aggregation remain to be explored, even though Zn(2+) levels are upregulated in ALS motor neurons. Here we use complementary biophysical methods to investigate Zn(2+) binding and its effects on the aggregation of three immature metal-free SOD1 conformers that represent biogenesis intermediates: dimeric, monomeric and reduced monomeric SOD1. Using isothermal titration calorimetry we determined that Zn(2+) binds to all conformers both at the zinc- as well as to the copper-site; however Zn(2+) binding mechanisms to the zinc-site have distinct characteristics across immature conformers. We show that this 'zinc overload' of immature SOD1 promotes intermolecular interactions, as evidenced by dynamic light scattering and ThT fluorescence kinetic studies. Analysis of aged zinc-induced aggregates by energy-dispersive X-ray and electron energy-loss spectroscopy shows that aggregates integrate some Zn(2+). In addition, electron diffraction analysis identifies nano-scaled crystalline materials and amyloid fibril-like reflections. Transmission electron microscopy reveals that Zn(2+) diverts the SOD1 aggregation pathway from fibrils to amorphous aggregate, and electrophoretic analysis evidences an increase in insoluble materials. Overall, we provide evidence that aberrant zinc coordination to immature conformers broadens the population of SOD1 misfolded species at early aggregation stages and provide evidence for a high structural polymorphism and heterogeneity of SOD1 aggregates.
Collapse
Affiliation(s)
- Sónia S Leal
- Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.
| | | | | | | | | |
Collapse
|
15
|
Szpryngiel S, Oliveberg M, Mäler L. Diffuse binding of Zn(2+) to the denatured ensemble of Cu/Zn superoxide dismutase 1. FEBS Open Bio 2015; 5:56-63. [PMID: 25685664 PMCID: PMC4309841 DOI: 10.1016/j.fob.2014.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022] Open
Abstract
Nearly complete backbone assignments for monomeric SOD1 were obtained. Monomeric SOD1 is unstructured in 9 M urea. Zn2+-binding to monomeric SOD1 occurs through diffuse coordination to most His residues. The binding geometry of Zn2+ is different than in the native, folded SOD1.
The stability and structural properties of the metalloprotein superoxide dismutase 1 (SOD1) are found to depend critically on metal ions. Native SOD1 monomers coordinate one structural Zn2+ and one redox-active Cu2+/1+ to the active site. To do this, the Zn2+ ions need to interact with the SOD1 protein on the denatured side of the folding barrier, prior to the formation of the folding nucleus. In this study, we have examined at residue level the nature of this early Zn2+ binding by NMR studies on the urea denatured-state of SOD1. Nearly complete backbone chemical shift assignments were obtained in 9 M urea at physiological pH, conditions at which NMR studies are scarce. Our results demonstrate that SOD1 is predominantly unstructured under these conditions. Chemical-shift changes upon Zn2+ titration show that denatured SOD1 retains a significant affinity to Zn2+ ions, even in 9 M urea. However, the Zn2+ interactions are not limited to the native metal-binding ligands in the two binding sites, but are seen for all His residues. Moreover, the native Cu2+/1+ ligand H46 seems not to bind as well as the other His residues, while the nearby non-native H43 does bind, indicating that the binding geometry is relaxed. The result suggests that the Zn2+-binding observed to catalyze folding of SOD1 in physiological buffer is initiated by diffuse, non-specific coordination to the coil, which subsequently funnels by ligand exchange into the native coordination geometry of the folded monomer. Altogether, this diffuse binding is a result with fundamental implications for folding of metalloproteins in general.
Collapse
Affiliation(s)
- Scarlett Szpryngiel
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| | - Lena Mäler
- Department of Biochemistry and Biophysics, The Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
16
|
Ming LJ, Valentine JS. Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni(2+)- and other metal-ion-substituted wild-type copper-zinc superoxide dismutases. J Biol Inorg Chem 2014; 19:647-57. [PMID: 24692094 PMCID: PMC4109160 DOI: 10.1007/s00775-014-1126-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/12/2014] [Indexed: 12/14/2022]
Abstract
The dimeric Cu-Zn superoxide dismutase (SOD1) is a particularly interesting system for biological inorganic chemical studies because substitutions of the native Cu and/or Zn ions by a nonnative metal ion cause minimal structural changes and result in high enzymatic activity for those derivatives with Cu remaining in the Cu site. The pioneering NMR studies of the magnetically coupled derivative Cu2Co2SOD1 by Ivano Bertini and coworkers are of particular importance in this regard. In addition to Co(2+), Ni(2+) is a versatile metal ion for substitution into SOD1, showing very little disturbance of the structure in Cu2Ni2SOD1 and acting as a very good mimic of the native Cu ion in Ni2Zn2SOD1. The NMR studies presented here were inspired by and are indebted to Ivano Bertini's paramagnetic NMR pursuits of metalloproteins. We report Ni(2+) binding to apo wild-type SOD1 and a time-dependent Ni(2+) migration from the Zn site to the Cu site, and the preparation and characterization of Ni2Ni2SOD1, which shows coordination properties similar to those of Cu2Cu2SOD1, namely, an anion-binding property different from that of the wild type and a possibly broken bridging His. Mutations in the human SOD1 gene can cause familial amyotrophic lateral sclerosis (ALS), and mutant SOD1 proteins with significantly altered metal-binding behaviors are implicated in causing the disease. We conclude by discussing the effects of the ALS mutations on the remarkable stabilities and metal-binding properties of wild-type SOD1 proteins and the implications concerning the causes of SOD1-linked ALS.
Collapse
Affiliation(s)
- Li-June Ming
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620-5250, USA
| | - Joan Selverstone Valentine
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
- Department of Bioinspired Science, Ewha Womans University, 120-750, Seoul, Republic of Korea
| |
Collapse
|
17
|
Leal SS, Cardoso I, Valentine JS, Gomes CM. Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: a link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)? J Biol Chem 2013; 288:25219-25228. [PMID: 23861388 DOI: 10.1074/jbc.m113.470740] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Imbalance in metal ion homeostasis is a hallmark in neurodegenerative conditions involving protein deposition, and amyotrophic lateral sclerosis (ALS) is no exception. In particular, Ca(2+) dysregulation has been shown to correlate with superoxide dismutase-1 (SOD1) aggregation in a cellular model of ALS. Here we present evidence that SOD1 aggregation is enhanced and modulated by Ca(2+). We show that at physiological pH, Ca(2+) induces conformational changes that increase SOD1 β-sheet content, as probed by far UV CD and attenuated total reflectance-FTIR, and enhances SOD1 hydrophobicity, as probed by ANS fluorescence emission. Moreover, dynamic light scattering analysis showed that Ca(2+) boosts the onset of SOD1 aggregation. In agreement, Ca(2+) decreases SOD1 critical concentration and nucleation time during aggregation kinetics, as evidenced by thioflavin T fluorescence emission. Attenuated total reflectance FTIR analysis showed that Ca(2+) induced aggregates consisting preferentially of antiparallel β-sheets, thus suggesting a modulation effect on the aggregation pathway. Transmission electron microscopy and analysis with conformational anti-fibril and anti-oligomer antibodies showed that oligomers and amyloidogenic aggregates constitute the prevalent morphology of Ca(2+)-induced aggregates, thus indicating that Ca(2+) diverts SOD1 aggregation from fibrils toward amorphous aggregates. Interestingly, the same heterogeneity of conformations is found in ALS-derived protein inclusions. We thus hypothesize that transient variations and dysregulation of cellular Ca(2+) levels contribute to the formation of SOD1 aggregates in ALS patients. In this scenario, Ca(2+) may be considered as a pathogenic effector in the formation of ALS proteinaceous inclusions.
Collapse
Affiliation(s)
- Sónia S Leal
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal
| | - Isabel Cardoso
- the Molecular Neurobiology Unit, Instituto Biologia Molecular e Celular, 4150-180 Porto, Portugal, and
| | - Joan S Valentine
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Cláudio M Gomes
- From the Instituto Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República 127, 2780-756 Oeiras, Portugal,.
| |
Collapse
|
18
|
Schmidlin T, Ploeger K, Jonsson AL, Daggett V. Early steps in thermal unfolding of superoxide dismutase 1 are similar to the conformational changes associated with the ALS-associated A4V mutation. Protein Eng Des Sel 2013; 26:503-13. [PMID: 23784844 DOI: 10.1093/protein/gzt030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There are over 100 mutations in Cu/Zn superoxide dismutase (SOD1) that result in a subset of familial amyotrophic lateral sclerosis (fALS) cases. The hypothesis that dissociation of the dimer, misfolding of the monomer and subsequent aggregation of mutant SOD1 leads to fALS has been gaining support as an explanation for how these disparate missense mutations cause the same disease. These forms are only responsible for a fraction of the ALS cases; however, the rest are sporadic. Starting with a folded apo monomer, the species considered most likely to be involved in misfolding, we used high-temperature all-atom molecular dynamics simulations to explore the events of the wild-type protein unfolding through the denatured state. All simulations showed early loss of structure along the β5-β6 edge of the β-sandwich, supporting earlier findings of instability in this region. Transition state structures identified from the simulations are in good agreement with experiment, providing detailed, validated molecular models for this elusive state. Furthermore, we compare the process of thermal unfolding investigated here to that of the lethal A4V mutant-induced unfolding at physiological temperature and find that the pathways are very similar.
Collapse
Affiliation(s)
- Tom Schmidlin
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | | | | | | |
Collapse
|
19
|
Anju A, Jeswin J, Thomas PC, Paulton MP, Vijayan KK. Molecular cloning, characterization and expression analysis of cytoplasmic Cu/Zn-superoxide dismutase (SOD) from pearl oyster Pinctada fucata. FISH & SHELLFISH IMMUNOLOGY 2013; 34:946-950. [PMID: 23318997 DOI: 10.1016/j.fsi.2012.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/13/2012] [Accepted: 12/23/2012] [Indexed: 06/01/2023]
Abstract
Because of its capacity to rapidly convert superoxide to hydrogen peroxide, superoxide dismutase (SOD) is crucial in both intracellular signalling and regulation of oxidative stress. In this paper we report the cloning of a Cu/Zn SOD (designated as pfSOD) from the pearl oyster (Pinctada fucata) using rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of this Cu/Zn SOD contains an open reading frame (ORF) of 471 bp coding for 156 amino acids. No signal peptide was identified at the N-terminal amino acid sequence of Cu/Zn SOD indicating that this pfSOD encodes a cytoplasmic Cu/Zn SOD. This is supported by the presence of conserved amino acids required for binding copper and zinc. Semi-quantitative analysis in adult tissues showed that the pfSOD mRNA was abundantly expressed in haemocytes and gill and scarcely expressed in other tissues tested. After challenge with lipopolysaccharide (LPS), expression of pfSOD mRNA in haemocytes was increased, reaching the highest level at 8 h, then dropping to basal levels at 36 h. These results suggest that Cu/Zn SOD might be used as a bioindicator of the aquatic environmental pollution and cellular stress in pearl oyster.
Collapse
Affiliation(s)
- A Anju
- Marine Biotechnology Division, Central Marine Fisheries Research Institute, P.B. No 1603, Ernakulam North P.O., Kochi 682018, Kerala, India.
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Unfolding pathway of CotA-laccase and the role of copper on the prevention of refolding through aggregation of the unfolded state. Biochem Biophys Res Commun 2012; 422:442-6. [DOI: 10.1016/j.bbrc.2012.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/02/2012] [Indexed: 11/29/2022]
|
22
|
Role of metal in folding and stability of copper proteins in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1594-603. [PMID: 22306006 DOI: 10.1016/j.bbamcr.2012.01.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 01/04/2023]
Abstract
Metal coordination is required for function of many proteins. For biosynthesis of proteins coordinating a metal, the question arises if the metal binds before, during or after folding of the polypeptide. Moreover, when the metal is bound to the protein, how does its coordination affect biophysical properties such as stability and dynamics? Understanding how metals are utilized by proteins in cells on a molecular level requires accurate descriptions of the thermodynamic and kinetic parameters involved in protein-metal complexes. Copper is one of the essential transition metals found in the active sites of many key proteins. To avoid toxicity of free copper ions, living systems have developed elaborate copper-transport systems that involve dedicated proteins that facilitate efficient and specific delivery of copper to target proteins. This review describes in vitro and in silico biophysical work assessing the role of copper in folding and stability of copper-binding proteins. Examples of proteins discussed are: a blue-copper protein (Pseudomonas aeruginosa azurin), members of copper-transport systems (bacterial CopZ, human Atox1 and ATP7B domains) and multi-copper ferroxidases (yeast Fet3p and human ceruloplasmin). The consequences of interactions between copper proteins and platinum-complexes are also discussed. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
23
|
Li HT, Jiao M, Chen J, Liang Y. Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase. Acta Biochim Biophys Sin (Shanghai) 2010; 42:183-94. [PMID: 20213043 DOI: 10.1093/abbs/gmq005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structural integrity of the ubiquitous enzyme copper, zinc superoxide dismutase (SOD1) depends critically on the correct coordination of zinc and copper. We investigate here the roles of the stoichiometric zinc and copper ions in modulating the oxidative refolding of reduced, denatured bovine erythrocyte SOD1 at physiological pH and room temperature. Fluorescence experiment results showed that the oxidative refolding of the demetalated SOD1 (apo-SOD1) is biphasic, and the addition of stoichiometric Zn(2+) into the refolding buffer remarkably accelerates both the fast phase and the slow phase of the oxidative refolding, compared with without Zn(2+). Aggregation of apo-SOD1 in the presence of stoichiometric Zn(2+) is remarkably slower than that in the absence of Zn(2+). In contrast, the effects of stoichiometric Cu(2+) on both the rates of the oxidative refolding and the aggregation of apo-SOD1 are not remarkable. Experiments of resistance to proteinase K showed that apo-SOD1 forms a conformation with low-level proteinase K resistance during refolding and stoichiometric Cu(2+) has no obvious effect on the resistance to proteinase K. In contrast, when the refolding buffer contains stoichiometric zinc, SOD1 forms a compact conformation with high-level proteinase K resistance during refolding. Our data here demonstrated that stoichiometric zinc plays an important role in the oxidative refolding of low micromolar bovine SOD1 by accelerating the oxidative refolding, suppressing the aggregation during refolding, and helping the protein to form a compact conformation with high protease resistance activity.
Collapse
Affiliation(s)
- Hong-Tao Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
24
|
Li H, Sun X, Cai Z, Cai G, Xing K. Identification and analysis of a Cu/Zn superoxide dismutase from Haliotis diversicolor supertexta with abalone juvenile detached syndrome. J Invertebr Pathol 2010; 103:116-23. [DOI: 10.1016/j.jip.2009.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 11/14/2009] [Accepted: 11/25/2009] [Indexed: 12/19/2022]
|
25
|
Jones DH, Cellitti SE, Hao X, Zhang Q, Jahnz M, Summerer D, Schultz PG, Uno T, Geierstanger BH. Site-specific labeling of proteins with NMR-active unnatural amino acids. JOURNAL OF BIOMOLECULAR NMR 2010; 46:89-100. [PMID: 19669620 DOI: 10.1007/s10858-009-9365-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/17/2009] [Indexed: 05/19/2023]
Abstract
A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.
Collapse
Affiliation(s)
- David H Jones
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121-1125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shaw BF, Moustakas DT, Whitelegge JP, Faull KF. Taking Charge of Proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 79:127-64. [DOI: 10.1016/s1876-1623(10)79004-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Säbel CE, Neureuther JM, Siemann S. A spectrophotometric method for the determination of zinc, copper, and cobalt ions in metalloproteins using Zincon. Anal Biochem 2009; 397:218-26. [PMID: 19854146 DOI: 10.1016/j.ab.2009.10.037] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 11/29/2022]
Abstract
Zincon (2-carboxy-2'-hydroxy-5'-sulfoformazylbenzene) has long been known as an excellent colorimetric reagent for the detection of zinc and copper ions in aqueous solution. To extend the chelator's versatility to the quantification of metal ions in metalloproteins, the spectral properties of Zincon and its complexes with Zn(2+), Cu(2+), and Co(2+) were investigated in the presence of guanidine hydrochloride and urea, two common denaturants used to labilize metal ions in proteins. These studies revealed the detection of metals to be generally more sensitive with urea. In addition, pH profiles recorded for these metals indicated the optimal pH for complex formation and stability to be 9.0. As a consequence, an optimized method that allows the facile determination of Zn(2+), Cu(2+), and Co(2+) with detection limits in the high nanomolar range is presented. Furthermore, a simple two-step procedure for the quantification of both Zn(2+) and Cu(2+) within the same sample is described. Using the prototypical Cu(2+)/Zn(2+)-protein superoxide dismutase as an example, the effectiveness of this method of dual metal quantification in metalloproteins is demonstrated. Thus, the spectrophotometric determination of metal ions with Zincon can be exploited as a rapid and inexpensive means of assessing the metal contents of zinc-, copper-, cobalt-, and zinc/copper-containing proteins.
Collapse
Affiliation(s)
- Crystal E Säbel
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ont., Canada P3E 2C6
| | | | | |
Collapse
|
28
|
Durazo A, Shaw BF, Chattopadhyay M, Faull KF, Nersissian AM, Valentine JS, Whitelegge JP. Metal-free superoxide dismutase-1 and three different amyotrophic lateral sclerosis variants share a similar partially unfolded beta-barrel at physiological temperature. J Biol Chem 2009; 284:34382-9. [PMID: 19805550 DOI: 10.1074/jbc.m109.052076] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The structure and unfolding of metal-free (apo) human wild-type SOD1 and three pathogenic variants of SOD1 (A4V, G93R, and H48Q) that cause familial amyotrophic lateral sclerosis have been studied with amide hydrogen/deuterium exchange and mass spectrometry. The results indicate that a significant proportion of each of these proteins exists in solution in a conformation in which some strands of the beta-barrel (i.e. beta2) are well protected from exchange at physiological temperature (37 degrees C), whereas other strands (i.e. beta3 and beta4) appear to be unprotected from hydrogen/deuterium exchange. Moreover, the thermal unfolding of these proteins does not result in the uniform incorporation of deuterium throughout the polypeptide but involves the local unfolding of different residues at different temperatures. Some regions of the proteins (i.e. the "Greek key" loop, residues 104-116) unfold at a significantly higher temperature than other regions (i.e. beta3 and beta4, residues 21-53). Together, these results show that human wild-type apo-SOD1 and variants have a partially unfolded beta-barrel at physiological temperature and unfold non-cooperatively.
Collapse
Affiliation(s)
- Armando Durazo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Chattopadhyay M, Valentine JS. Aggregation of copper-zinc superoxide dismutase in familial and sporadic ALS. Antioxid Redox Signal 2009; 11:1603-14. [PMID: 19271992 PMCID: PMC2842589 DOI: 10.1089/ars.2009.2536] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/07/2009] [Indexed: 01/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by the selective death of motor neurons. While the most common form of ALS is sporadic and has no known cause, a small subset of cases is familial because of underlying genetic mutations. The best-studies example of familial ALS is that caused by mutations in the protein copper-zinc superoxide dismutase. The formation of SOD1-rich inclusions in the spinal cord is an early and prominent feature of SOD1-linked familial ALS in human patients and animal models of this disease. These inclusions have been shown to consist of SOD1-rich fibrils, suggesting that the conversion of soluble SOD1 into amyloid fibrils may play an important role in the etiology of familial ALS. SOD1 is also present in inclusions found in spinal cords of sporadic ALS patients, allowing speculations to arise regarding a possible involvement of SOD1 in the sporadic form of this disease. We here review the recent research on the significance, causes, and mechanisms of SOD1 fibril formation from a biophysical perspective.
Collapse
Affiliation(s)
- Madhuri Chattopadhyay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | | |
Collapse
|
30
|
Dynamical roles of metal ions and the disulfide bond in Cu, Zn superoxide dismutase folding and aggregation. Proc Natl Acad Sci U S A 2008; 105:19696-701. [PMID: 19052230 DOI: 10.1073/pnas.0803266105] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Misfolding and aggregation of Cu, Zn superoxide dismutase (SOD1) is implicated in neuronal death in amyotrophic lateral sclerosis. Each SOD1 monomer binds to 1 copper and 1 zinc ion and maintains its disulfide bond (Cys-57-Cys-146) in the reducing cytoplasm of cell. Mounting experimental evidence suggests that metal loss and/or disulfide reduction are important for initiating misfolding and aggregation of SOD1. To uncover the role of metals and the disulfide bond in the SOD1 folding, we systemically study the folding thermodynamics and structural dynamics of SOD1 monomer and dimer with and without metal binding and under disulfide-intact or disulfide-reduced environments in computational simulations. We use all-atom discrete molecular dynamics for sampling. Our simulation results provide dynamical evidence to the stabilizing role of metal ions in both dimer and monomer SOD1. The disulfide bond anchors a loop (Glu-49 to Asn-53) that contributes to the dimer interface. The reduction of the disulfide bond in SOD1 with metal ions depleted results in a flexible Glu-49-Asn-53 loop, which, in turn, disrupts dimer formation. Interestingly, the disulfide bond reduction does not affect the thermostability of monomer SOD1 as significantly as the metal ions do. We further study the structural dynamics of metal-free SOD1 monomers, the precursor for aggregation, in simulations and find inhomogeneous local unfolding of beta-strands. The strands protected by the metal-binding and electrostatic loops are found to unfold first after metal loss, leading to a partially unfolded beta-sheet prone to aggregation. Our simulation study sheds light on the critical role of metals and disulfide bond in SOD1 folding and aggregation.
Collapse
|
31
|
Capote AR, Gómez Pérez JA, Hidalgo GG, Hernández LM, Gómez IP, Ramírez BS, Rodríguez RP, Vitlloch AC, Molina LEF. Induction of an antigen specific humoral immune response by immunization with the aggregate-free human TGFα-P64k fusion protein. Drug Dev Res 2008. [DOI: 10.1002/ddr.20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Nordlund A, Oliveberg M. SOD1-associated ALS: a promising system for elucidating the origin of protein-misfolding disease. HFSP JOURNAL 2008; 2:354-64. [PMID: 19436494 DOI: 10.2976/1.2995726] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Indexed: 11/19/2022]
Abstract
Amyotropic lateral sclerosis (ALS) is a neurodegenerative disease linked to misfolding and aggregation of the homodimeric enzyme superoxide dismutase (SOD1). In contrast to the precursors of other neurodegenerative diseases, SOD1 is a soluble and simple-to-study protein with immunoglobulin-like structure. Also, there are more than 120 ALS-provoking SOD1 mutations at the disposal for detailed elucidation of the disease-triggering factors at molecular level. In this article, we review recent progress in the characterization of the folding and assembly pathway of the SOD1 dimer and how this is affected by ALS-provoking mutations. Despite the diverse nature of these mutations, the results offer so far a surprising simplicity. The ALS-provoking mutations decrease either protein stability or net repulsive charge: the classical hallmarks for a disease mechanism triggered by association of non-native protein. In addition, the mutant data identifies immature SOD1 monomers as the species from which the cytotoxic pathway emerges, and point at compromised folding cooperativity as a key disease determinant. The relative ease by which these data can be obtained makes SOD1 a promising model for elucidating also the origin of other neurodegenerative diseases where the precursor proteins are structurally more elusive.
Collapse
Affiliation(s)
- Anna Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | |
Collapse
|
33
|
Multistate folding of a hyperthermostable Fe-superoxide dismutase (TcSOD) in guanidinium hydrochloride: The importance of the quaternary structure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:445-54. [DOI: 10.1016/j.bbapap.2007.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 11/15/2007] [Accepted: 12/03/2007] [Indexed: 11/22/2022]
|
34
|
|
35
|
Strange RW, Yong CW, Smith W, Hasnain SS. Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase. Proc Natl Acad Sci U S A 2007; 104:10040-4. [PMID: 17548825 PMCID: PMC1885824 DOI: 10.1073/pnas.0703857104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations of the gene encoding Cu-Zn superoxide dismutase (SOD1) cause 20% of the familial cases of the progressive neurodegenerative disease ALS. A growing body of evidence suggests that in familial ALS (FALS) it is the molecular behavior of the metal-depleted SOD1 dimer that leads to a gain of toxic properties by misfolding, unfolding, and aggregation. Structural studies have so far provided static snapshots on the behavior of the wild-type enzyme and some of the FALS mutants. New approaches are required to map out the structural trajectories of the molecule. Here, using our 1.15-A resolution structure of fully metallated human SOD1 and highly parallelized molecular dynamics code on a high-performance capability computer, we have undertaken molecular dynamics calculations to 4,000 ps to reveal the first stages of misfolding caused by metal deletion. Large spatial and temporal fluctuations of the "electrostatic" and "Zn-binding" loops adjacent to the metal-binding sites are observed in the apo-enzyme relative to the fully metallated dimer. These early misfolding events expose the beta-barrels of the dimer to the external environment, allowing close interactions with adjacent molecules. Protection of the beta-edge of the protein can be partially restored by incorporating a single Zn molecule per dimer. These calculations reveal an essential step in the formation of the experimentally observed self-aggregations of metal-depleted FALS mutant SOD1. This result also has implications for the role of demetallated wild-type SOD1 in sporadic cases of ALS, for which the molecular cause still remains undiscovered.
Collapse
Affiliation(s)
| | - Chin W. Yong
- Department of Computational Science and Engineering, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - William Smith
- Department of Computational Science and Engineering, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - S. Samar Hasnain
- Molecular Biophysics Group and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Sandelin E, Nordlund A, Andersen PM, Marklund SSL, Oliveberg M. Amyotrophic lateral sclerosis-associated copper/zinc superoxide dismutase mutations preferentially reduce the repulsive charge of the proteins. J Biol Chem 2007; 282:21230-6. [PMID: 17513298 DOI: 10.1074/jbc.m700765200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We provide bioinformatical evidence that protein charge plays a key role in the disease mechanism of amyotrophic lateral sclerosis (ALS). Analysis of 100 ALS-associated mutations in copper/zinc superoxide dismutase (SOD1) shows that these are site-selective with a preference to decrease the proteins' net repulsive charge. For each SOD1 monomer this charge is normally -6. Because biomolecules as a rule maintain net negative charge to assure solubility in the cellular interior, the result lends support to the hypothesis of protein aggregation as an initiating event in the ALS pathogenesis. The strength of the preferential reduction of repulsive charge is higher in SOD1-associated ALS than in other inherited protein disorders.
Collapse
Affiliation(s)
- Erik Sandelin
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
37
|
Svensson AKE, Bilsel O, Kondrashkina E, Zitzewitz JA, Matthews CR. Mapping the folding free energy surface for metal-free human Cu,Zn superoxide dismutase. J Mol Biol 2006; 364:1084-102. [PMID: 17046019 DOI: 10.1016/j.jmb.2006.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/17/2022]
Abstract
Mutations at many different sites in the gene encoding human Cu,Zn superoxide dismutase (SOD) are known to be causative agents in amyotrophic lateral sclerosis (ALS). One explanation for the molecular basis of this pathology is the aggregation of marginally soluble, partially structured states whose populations are enhanced in the protein variants. As a benchmark for testing this hypothesis, the equilibrium and kinetic properties of the reversible folding reaction of a metal-free variant of SOD were investigated. Reversibility was achieved by replacing the two non-essential cysteine residues with non-oxidizable analogs, C6A/C111S, to produce apo-AS-SOD. The metal-free pseudo-wild-type protein is folded and dimeric in the absence of chemical denaturants, and its equilibrium folding behavior is well described by an apparent two-state mechanism involving the unfolded monomer and the native dimer. The apparent free energy of folding in the absence of denaturant and at standard state is -20.37(+/- 1.04) kcal (mol dimer)(-1). A global analysis of circular dichroism kinetic traces for both unfolding and refolding reactions, combined with results from small angle X-ray scattering and time-resolved fluorescence anisotropy measurements, supports a sequential mechanism involving the unfolded monomer, a folded monomeric intermediate, and the native dimer. The rate-limiting monomer folding reaction is followed by a near diffusion-limited self-association reaction to form the native dimer. The relative population of the folded monomeric intermediate is predicted not to exceed 0.5% at micromolar concentrations of protein under equilibrium and both strongly unfolding and refolding conditions for metal-free pseudo-wild-type SOD.
Collapse
Affiliation(s)
- Anna-Karin E Svensson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
38
|
Carroll MC, Outten CE, Proescher JB, Rosenfeld L, Watson WH, Whitson LJ, Hart PJ, Jensen LT, Culotta VC. The effects of glutaredoxin and copper activation pathways on the disulfide and stability of Cu,Zn superoxide dismutase. J Biol Chem 2006; 281:28648-56. [PMID: 16880213 PMCID: PMC2757158 DOI: 10.1074/jbc.m600138200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS) through mechanisms proposed to involve SOD1 misfolding, but the intracellular factors that modulate folding and stability of SOD1 are largely unknown. By using yeast and mammalian expression systems, we demonstrate here that SOD1 stability is governed by post-translational modification factors that target the SOD1 disulfide. Oxidation of the human SOD1 disulfide in vivo was found to involve both the copper chaperone for SOD1 (CCS) and the CCS-independent pathway for copper activation. When both copper pathways were blocked, wild type SOD1 stably accumulated in yeast cells with a reduced disulfide, whereas ALS SOD1 mutants A4V, G93A, and G37R were degraded. We describe here an unprecedented role for the thiol oxidoreductase glutaredoxin in reducing the SOD1 disulfide and destabilizing ALS mutants. Specifically, the major cytosolic glutaredoxin of yeast was seen to reduce the intramolecular disulfide of ALS SOD1 mutant A4V SOD1 in vivo and in vitro. By comparison, glutaredoxin was less reactive toward the disulfide of wild type SOD1. The apo-form of A4V SOD1 was highly reactive with glutaredoxin but not SOD1 containing both copper and zinc. Glutaredoxin therefore preferentially targets the immature form of ALS mutant SOD1 lacking metal co-factors. Overall, these studies implicate a critical balance between cellular reductants such as glutaredoxin and copper activation pathways in controlling the disulfide and stability of SOD1 in vivo.
Collapse
Affiliation(s)
- Mark C. Carroll
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Caryn E. Outten
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Jody B. Proescher
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Leah Rosenfeld
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Walter H. Watson
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Lisa J. Whitson
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, Texas 78229
| | - P. John Hart
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, Texas 78229
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, the University of Texas Health Science Center, San Antonio, Texas 78229
| | - Laran T. Jensen
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Valeria Cizewski Culotta
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
- To whom correspondence should be addressed: Dept. of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Rm. E7626, Baltimore, MD 21205. Tel.: 410-955-3029; Fax: 410-955-0116;
| |
Collapse
|
39
|
Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG. A genetically encoded fluorescent amino acid. Proc Natl Acad Sci U S A 2006; 103:9785-9. [PMID: 16785423 PMCID: PMC1502531 DOI: 10.1073/pnas.0603965103] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to introduce fluorophores selectively into proteins provides a powerful tool to study protein structure, dynamics, localization, and biomolecular interactions both in vitro and in vivo. Here, we report a strategy for the selective and efficient biosynthetic incorporation of a low-molecular-weight fluorophore into proteins at defined sites. The fluorescent amino acid 2-amino-3-(5-(dimethylamino)naphthalene-1-sulfonamide)propanoic acid (dansylalanine) was genetically encoded in Saccharomyces cerevisiae by using an amber nonsense codon and corresponding orthogonal tRNA/aminoacyl-tRNA synthetase pair. This environmentally sensitive fluorophore was selectively introduced into human superoxide dismutase and used to monitor unfolding of the protein in the presence of guanidinium chloride. The strategy described here should be applicable to a number of different fluorophores in both prokaryotic and eukaryotic organisms, and it should facilitate both biochemical and cellular studies of protein structure and function.
Collapse
Affiliation(s)
- Daniel Summerer
- *Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, SR202, La Jolla, CA 92037
| | - Shuo Chen
- *Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, SR202, La Jolla, CA 92037
| | - Ning Wu
- Beth Israel Deaconess Medical Center, Division of Signal Transduction, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Alexander Deiters
- Department of Chemistry, North Carolina State University, Campus Box 8240, Raleigh, NC 27695; and
| | - Jason W. Chin
- Division of Protein and Nucleic Acid Chemistry, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | - Peter G. Schultz
- *Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, SR202, La Jolla, CA 92037
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Arnesano F, Banci L, Bertini I, Capozzi F, Ciofi-Baffoni S, Ciurli S, Luchinat C, Mangani S, Rosato A, Turano P, Viezzoli MS. An Italian contribution to structural genomics: Understanding metalloproteins. Coord Chem Rev 2006. [DOI: 10.1016/j.ccr.2006.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Shaw BF, Durazo A, Nersissian AM, Whitelegge JP, Faull KF, Valentine JS. Local Unfolding in a Destabilized, Pathogenic Variant of Superoxide Dismutase 1 Observed with H/D Exchange and Mass Spectrometry. J Biol Chem 2006; 281:18167-76. [PMID: 16644738 DOI: 10.1074/jbc.m600623200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydrogen exchange monitored by mass spectrometry has been used to study the structural behavior of the pathogenic A4V variant of superoxide dismutase 1 (SOD1) in the metal-free (apo) form. Mass spectrometric data revealed that in the disulfide-intact (S-S) form, the A4V variant is destabilized at residues 50-53, in the disulfide subloop of the dimer interface, but many other regions of the A4V protein exhibited hydrogen exchange properties identical to that of the wild type protein. Additionally, mass spectrometry revealed that A4V apoSOD1(S-S) undergoes slow localized unfolding in a large segment of the beta-barrel that included beta3, beta4, and loops II and III. In the disulfide-reduced form, A4V apoSOD1 exchanged like a "random coil" polypeptide at 20 degrees C and began to populate folded states at 4 degrees C. These local and global unfolding events could facilitate intermolecular protein-protein interactions that cause the aggregation or neurotoxicity of A4V SOD1.
Collapse
Affiliation(s)
- Bryan Francis Shaw
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
42
|
Stathopulos PB, Rumfeldt JAO, Karbassi F, Siddall CA, Lepock JR, Meiering EM. Calorimetric Analysis of Thermodynamic Stability and Aggregation for Apo and Holo Amyotrophic Lateral Sclerosis-associated Gly-93 Mutants of Superoxide Dismutase. J Biol Chem 2006; 281:6184-93. [PMID: 16407238 DOI: 10.1074/jbc.m509496200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differential scanning calorimetry was used to measure changes in thermodynamic stability and aggregation for glycine 93 mutants of human copper, zinc-superoxide dismutase (SOD). Glycine 93 is a conserved residue at position i + 3 of a tight turn and has been found to be a mutational hot spot in familial amyotrophic lateral sclerosis (fALS). The fALS-associated mutations, G93A, G93S, G93R, G93D, and G93V, were made in a pseudo wild-type background containing no free cysteines, which prevented the formation of aberrant disulfide bonds upon thermal unfolding, and enabled quantitative thermodynamic analysis of the effects of the mutations. Thermal unfolding was highly reversible for all the SODs in both the fully metallated (holo) and metal-free (apo) forms. The data for all the holo-SODs and for the apo-pseudo-wild-type SOD were well fit by a 2-state unfolding model for native dimer (N2) to two unfolded monomers (2U), N2 <--> 2U. The holo- and apo-forms of the mutants are significantly destabilized (by 1.5-3.5 kcal mol(-1) monomer) relative to the corresponding forms of pseudo wild-type, with the relative stabilities being correlated with statistical preferences for amino acids in this structural context. Although van't Hoff (DeltaHvH) to calorimetric (DeltaHcal) enthalpy ratios are close to unity for all the holo-SODs and for apo-pseudo-wild-type, consistent with a 2-state transition, DeltaHvH is considerably larger than DeltaHcal for all the apo-mutants. This suggests that the mutations cause apo-SOD to have an increased propensity to misfold or aggregate, which may be linked to increased toxic mutant SOD aggregation in fALS.
Collapse
|
43
|
Rumfeldt JAO, Stathopulos PB, Chakrabarrty A, Lepock JR, Meiering EM. Mechanism and Thermodynamics of Guanidinium Chloride-induced Denaturation of ALS-associated Mutant Cu,Zn Superoxide Dismutases. J Mol Biol 2006; 355:106-23. [PMID: 16307756 DOI: 10.1016/j.jmb.2005.10.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/16/2005] [Accepted: 10/18/2005] [Indexed: 11/21/2022]
Abstract
Mutations in human copper zinc superoxide dismutase (hSOD) that are associated with amyotrophic lateral sclerosis (ALS) have been proposed to destabilize the protein and thereby enhance toxic protein aggregation. In previous studies, denaturation of metallated (holo) hSODs was found to be irreversible, and complicated by the formation of intermolecular disulfide bonds. Here, ALS-associated mutations (E100G, G93A, G85R and A4V) are introduced into a pseudo wild-type background containing no free cysteine residues. The guanidinium chloride-induced denaturation of the holo proteins is generally found to be highly reversible (except for A4V, which tended to aggregate), enabling quantitative analysis of the effects of the mutations on protein stability. Denaturation and renaturation curves were monitored by tryptophan fluorescence, circular dichroism, enzyme activity, chemical cross-linking and analytical sedimentation, as a function of equilibration time and protein concentration. There is strong kinetic hysteresis, with curves requiring exceptionally long times (many days for pseudo wild-type) to reach equilibrium, and evidence for the formation of kinetic and equilibrium intermediate(s), which are more highly populated at lower protein concentrations. The effects of metal dissociation were included in the data fitting. The full protein concentration dependence is best described using a three-state model involving metallated native dimer, metallated monomeric intermediate and unfolded monomers with no bound metals; however, at high protein concentrations the unfolding approaches a two-state transition with metal binding to both the native dimers and unfolded monomers. We show that the E100G, G93A and G85R mutations decrease overall protein stability, largely by decreasing monomer stability with little effect on dimer dissociation. Comparison of the chemical denaturation data with ALS disease characteristics suggests that aggregation of some mutant hSOD may occur through increased population of partially folded states that are less stable than the monomeric intermediate and accessed from the destabilized holo protein.
Collapse
Affiliation(s)
- Jessica A O Rumfeldt
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry and Department of Chemistry, University of Waterloo, Waterloo, Ont. Canada N2L 3G1
| | | | | | | | | |
Collapse
|
44
|
Carter CD, Kitchen LE, Au WC, Babic CM, Basrai MA. Loss of SOD1 and LYS7 sensitizes Saccharomyces cerevisiae to hydroxyurea and DNA damage agents and downregulates MEC1 pathway effectors. Mol Cell Biol 2005; 25:10273-85. [PMID: 16287844 PMCID: PMC1291217 DOI: 10.1128/mcb.25.23.10273-10285.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aerobic metabolism produces reactive oxygen species, including superoxide anions, which cause DNA damage unless removed by scavengers such as superoxide dismutases. We show that loss of the Cu,Zn-dependent superoxide dismutase, SOD1, or its copper chaperone, LYS7, confers oxygen-dependent sensitivity to replication arrest and DNA damage in Saccharomyces cerevisiae. We also find that sod1Delta strains, and to a lesser extent lys7Delta strains, when arrested with hydroxyurea (HU) show reduced induction of the MEC1 pathway effector Rnr3p and of Hug1p. The HU sensitivity of sod1Delta and lys7Delta strains is suppressed by overexpression of TKL1, a transketolase that generates NADPH, which balances redox in the cell and is required for ribonucleotide reductase activity. Our results suggest that the MEC1 pathway in sod1Delta mutant strains is sensitive to the altered cellular redox state due to increased superoxide anions and establish a new relationship between SOD1, LYS7, and the MEC1-mediated checkpoint response to replication arrest and DNA damage in S. cerevisiae.
Collapse
Affiliation(s)
- Carole D Carter
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, National Naval Medical Center, Building 8, Room 5101, 8901 Wisconsin Ave., Bethesda, MD 20889-5105, USA
| | | | | | | | | |
Collapse
|
45
|
Vreuls C, Filée P, Van Melckebeke H, Aerts T, De Deyn P, Llabrès G, Matagne A, Simorre JP, Frère JM, Joris B. Guanidinium chloride denaturation of the dimeric Bacillus licheniformis BlaI repressor highlights an independent domain unfolding pathway. Biochem J 2005; 384:179-90. [PMID: 15285720 PMCID: PMC1134101 DOI: 10.1042/bj20040658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Bacillus licheniformis 749/I BlaI repressor is a prokaryotic regulator that, in the absence of a beta-lactam antibiotic, prevents the transcription of the blaP gene, which encodes the BlaP beta-lactamase. The BlaI repressor is composed of two structural domains. The 82-residue NTD (N-terminal domain) is a DNA-binding domain, and the CTD (C-terminal domain) containing the next 46 residues is a dimerization domain. Recent studies have shown the existence of the monomeric, dimeric and tetrameric forms of BlaI in solution. In the present study, we analyse the equilibrium unfolding of BlaI in the presence of GdmCl (guanidinium chloride) using different techniques: intrinsic and ANS (8-anilinonaphthalene-l-sulphonic acid) fluorescence, far- and near-UV CD spectroscopy, cross-linking, analytical ultracentrifugation, size exclusion chromatography and NMR spectroscopy. In addition, the intact NTD and CTD were purified after proteolysis of BlaI by papain, and their unfolding by GdmCl was also studied. GdmCl-induced equilibrium unfolding was shown to be fully reversible for BlaI and for the two isolated fragments. The results demonstrate that the NTD and CTD of BlaI fold/unfold independently in a four-step process, with no significant co-operative interactions between them. During the first step, the unfolding of the BlaI CTD occurs, followed in the second step by the formation of an 'ANS-bound' intermediate state. Cross-linking and analytical ultracentrifugation experiments suggest that the dissociation of the dimer into two partially unfolded monomers takes place in the third step. Finally, the unfolding of the BlaI NTD occurs at a GdmCl concentration of approx. 4 M. In summary, it is shown that the BlaI CTD is structured, more flexible and less stable than the NTD upon GdmCl denaturation. These results contribute to the characterization of the BlaI dimerization domain (i.e. CTD) involved in the induction process.
Collapse
Affiliation(s)
- Christelle Vreuls
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
- †Laboratoire de Physique Biomédicale, Institut de Physique B5, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Patrice Filée
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Hélène Van Melckebeke
- ‡Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, 38027 Grenoble, France
| | - Tony Aerts
- §Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Peter De Deyn
- §Department of Biomedical Sciences, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Gabriel Llabrès
- †Laboratoire de Physique Biomédicale, Institut de Physique B5, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - André Matagne
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Jean-Pierre Simorre
- ‡Institut de Biologie Structurale Jean-Pierre Ebel, CEA-CNRS-UJF, 38027 Grenoble, France
| | - Jean-Marie Frère
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
| | - Bernard Joris
- *Centre d’ingénierie des Protéines, Institut de Chimie B6a, Université de Liège, Sart-Tilman, B4000 Liège, Belgium
- To whom correspondence should be addressed (email )
| |
Collapse
|
46
|
Libralesso E, Nerinovski K, Parigi G, Turano P. 1H nuclear magnetic relaxation dispersion of Cu,Zn superoxide dismutase in the native and guanidinium-induced unfolded forms. Biochem Biophys Res Commun 2005; 328:633-9. [PMID: 15694395 DOI: 10.1016/j.bbrc.2005.01.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Indexed: 11/16/2022]
Abstract
Potentialities and limitations of the use of (1)H NMRD technique for the characterization of the hydration properties of unfolded or partially folded states of proteins are discussed. The copper(I) form of monomeric Cu,Zn superoxide dismutase in its folded state and in the presence of 4M guanidinium chloride is taken as case system. The dispersion profile, analyzed with an extended relaxation matrix analysis, indicates the presence of long-lived water molecules in the folded state. The observed increase in relaxation at high field upon addition of guanidinium chloride indicates an increase in the number of solvation protons interacting with the protein and exchanging with a time shorter than the protein reorientational time. The observed effect is consistent with an exposed protein surface of SOD in the presence of 4M guanidinium chloride smaller than what could be expected for a random coil.
Collapse
Affiliation(s)
- Elisa Libralesso
- CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | |
Collapse
|
47
|
Lynch SM, Boswell SA, Colón W. Kinetic stability of Cu/Zn superoxide dismutase is dependent on its metal ligands: implications for ALS. Biochemistry 2005; 43:16525-31. [PMID: 15610047 DOI: 10.1021/bi048831v] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over 100 mutants of the enzyme Cu/Zn superoxide dismutase (SOD) have been implicated in the neurodegenerative disease familial amyotrophic lateral sclerosis (FALS). Growing evidence suggests that the aggregation of SOD mutants may play a causative role in FALS and that aberrant copper chemistry, decreased thermodynamic stability, and decreased affinity for metals may contribute independently or synergistically to this process. Since the loss of the copper and zinc ions significantly decreases the thermodynamic stability of SOD, it is expected that this would also decrease its kinetic stability, thereby facilitating partial or global unfolding transitions that may lead to misfolding and aggregation. Here we used wild-type (WT) SOD and five FALS-related mutants (G37R, H46R, G85R, D90A, and L144F) to show that the metals contribute significantly to the kinetic stability of the protein, with demetalated (apo) SOD showing acid-induced unfolding rates about 60-fold greater than the metalated (holo) protein. However, the unfolding rates of SOD WT and mutants were similar to each other in both the holo and apo states, indicating that regardless of the effect of mutation on thermodynamic stability, the kinetic barrier toward SOD unfolding is dependent on the presence of metals. Thus, these results suggest that pathogenic SOD mutations that do not significantly alter the stability of the protein may still lead to SOD aggregation by compromising its ability to bind or retain its metals and thereby decrease its kinetic stability. Furthermore, the mutant-like decrease in the kinetic stability of apo WT SOD raises the possibility that the loss of metals in WT SOD may be involved in nonfamilial forms of ALS.
Collapse
Affiliation(s)
- Sandra M Lynch
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA
| | | | | |
Collapse
|
48
|
Turano P. Insights into Partially Folded or Unfolded States of Metalloproteins from Nuclear Magnetic Resonance. Inorg Chem 2004; 43:7945-52. [PMID: 15578828 DOI: 10.1021/ic048962k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nuclear magnetic resonance (NMR) provides detailed insights into the conformational features of unfolded and partially folded proteins. In the case of metalloproteins, special attention should be devoted to the characterization of the properties of the metal binding sites, and specific approaches need to be developed depending on the nature of the metal ion and its coordination environment. At the same time, metal-based NMR parameters may help in getting a better picture of the average structural properties of the metalloprotein. A critical evaluation of the limits of applicability of paramagnetic effects for solution structure determination in partially folded or unfolded proteins is presented. The coupling between NMR characterization of structure and dynamic of the polypeptide chain and of the metal environment provides insights into the stabilizing role of metal ions in metalloproteins. The overall approach is illustrated for some case examples of increasing flexibility obtained far from native conditions for cytochrome c and superoxide dismutase, two metalloproteins that have been extensively studied in our lab and whose misfolded forms may be relevant for important biological processes.
Collapse
Affiliation(s)
- Paola Turano
- CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
49
|
Ray SS, Lansbury PT. A possible therapeutic target for Lou Gehrig's disease. Proc Natl Acad Sci U S A 2004; 101:5701-2. [PMID: 15079068 PMCID: PMC395856 DOI: 10.1073/pnas.0401934101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Soumya S Ray
- Center for Neurologic Diseases, Brigham and Women's Hospital and Department of Neurology, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | |
Collapse
|
50
|
Ray SS, Nowak RJ, Strokovich K, Brown RH, Walz T, Lansbury PT. An Intersubunit Disulfide Bond Prevents in Vitro Aggregation of a Superoxide Dismutase-1 Mutant Linked to Familial Amytrophic Lateral Sclerosis. Biochemistry 2004; 43:4899-905. [PMID: 15109247 DOI: 10.1021/bi030246r] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Familial amyotrophic lateral sclerosis (FALS) is linked to over 90 point mutations in superoxide dismutase-1 (SOD1), a dimeric metalloenzyme. The postmortem FALS brain is characterized by SOD1 inclusions in the motor neurons of regions in which neuronal loss is most significant. These findings, together with animal modeling studies, suggest that aggregation of mutant SOD1 produces a pathogenic species. We demonstrate here that a mutant form of SOD1 (A4V) that is linked to a particularly aggressive form of FALS aggregates in vitro, while wild-type SOD1 (WT) is stable. Some A4V aggregates resemble amyloid pores formed by other disease-associated proteins. The WT dimer is significantly more stable than the A4V dimer, suggesting that dimer dissociation may be the required first step of aggregation. To test this hypothesis, an intersubunit disulfide bond between symmetry-related residues at the A4V dimer interface was introduced. The resultant disulfide bond (V148C-V148C') eliminated the concentration-dependent loss of enzymatic activity of A4V, stabilized the A4V dimer, and completely abolished aggregation. A drug-like molecule that could stabilize the A4V dimer could slow the onset and progression of FALS.
Collapse
Affiliation(s)
- Soumya S Ray
- Harvard Center for Neurodegeneration and Repair and Department of Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|