1
|
Timpmann K, Kangur L, Freiberg A. Hysteretic Pressure Dependence of Ca 2+ Binding in LH1 Bacterial Membrane Chromoproteins. J Phys Chem B 2023; 127:456-464. [PMID: 36608327 DOI: 10.1021/acs.jpcb.2c05938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Much of the thermodynamic parameter values that support life are set by the properties of proteins. While the denaturing effects of pressure and temperature on proteins are well documented, their precise structural nature is rarely revealed. This work investigates the destabilization of multiple Ca2+ binding sites in the cyclic LH1 light-harvesting membrane chromoprotein complexes from two Ca-containing sulfur purple bacteria by hydrostatic high-pressure perturbation spectroscopy. The native (Ca-saturated) and denatured (Ca-depleted) phases of these complexes are well distinguishable by much-shifted bacteriochlorophyll a exciton absorption bands serving as innate optical probes in this study. The pressure-induced denaturation of the complexes related to the failure of the protein Ca-binding pockets and the concomitant breakage of hydrogen bonds between the pigment chromophores and protein environment were found cooperative, involving all or most of the Ca2+ binding sites, but irreversible. The strong hysteresis observed in the spectral and kinetic characteristics of phase transitions along the compression and decompression pathways implies asymmetry in the relevant free energy landscapes and activation free energy distributions. A phase transition pressure equal to about 1.9 kbar was evaluated for the complexes from Thiorhodovibrio strain 970 from the pressure dependence of biphasic kinetics observed in the minutes to 100 h time range.
Collapse
Affiliation(s)
- Kõu Timpmann
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Liina Kangur
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Arvi Freiberg
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia.,Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
2
|
Knop JM, Mukherjee S, Jaworek MW, Kriegler S, Manisegaran M, Fetahaj Z, Ostermeier L, Oliva R, Gault S, Cockell CS, Winter R. Life in Multi-Extreme Environments: Brines, Osmotic and Hydrostatic Pressure─A Physicochemical View. Chem Rev 2023; 123:73-104. [PMID: 36260784 DOI: 10.1021/acs.chemrev.2c00491] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Elucidating the details of the formation, stability, interactions, and reactivity of biomolecular systems under extreme environmental conditions, including high salt concentrations in brines and high osmotic and high hydrostatic pressures, is of fundamental biological, astrobiological, and biotechnological importance. Bacteria and archaea are able to survive in the deep ocean or subsurface of Earth, where pressures of up to 1 kbar are reached. The deep subsurface of Mars may host high concentrations of ions in brines, such as perchlorates, but we know little about how these conditions and the resulting osmotic stress conditions would affect the habitability of such environments for cellular life. We discuss the combined effects of osmotic (salts, organic cosolvents) and hydrostatic pressures on the structure, stability, and reactivity of biomolecular systems, including membranes, proteins, and nucleic acids. To this end, a variety of biophysical techniques have been applied, including calorimetry, UV/vis, FTIR and fluorescence spectroscopy, and neutron and X-ray scattering, in conjunction with high pressure techniques. Knowledge of these effects is essential to our understanding of life exposed to such harsh conditions, and of the physical limits of life in general. Finally, we discuss strategies that not only help us understand the adaptive mechanisms of organisms that thrive in such harsh geological settings but could also have important ramifications in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
- Jim-Marcel Knop
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Sanjib Mukherjee
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Michel W Jaworek
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Simon Kriegler
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Magiliny Manisegaran
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Zamira Fetahaj
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Lena Ostermeier
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| | - Rosario Oliva
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany.,Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126Naples, Italy
| | - Stewart Gault
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Charles S Cockell
- UK Centre for Astrobiology, SUPA School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EH9 3FDEdinburgh, United Kingdom
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, D-44221Dortmund, Germany
| |
Collapse
|
3
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|
4
|
Sentell Z, Spooner J, Weinberg N. Molecular Dynamics Calculations of Partial Molar Volumes of Amino Acids in Aqueous Solutions. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Partial molar volumes of amino acids in their zwitterionic and molecular forms have been calculated using molecular dynamics simulations of these systems in aqueous solutions. Calculations performed with the TIP4P, SPC (rigid and flexible), SPC/E, and polarizable water models show that the choice of water model can have a significant impact on the calculated volumes. The effect of treatment of long-range electrostatic interactions on the calculated results was also investigated. Volumes obtained in simulations with a properly chosen water model fit well the experimental data for both molecular and zwitterionic forms of amino acids.
Collapse
Affiliation(s)
- Zachary Sentell
- University of the Fraser Valley, 1011, Department of Chemistry, Abbotsford, Canada
| | - Jacob Spooner
- University of the Fraser Valley, 1011, Department of Chemistry, Abbotsford, Canada, V2S 7M8
| | - Noham Weinberg
- University of the Fraser Valley, 1011, Department of Chemistry, Abbotsford, Canada, V2S 7M8
| |
Collapse
|
5
|
Kaur H, Nguyen K, Kumar P. Pressure and temperature dependence of fluorescence anisotropy of green fluorescent protein. RSC Adv 2022; 12:8647-8655. [PMID: 35424839 PMCID: PMC8984833 DOI: 10.1039/d1ra08977c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
We have studied the effect of high hydrostatic pressure and temperature on the steady state fluorescence anisotropy of Green Fluorescent Protein (GFP). We find that the fluorescence anisotropy of GFP at a constant temperature decreases with increasing pressure. At atmospheric pressure, anisotropy decreases with increasing temperature but exhibits a maximum with temperature for pressure larger than 20 MPa. The temperature corresponding to the maximum of anisotropy increases with increasing pressure. By taking into account of the rotational correlation time changes of GFP with the pressure–temperature dependent viscosity of the solvent, we argue that viscosity increase with pressure is not a major contributing factor to the decrease in anisotropy with pressure. The decrease of anisotropy with pressure may result from changes in H-bonding environment around the chromophore. Effect of high hydrostatic pressure and temperature on the steady state fluorescence anisotropy of Green Fluorescent Protein (GFP).![]()
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Physics, University of Arkansas, Fayetteville, AR, USA
| | - Khanh Nguyen
- Department of Physics, University of Arkansas, Fayetteville, AR, USA
| | - Pradeep Kumar
- Department of Physics, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
6
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Potekhin SA, Khusainova RS. On the Width of Conformational Transitions of Biologically Important Macromolecules under the Influence of Pressure. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919030187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
He Z, Liu Z, Zhou X, Huang H. Low pressure-induced secondary structure transitions of regenerated silk fibroin in its wet film studied by time-resolved infrared spectroscopy. Proteins 2018; 86:621-628. [DOI: 10.1002/prot.25488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/08/2018] [Accepted: 02/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Zhipeng He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymer, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Zhao Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymer, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - Xiaofeng Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymer, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| | - He Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory for the Design and Application of Advanced Functional Polymer, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
9
|
Spooner J, Wiebe H, Louwerse M, Reader B, Weinberg N. Theoretical analysis of high-pressure effects on conformational equilibria. CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Along with temperature, pressure is the most important physical parameter determining the thermodynamic properties and reactivity of chemical systems. In this work, we discuss the effects of high pressure on conformational properties of organic molecules and propose an approach toward calculation of conformational volume changes based on molecular dynamics simulations. The results agree well with the experimental data. Furthermore, we demonstrate that pressure can be used as an instrument for fine-tuning of molecular conformations and to propel a properly constructed molecular rotor possessing a suitable combination of energy and volume profiles.
Collapse
Affiliation(s)
- Jacob Spooner
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Heather Wiebe
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Miranda Louwerse
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
| | - Brandon Reader
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
| | - Noham Weinberg
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Chemistry, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
| |
Collapse
|
10
|
Roche J, Royer CA, Roumestand C. Monitoring protein folding through high pressure NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 102-103:15-31. [PMID: 29157491 DOI: 10.1016/j.pnmrs.2017.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
High-pressure is a well-known perturbation method used to destabilize globular proteins. It is perfectly reversible, which is essential for a proper thermodynamic characterization of a protein equilibrium. In contrast to other perturbation methods such as heat or chemical denaturant that destabilize protein structures uniformly, pressure exerts local effects on regions or domains of a protein containing internal cavities. When combined with NMR spectroscopy, hydrostatic pressure offers the possibility to monitor at a residue level the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. High-pressure NMR experiments can now be routinely performed, owing to the recent development of commercially available high-pressure sample cells. This review summarizes recent advances and some future directions of high-pressure NMR techniques for the characterization at atomic resolution of the energy landscape of protein folding.
Collapse
Affiliation(s)
- Julien Roche
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Christian Roumestand
- Centre de Biochimie Structural INSERM U1054, CNRS UMMR 5058, Université de Montpellier, Montpellier 34090, France.
| |
Collapse
|
11
|
Ren T, Erbakan M, Shen Y, Barbieri E, Saboe P, Feroz H, Yan H, McCuskey S, Hall JF, Schantz AB, Bazan GC, Butler PJ, Grzelakowski M, Kumar M. Membrane Protein Insertion into and Compatibility with Biomimetic Membranes. ACTA ACUST UNITED AC 2017; 1:e1700053. [DOI: 10.1002/adbi.201700053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/07/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Tingwei Ren
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Mustafa Erbakan
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Department of Biosystem Engineering Bozok University Yozgat 66000 Turkey
| | - Yuexiao Shen
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Eduardo Barbieri
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
- Departamento de Engenharia Química Universidade Federal do Rio de Janeiro Centro de Tecnologia Bloco E Rio de Janeiro RJ CEP 21941‐909 Brazil
| | - Patrick Saboe
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Hasin Feroz
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Hengjing Yan
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Samantha McCuskey
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Joseph F. Hall
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - A. Benjamin Schantz
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Guillermo C. Bazan
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Peter J. Butler
- Department of Biomedical Engineering The Pennsylvania State University University Park PA USA 16802
| | | | - Manish Kumar
- Department of Chemical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
12
|
Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV, Lukyanov KA, Krylov AI. Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing? Chem Rev 2016; 117:758-795. [PMID: 27754659 DOI: 10.1021/acs.chemrev.6b00238] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoinduced reactions play an important role in the photocycle of fluorescent proteins from the green fluorescent protein (GFP) family. Among such processes are photoisomerization, photooxidation/photoreduction, breaking and making of covalent bonds, and excited-state proton transfer (ESPT). Many of these transformations are initiated by electron transfer (ET). The quantum yields of these processes vary significantly, from nearly 1 for ESPT to 10-4-10-6 for ET. Importantly, even when quantum yields are relatively small, at the conditions of repeated illumination the overall effect is significant. Depending on the task at hand, fluorescent protein photochemistry is regarded either as an asset facilitating new applications or as a nuisance leading to the loss of optical output. The phenomena arising due to phototransformations include (i) large Stokes shifts, (ii) photoconversions, photoactivation, and photoswitching, (iii) phototoxicity, (iv) blinking, (v) permanent bleaching, and (vi) formation of long-lived intermediates. The focus of this review is on the most recent experimental and theoretical work on photoinduced transformations in fluorescent proteins. We also provide an overview of the photophysics of fluorescent proteins, highlighting the interplay between photochemistry and other channels (fluorescence, radiationless relaxation, and intersystem crossing). The similarities and differences with photochemical processes in other biological systems and in dyes are also discussed.
Collapse
Affiliation(s)
- Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University , Boston, Massachusetts United States
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
13
|
Araujo JV, Rifaie-Graham O, Apebende EA, Bruns N. Self-reporting Polymeric Materials with Mechanochromic Properties. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanical transduction of force onto molecules is an essential feature of many biological processes that results in the senses of touch and hearing, gives important cues for cellular interactions and can lead to optically detectable signals, such as a change in colour, fluorescence or chemoluminescence. Polymeric materials that are able to visually indicate deformation, stress, strain or the occurrence of microdamage draw inspiration from these biological events. The field of self-reporting (or self-assessing) materials is reviewed. First, mechanochromic events in nature are discussed, such as the formation of bruises on skin, the bleeding of a wound, or marine glow caused by dinoflagellates. Then, materials based on force-responsive mechanophores, such as spiropyrans, cyclobutanes, cyclooctanes, Diels–Alder adducts, diarylbibenzofuranone and bis(adamantyl)-1,2-dioxetane are reviewed, followed by mechanochromic blends, chromophores stabilised by hydrogen bonds, and pressure sensors based on ionic interactions between fluorescent dyes and polyelectrolyte brushes. Mechanobiochemistry is introduced as an important tool to create self-reporting hybrid materials that combine polymers with the force-responsive properties of fluorescent proteins, protein FRET pairs, and other biomacromolecules. Finally, dye-filled microcapsules, microvascular networks, and hollow fibres are demonstrated to be important technologies to create damage-indicating coatings, self-reporting fibre-reinforced composites and self-healing materials.
Collapse
Affiliation(s)
- Jose V. Araujo
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Omar Rifaie-Graham
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Edward A. Apebende
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| |
Collapse
|
14
|
Jacchetti E, Gabellieri E, Cioni P, Bizzarri R, Nifosì R. Temperature and pressure effects on GFP mutants: explaining spectral changes by molecular dynamics simulations and TD-DFT calculations. Phys Chem Chem Phys 2016; 18:12828-38. [PMID: 27102429 DOI: 10.1039/c6cp01274d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By combining spectroscopic measurements under high pressure with molecular dynamics simulations and quantum mechanics calculations we investigate how sub-angstrom structural perturbations are able to tune protein function. We monitored the variations in fluorescence output of two green fluorescent protein mutants (termed Mut2 and Mut2Y, the latter containing the key T203Y mutation) subjected to pressures up to 600 MPa, at various temperatures in the 280-320 K range. By performing 150 ns molecular dynamics simulations of the protein structures at various pressures, we evidenced subtle changes in conformation and dynamics around the light-absorbing chromophore. Such changes explain the measured spectral tuning in the case of the sizable 120 cm(-1) red-shift observed for pressurized Mut2Y, but absent in Mut2. Previous work [Barstow et al., Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 13362] on pressure effects on GFP also involved a T203Y mutant. On the basis of cryocooling X-ray crystallography, the pressure-induced fluorescence blue shift at low temperature (77 K) was attributed to key changes in relative conformation of the chromophore and Tyr203 phenol ring. At room temperature, however, a red shift was observed at high pressure, analogous to the one we observe in Mut2Y. Our investigation of structural variations in compressed Mut2Y also explains their result, bridging the gap between low-temperature and room-temperature high-pressure effects.
Collapse
|
15
|
Dave K, Gelman H, Thu CTH, Guin D, Gruebele M. The Effect of Fluorescent Protein Tags on Phosphoglycerate Kinase Stability Is Nonadditive. J Phys Chem B 2016; 120:2878-85. [PMID: 26923443 DOI: 10.1021/acs.jpcb.5b11915] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is frequently assumed that fluorescent protein tags used in biological imaging experiments are minimally perturbing to their host protein. As in-cell experiments become more quantitative and measure rates and equilibrium constants, rather than just "on-off" activity or the presence of a protein, it becomes more important to understand such perturbations. One criterion for a protein modification to be a perturbation is additivity of two perturbations (a linear effect on the protein free energy). Here we show that adding fluorescent protein tags to a host protein in vitro has a large nonadditive effect on its folding free energy. We compare an unlabeled, three singly labeled, and a doubly labeled enzyme (phosphoglycerate kinase). We propose two mechanisms for nonadditivity. In the "quinary interaction" mechanism, two tags interact transiently with one another, relieving the host protein from unfavorable tag-protein interactions. In the "crowding" mechanism, adding two tags provides the minimal crowding necessary to overcome destabilizing interactions of individual tags with the host protein. Both of these mechanisms affect protein stability in cells; we show here that they must also be considered for tagged proteins used for reference in vitro.
Collapse
Affiliation(s)
| | | | - Chu Thi Hien Thu
- Department of Chemistry, Hanoi University of Science, Vietnam National University , Hanoi, Vietnam
| | | | - Martin Gruebele
- Department of Chemistry, Hanoi University of Science, Vietnam National University , Hanoi, Vietnam
| |
Collapse
|
16
|
Kudr J, Nejdl L, Skalickova S, Zurek M, Milosavljevic V, Kensova R, Ruttkay-Nedecky B, Kopel P, Hynek D, Novotna M, Adam V, Kizek R. Use of nucleic acids anchor system to reveal apoferritin modification by cadmium telluride nanoparticles. J Mater Chem B 2015; 3:2109-2118. [DOI: 10.1039/c4tb01336k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this study was to synthesize cadmium telluride nanoparticles (CdTe NPs) modified apoferritin, and examine if apoferritin is able to accommodate CdTe NPs.
Collapse
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Sylvie Skalickova
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Michal Zurek
- Central European Institute of Technology
- Brno University of Technology
- CZ-616 00 Brno
- Czech Republic, European Union
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Renata Kensova
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Pavel Kopel
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - David Hynek
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Marie Novotna
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| | - Rene Kizek
- Department of Chemistry and Biochemistry
- Faculty of Agronomy
- Mendel University in Brno
- CZ-613 00 Brno
- Czech Republic, European Union
| |
Collapse
|
17
|
Ultrasensitive electrochemiluminescent detection of cardiac troponin I based on a self-enhanced Ru(II) complex. Talanta 2014; 129:219-26. [DOI: 10.1016/j.talanta.2014.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/03/2014] [Accepted: 04/05/2014] [Indexed: 12/12/2022]
|
18
|
Abstract
Fluorescence is the most widely used technique to study the effect of pressure on biochemical systems. The use of pressure as a physical variable sheds light into volumetric characteristics of reactions. Here we focus on the effect of pressure on protein solutions using a simple unfolding example in order to illustrate the applications of the methodology. Topics covered in this review include the relationships between practical aspects and technical limitations; the effect of pressure and the study of protein cavities; the interpretation of thermodynamic and relaxation kinetics; and the study of relaxation amplitudes. Finally, we discuss the insights available from the combination of fluorescence and other methods adapted to high pressure, such as SAXS or NMR. Because of the simplicity and accessibility of high-pressure fluorescence, the technique is a starting point that complements appropriately multi-methodological approaches related to understanding protein function, disfunction, and folding from the volumetric point of view.
Collapse
|
19
|
Wiebe H, Weinberg N. Theoretical volume profiles as a tool for probing transition states: folding kinetics. J Chem Phys 2014; 140:124105. [PMID: 24697422 DOI: 10.1063/1.4868549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mechanism by which conformational changes, particularly folding and unfolding, occur in proteins and other biopolymers has been widely discussed in the literature. Molecular dynamics (MD) simulations of protein folding present a formidable challenge since these conformational changes occur on a time scale much longer than what can be afforded at the current level of computational technology. Transition state (TS) theory offers a more economic description of kinetic properties of a reaction system by relating them to the properties of the TS, or for flexible systems, the TS ensemble (TSE). The application of TS theory to protein folding is limited by ambiguity in the definition of the TSE for this process. We propose to identify the TSE for conformational changes in flexible systems by comparison of its experimentally determined volumetric property, known as the volume of activation, to the structure-specific volume profile of the process calculated using MD. We illustrate this approach by its successful application to unfolding of a model chain system.
Collapse
Affiliation(s)
- H Wiebe
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - N Weinberg
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
20
|
Jackson SE, Craggs TD, Huang JR. Understanding the folding of GFP using biophysical techniques. Expert Rev Proteomics 2014; 3:545-59. [PMID: 17078767 DOI: 10.1586/14789450.3.5.545] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Green fluorescent protein (GFP) and its many variants are probably the most widely used proteins in medical and biological research, having been extensively engineered to act as markers of gene expression and protein localization, indicators of protein-protein interactions and biosensors. GFP first folds, before it can undergo an autocatalytic cyclization and oxidation reaction to form the chromophore, and in many applications the folding efficiency of GFP is known to limit its use. Here, we review the recent literature on protein engineering studies that have improved the folding properties of GFP. In addition, we discuss in detail the biophysical work on the folding of GFP that is beginning to reveal how this large and complex structure forms.
Collapse
|
21
|
Malavasi N, Cordeiro Y, Rodrigues D, Chura-Chambi R, Lemke L, Morganti L. The effect of temperature on protein refolding at high pressure: Enhanced green fluorescent protein as a model. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Yang X, Liu J, Xie YL, Wang Y, Ying H, Wu Q, Huang W, Jenkins G. A novel microfluidic system for the rapid analysis of protein thermal stability. Analyst 2014; 139:2683-6. [DOI: 10.1039/c4an00173g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a simple microfluidic device for the rapid analysis of protein thermal stability using a novel imaging method.
Collapse
Affiliation(s)
- Xin Yang
- Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816, P. R. China
| | - Jia Liu
- Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816, P. R. China
| | - Ye Lei Xie
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Nanjing University of Posts and Telecommunications
- Nanjing 210046, P. R. China
| | - Yang Wang
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Nanjing University of Posts and Telecommunications
- Nanjing 210046, P. R. China
| | - Hong Ying
- Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816, P. R. China
- Nanjing Entry-Exit Inspection And Quarantine Bureau
- Nanjing 211106, P. R. China
| | - Qiong Wu
- Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816, P. R. China
| | - Wei Huang
- Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816, P. R. China
| | - Gareth Jenkins
- Jiangsu-Singapore Joint Research Center for Organic/Bio-Electronics & Information Displays and Institute of Advanced Materials (IAM)
- Nanjing Tech University
- Nanjing 211816, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID)
- Nanjing University of Posts and Telecommunications
| |
Collapse
|
23
|
Makarov A, LoBrutto R, Karpinski P. Effect of pressure on secondary structure of proteins under ultra high pressure liquid chromatographic conditions. J Chromatogr A 2013; 1318:112-21. [DOI: 10.1016/j.chroma.2013.09.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/14/2013] [Accepted: 09/18/2013] [Indexed: 11/28/2022]
|
24
|
Yep SJ, Belof JL, Orlikowski DA, Nguyen JH. Fabrication and application of high impedance graded density impactors in light gas gun experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:103909. [PMID: 24182131 DOI: 10.1063/1.4826565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Recent advances in Graded Density Impactor fabrication technique have increased the maximum achievable pressure in gas gun quasi-isentropic experiments to 5 Mbars. In this report, we outline the latest methodologies and applications of Graded Density Impactors in experiments at extreme conditions. These new Graded Density Impactors are essentially metallic discs made of nearly one hundred layers of precisely mixed Mg, Cu, and W. The density gradients in these impactors are specifically designed to generate the desired thermodynamic path required for each experiment. We carried out a number of experiments at various pressures using these Graded Density Impactors. These experimental results and their simulations will be presented here.
Collapse
Affiliation(s)
- Steven J Yep
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | | | | | | |
Collapse
|
25
|
Der BS, Kluwe C, Miklos AE, Jacak R, Lyskov S, Gray JJ, Georgiou G, Ellington AD, Kuhlman B. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. PLoS One 2013; 8:e64363. [PMID: 23741319 PMCID: PMC3669367 DOI: 10.1371/journal.pone.0064363] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/11/2013] [Indexed: 12/29/2022] Open
Abstract
Reengineering protein surfaces to exhibit high net charge, referred to as “supercharging”, can improve reversibility of unfolding by preventing aggregation of partially unfolded states. Incorporation of charged side chains should be optimized while considering structural and energetic consequences, as numerous mutations and accumulation of like-charges can also destabilize the native state. A previously demonstrated approach deterministically mutates flexible polar residues (amino acids DERKNQ) with the fewest average neighboring atoms per side chain atom (AvNAPSA). Our approach uses Rosetta-based energy calculations to choose the surface mutations. Both protocols are available for use through the ROSIE web server. The automated Rosetta and AvNAPSA approaches for supercharging choose dissimilar mutations, raising an interesting division in surface charging strategy. Rosetta-supercharged variants of GFP (RscG) ranging from −11 to −61 and +7 to +58 were experimentally tested, and for comparison, we re-tested the previously developed AvNAPSA-supercharged variants of GFP (AscG) with +36 and −30 net charge. Mid-charge variants demonstrated ∼3-fold improvement in refolding with retention of stability. However, as we pushed to higher net charges, expression and soluble yield decreased, indicating that net charge or mutational load may be limiting factors. Interestingly, the two different approaches resulted in GFP variants with similar refolding properties. Our results show that there are multiple sets of residues that can be mutated to successfully supercharge a protein, and combining alternative supercharge protocols with experimental testing can be an effective approach for charge-based improvement to refolding.
Collapse
Affiliation(s)
- Bryan S. Der
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christien Kluwe
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Aleksandr E. Miklos
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- Applied Research Laboratories, University of Texas at Austin, Austin, Texas, United States of America
| | - Ron Jacak
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Georgiou
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Andrew D. Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
- Applied Research Laboratories, University of Texas at Austin, Austin, Texas, United States of America
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Alamiry MAH, Bahaidarah E, Harriman A, Olivier JH, Ziessel R. Influence of applied pressure on the probability of electronic energy transfer across a molecular dyad. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-09-04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A pair of covalently linked molecular dyads is described in which two disparate
boron dipyrromethene dyes are separated by a tolane-like spacer. Efficient
electronic energy transfer (EET) occurs across the dyad; the mechanism involves
important contributions from both Förster-type coulombic interactions and
Dexter-type electron exchange processes. The energy acceptor is equipped with
long paraffinic chains that favor aggregation at high concentration or at low
temperature. The aggregate displays red-shifted absorption and emission spectral
profiles, relative to the monomer, such that EET is less efficient because of a
weaker overlap integral. The donor unit is insensitive to applied pressure but
this is not so for the acceptor, which has extended π-conjugation associated
with appended styryl groups. Here, pressure reduces the effective π-conjugation
length, leading to a new absorption band at higher energy. With increasing
pressure, the overall EET probability falls but this effect is nonlinear and at
modest pressure there is only a small recovery of donor fluorescence. This
situation likely arises from compensatory phenomena such as restricted rotation
and decreased dipole screening by the solvent. However, the probability of EET
falls dramatically over the regime where the π-conjugation length is reduced
owing to the presumed conformational exchange. It appears that the
pressure-induced conformer is a poor energy acceptor.
Collapse
Affiliation(s)
- Mohammed A. H. Alamiry
- 1Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Effat Bahaidarah
- 1Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony Harriman
- 1Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jean-Hubert Olivier
- 2Laboratoire de Chimie Moléculaire et Spectroscopies Avancées LCOSA, Ecole Européenne de Chimie, Polymères et Matériaux, CNRS, UMR 7515 associé au CNRS, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Raymond Ziessel
- 2Laboratoire de Chimie Moléculaire et Spectroscopies Avancées LCOSA, Ecole Européenne de Chimie, Polymères et Matériaux, CNRS, UMR 7515 associé au CNRS, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
27
|
In situ determination of Clostridium endospore membrane fluidity during pressure-assisted thermal processing in combination with nisin or reutericyclin. Appl Environ Microbiol 2013; 79:2103-6. [PMID: 23335780 DOI: 10.1128/aem.03755-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study determined the membrane fluidity of clostridial endospores during treatment with heat and pressure with nisin or reutericyclin. Heating (90°C) reduced laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) general polarization, corresponding to membrane fluidization. Pressure (200 MPa) stabilized membrane order. Reutericyclin and nisin exhibit divergent effects on heat- and pressure-induced spore inactivation and membrane fluidity.
Collapse
|
28
|
Laurent AD, Mironov VA, Chapagain PP, Nemukhin AV, Krylov AI. Exploring structural and optical properties of fluorescent proteins by squeezing: modeling high-pressure effects on the mStrawberry and mCherry red fluorescent proteins. J Phys Chem B 2012; 116:12426-40. [PMID: 22988813 PMCID: PMC3500579 DOI: 10.1021/jp3060944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molecular dynamics calculations of pressure effects on mStrawberry and mCherry fluorescent proteins are reported. The simulations reveal that mStrawberry has much floppier structure at atmospheric pressure, as evidenced by larger backbone fluctuations and the coexistence of two conformers that differ by Ser146 orientation. Consequently, pressure increase has a larger effect on mStrawberry, making its structure more rigid and reducing the population of one of the conformers. The most significant effect of pressure increase is in the hydrogen-bonding network between the chromophore and the nearby residues. The quantum-mechanics/molecular mechanics calculations of excitation energies in mStrawberry explain the observed blue shift and identify Lys70 as the residue that has the most pronounced effect on the spectra. The results suggest that pressure increase causes an initial increase of fluorescence yield only for relatively floppy fluorescent proteins, whereas the fluorescent proteins that have more rigid structures have quantum yields close to their maximum. The results suggest that a low quantum yield in fluorescent proteins is dynamic in nature and depends on the range of thermal motions of the chromophore and fluctuations in the H-bonding network rather than on their average structure.
Collapse
|
29
|
Thomas CS, Xu L, Olsen BD. Kinetically controlled nanostructure formation in self-assembled globular protein-polymer diblock copolymers. Biomacromolecules 2012; 13:2781-92. [PMID: 22924842 PMCID: PMC4059826 DOI: 10.1021/bm300763x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed, depending on the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil-coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV-vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form.
Collapse
Affiliation(s)
- Carla S. Thomas
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Liza Xu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Pozzi EA, Schwall LR, Jimenez R, Weber JM. Pressure-induced changes in the fluorescence behavior of red fluorescent proteins. J Phys Chem B 2012; 116:10311-6. [PMID: 22861177 PMCID: PMC4022145 DOI: 10.1021/jp306093h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present an experimental study on the fluorescence behavior of the red fluorescent proteins TagRFP-S, TagRFP-T, mCherry, mOrange2, mStrawberry, and mKO as a function of pressure up to several GPa. TagRFP-S, TagRFP-T, mOrange2, and mStrawberry show an initial increase in fluorescence intensity upon application of pressure above ambient conditions. At higher pressures, the fluorescence intensity decreases dramatically for all proteins under study, probably due to denaturing of the proteins. Small blue shifts in the fluorescence spectra with increasing pressure were seen in all proteins under study, hinting at increased rigidity of the chromophore environment. In addition, mOrange2 and mStrawberry exhibit strong and abrupt changes in their fluorescence spectra at certain pressures. These changes are likely due to structural modifications of the hydrogen bonding environment of the chromophore. The strong differences in behavior between proteins with identical or very similar chromophores highlight how the chromophore environment contributes to pressure-induced behavior of the fluorescence performance.
Collapse
Affiliation(s)
- Eric A. Pozzi
- JILA, NIST and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440, USA
| | - Linda R. Schwall
- JILA, NIST and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440, USA
| | - Ralph Jimenez
- JILA, NIST and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440, USA
| | - J. Mathias Weber
- JILA, NIST and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440, USA
| |
Collapse
|
31
|
Sandoval M, Cortés Á, Civera C, Treviño J, Ferreras E, Vaultier M, Berenguer J, Lozano P, Hernáiz MJ. Efficient and selective enzymatic synthesis of N-acetyl-lactosamine in ionic liquid: a rational explanation. RSC Adv 2012. [DOI: 10.1039/c2ra20618h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Morales-Belpaire I, Gerin PA. Monitoring the active conformation of green fluorescent protein (GFP) and β-glucosidase adsorbed on soil particles. Protein J 2011; 31:84-92. [PMID: 22161253 DOI: 10.1007/s10930-011-9378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to determine the effect of various soil components on the activity of proteins, we monitored the fluorescence and the enzymatic activity of, respectively, green fluorescent protein (GFP) and β-glucosidase adsorbed on fine soil particles. We also monitored the activity of these proteins in the presence of components that are representative of soil colloids: a montmorillonite clay, goethite and organic matter extracted from soil. Upon adsorption on clay and goethite, GFP lost its fluorescence properties while β-glucosidase suffered only a partial loss of its catalytic activity. Extractable organic matter had an inactivating role on GFP while it did not cause inactivation of β-glucosidase. When GFP and β-glucosidase adsorbed on particles from natural soil samples, their behaviour was consistent with the behaviour observed for these proteins in the presence of the separate components, suggesting that the macroscopic activity of proteins adsorbed on soil particles corresponds to an average of the activities of proteins adsorbed on a mixture of surfaces. The monitoring of the proteins on soil particles with different organic matter contents has also shown that organic matter can have different effects (protecting or inactivating) on different proteins.
Collapse
Affiliation(s)
- Isabel Morales-Belpaire
- Earth & Life Institute, Unit of Bioengineering, Université catholique de Louvain, Croix du Sud, 2/19, 1348, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
33
|
Kerth A, Brehmer T, Meister A, Hanner P, Jakob M, Klösgen RB, Blume A. Interaction of a Tat Substrate and a Tat Signal Peptide with Thylakoid Lipids at the Air-Water Interface. Chembiochem 2011; 13:231-9. [DOI: 10.1002/cbic.201100458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 11/09/2022]
|
34
|
Gebhardt R, Takeda N, Kulozik U, Doster W. Structure and Stabilizing Interactions of Casein Micelles Probed by High-Pressure Light Scattering and FTIR. J Phys Chem B 2011; 115:2349-59. [DOI: 10.1021/jp107622d] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ronald Gebhardt
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
| | - Naohiro Takeda
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
- Department of Applied Chemistry, Ritsumeikan University, Noji-Higashi, Kusatsu, Siga, 525-8577, Japan
| | | | - Wolfgang Doster
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
| |
Collapse
|
35
|
|
36
|
Sarupria S, Ghosh T, García AE, Garde S. Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 2010; 78:1641-51. [PMID: 20146357 DOI: 10.1002/prot.22680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties and pressure stability of proteins, and can be potentially extended for applications to protein complexes and assemblies.
Collapse
Affiliation(s)
- Sapna Sarupria
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
37
|
Truong MY, Dutta NK, Choudhury NR, Kim M, Elvin CM, Hill AJ, Thierry B, Vasilev K. A pH-responsive interface derived from resilin-mimetic protein Rec1-resilin. Biomaterials 2010; 31:4434-46. [DOI: 10.1016/j.biomaterials.2010.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
38
|
Scirè A, Pedone E, Ausili A, Saviano M, Baldassarre M, Bertoli E, Bartolucci S, Tanfani F. High hydrostatic pressure-induced conformational changes in protein disulfide oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A Fourier-transform infrared spectroscopic study. MOLECULAR BIOSYSTEMS 2010; 6:2015-22. [DOI: 10.1039/c005138a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Hsu STD, Blaser G, Jackson SE. The folding, stability and conformational dynamics of beta-barrel fluorescent proteins. Chem Soc Rev 2009; 38:2951-65. [PMID: 19771338 DOI: 10.1039/b908170b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review describes our current knowledge on the folding, stability and conformational dynamics of fluorescent proteins (FPs). The biophysical studies that have led to the elucidation of many of the key features of the complex energy landscape for folding for GFP and its variants are discussed. These illustrate some important issues surrounding how the large beta-barrel structure forms, and will be of interest to the protein folding community. In addition, the review highlights the importance of some of these results for the use of FPs in in vivo applications. The results should facilitate and aid in experimental designs of in vivo applications, as well as the interpretation of in vivo experimental data. The review is therefore of interest to all those working with FPs in vivo (103 references).
Collapse
Affiliation(s)
- Shang-Te Danny Hsu
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW
| | | | | |
Collapse
|
40
|
Marasmius scorodonius extracellular dimeric peroxidase — Exploring its temperature and pressure stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1091-8. [DOI: 10.1016/j.bbapap.2009.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 11/20/2022]
|
41
|
Martínez-Alonso M, García-Fruitós E, Villaverde A. Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli. Biotechnol Bioeng 2008; 101:1353-8. [PMID: 18980180 DOI: 10.1002/bit.21996] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many enzymes or fluorescent proteins produced in Escherichia coli are enzymatically active or fluorescent respectively when deposited as inclusion bodies. The occurrence of insoluble but functional protein species with native-like secondary structure indicates that solubility and conformational quality of recombinant proteins are not coincident parameters, and suggests that both properties can be engineered independently. We have here proven this principle by producing elevated yields of a highly fluorescent but insoluble green fluorescent protein (GFP) in a DnaK- background, and further enhancing its solubility through adjusting the growth temperature and GFP gene expression rate. The success of such a two-step approach confirms the independent control of solubility and conformational quality, advocates for new routes towards high quality protein production and intriguingly, proves that high protein yields dramatically compromise the conformational quality of soluble versions.
Collapse
Affiliation(s)
- Mónica Martínez-Alonso
- Department of Genetics and Microbiology, Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
42
|
Mitra L, Oleinikova A, Winter R. Intrinsic Volumetric Properties of Trialanine Isomers in Aqueous Solution. Chemphyschem 2008; 9:2779-84. [DOI: 10.1002/cphc.200800553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Influence of high pressure on the dimerization of ToxR, a protein involved in bacterial signal transduction. Appl Environ Microbiol 2008; 74:7821-3. [PMID: 18931287 DOI: 10.1128/aem.02028-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.
Collapse
|
44
|
Keerl M, Smirnovas V, Winter R, Richtering W. Copolymer Microgels from Mono- and Disubstituted Acrylamides: Phase Behavior and Hydrogen Bonds. Macromolecules 2008. [DOI: 10.1021/ma800785w] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martina Keerl
- Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany, and Department of Chemistry, Physical Chemistry I, Dortmund University of Technology, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Vytautas Smirnovas
- Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany, and Department of Chemistry, Physical Chemistry I, Dortmund University of Technology, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Roland Winter
- Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany, and Department of Chemistry, Physical Chemistry I, Dortmund University of Technology, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| | - Walter Richtering
- Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52056 Aachen, Germany, and Department of Chemistry, Physical Chemistry I, Dortmund University of Technology, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany
| |
Collapse
|
45
|
Lopes DHJ, Smirnovas V, Winter R. Islet amyloid polypeptide and high hydrostatic pressure: towards an understanding of the fibrillization process. ACTA ACUST UNITED AC 2008. [DOI: 10.1088/1742-6596/121/11/112002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
46
|
Hisatomi Y, Katagiri D, Neya S, Hara M, Hoshino T. Analysis of the unfolding process of green fluorescent protein by molecular dynamics simulation. J Phys Chem B 2008; 112:8672-80. [PMID: 18582098 DOI: 10.1021/jp709848e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulation of the enforced stretching of circularly permuted green fluorescent protein (cpGFP) was performed to observe the detailed process of unfolding of beta-sheets in cpGFP and to clarify the structural change arising from the force. The simulation using the generalized Born method with original force field parameters enabled us to observe the unfolding process of the entire region of the protein and to clarify atom motion of the individual domain during the stretching. The force required for the stretching of cpGFP was estimated from the differential of the computed potential energy. A prominent rise in force appeared three times during the stretching. The amplitude and the position of these three peaks were consistent with the observation in atomic force microscopy (AFM) experiments. Further, the movements of atoms involved in each peak were shown to be closely related to the dissociation of hydrogen bonds. Additional simulations for the unfolding process of titin and spectrin also gave satisfactory interpretation of the results of previous AFM experiments. The difference in the enforced stretching process between cpGFP and wild-type GFP was further discussed through the MD simulation.
Collapse
Affiliation(s)
- Yoshihiro Hisatomi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan
| | | | | | | | | |
Collapse
|
47
|
Orte A, Craggs TD, White SS, Jackson SE, Klenerman D. Evidence of an Intermediate and Parallel Pathways in Protein Unfolding from Single-Molecule Fluorescence. J Am Chem Soc 2008; 130:7898-907. [DOI: 10.1021/ja709973m] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angel Orte
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Timothy D. Craggs
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Samuel S. White
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sophie E. Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
48
|
Radovan D, Smirnovas V, Winter R. Effect of pressure on islet amyloid polypeptide aggregation: revealing the polymorphic nature of the fibrillation process. Biochemistry 2008; 47:6352-60. [PMID: 18498175 DOI: 10.1021/bi800503j] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type II diabetes mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet beta-cell mass and the deposition of amyloid in the extracellular matrix of beta-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR spectroscopic and AFM studies were carried out to elucidate further information about the aggregation pathway as well as the aggregate structures of IAPP. To this end, a comparative fibrillation study of IAPP fragments was carried out as well. As high hydrostatic pressure (HHP) is acting to weaken or even prevent hydrophobic self-organization and electrostatic interactions, application of HHP has been used as a measure to reveal the importance of these interactions in the fibrillation process of IAPP and its fragments. IAPP preformed fibrils exhibit a strong polymorphism with heterogeneous structures, a large population of which are rather sensitive to high hydrostatic pressure, thus indicating a high percentage of ionic and hydrophobic interactions and loose packing of these species. Conversely, fragments 1-19 and 1-29 are resistant to pressure treatment, suggesting more densely packed aggregate structures with less void volume and strong cooperative hydrogen bonding. Furthermore, the FT-IR data indicate that fragment 1-29 has intermolecular beta-sheet conformational properties different from those of fragment 1-19, the latter exhibiting polymorphic behavior with more disordered structures and less strongly hydrogen bonded fibrillar assemblies. The data also suggest that hydrophobic interactions and/or less efficient packing of amino acids 30-37 region leads to the marked pressure sensitivity observed for full-length IAPP.
Collapse
Affiliation(s)
- Diana Radovan
- Department of Chemistry, Physical Chemistry I-Biophysical Chemistry, Dortmund University of Technology, D-44227 Dortmund, Germany
| | | | | |
Collapse
|
49
|
Leiderman P, Huppert D, Remington SJ, Tolbert LM, Solntsev KM. The effect of pressure on the excited-state proton transfer in the wild-type green fluorescent protein. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.02.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Hoshihara Y, Kimura Y, Matsumoto M, Nagasawa M, Terazima M. An optical high-pressure cell for transient grating measurements of biological substance with a high reproducibility. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:034101. [PMID: 18377030 DOI: 10.1063/1.2894331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We describe a high-pressure optical cell that can be used for time-resolved transient grating measurements to determine the thermodynamic properties of transient species under high pressure. This high-pressure cell enables us to compare the grating signal intensities of different samples quantitatively. Using this high-pressure cell with an inner sample cell, one can measure various thermodynamic properties of a biological substance in time domain. The stability and reproducibility of this apparatus are described.
Collapse
Affiliation(s)
- Yuji Hoshihara
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|