1
|
Molecular dynamics simulation on agglomeration and growth behavior of dust particles during flue gas filtration. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Liu B, Tang S. Long-time instability in the Runge-Kutta algorithm for a Nosé-Hoover heat bath of a harmonic chain and its stabilization. Phys Rev E 2017; 96:013308. [PMID: 29347127 DOI: 10.1103/physreve.96.013308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Indexed: 11/06/2022]
Abstract
In this paper, we investigate the Runge-Kutta algorithm for the Nosé-Hoover heat bath of a harmonic chain. The Runge-Kutta algorithm is found to be unstable in long-time calculations, with the system temperature growing exponentially. The growth rate increases if time step size is chosen larger. By analyzing the Fourier spectra in both space (wave number) and time (frequency), we discover that the growth is caused by spurious energy accumulation, particularly at the largest wave number. Such accumulation may be explained by von Neumann analysis for an infinite chain, with the nonlinear heat bath being ignored. Furthermore, we propose to add a filter to remove excessive energy, which effectively stabilizes the algorithm.
Collapse
Affiliation(s)
- Baiyili Liu
- College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu 610059, China and HEDPS and CAPT, College of Engineering, Peking University, Beijing 100871, China
| | - Shaoqiang Tang
- HEDPS, CAPT, and LTCS, College of Engineering, Peking University, Beijing 100871, China and IFSA Collaborative Innovation Center of MoE, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
3
|
Mondal S, Chakraborty K, Bandyopadhyay S. Microscopic understanding of the conformational features of a protein–DNA complex. Phys Chem Chem Phys 2017; 19:32459-32472. [DOI: 10.1039/c7cp05161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein–DNA interactions play crucial roles in different stages of genetic activities, such as replication of genome, initiation of transcription,etc.
Collapse
Affiliation(s)
- Sandip Mondal
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Kaushik Chakraborty
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
4
|
Huang NL, Lin JH. Recovery of the poisoned topoisomerase II for DNA religation: coordinated motion of the cleavage core revealed with the microsecond atomistic simulation. Nucleic Acids Res 2015; 43:6772-86. [PMID: 26150421 PMCID: PMC4538842 DOI: 10.1093/nar/gkv672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/19/2015] [Indexed: 01/24/2023] Open
Abstract
Type II topoisomerases resolve topological problems of DNA double helices by passing one duplex through the reversible double-stranded break they generated on another duplex. Despite the wealth of information in the cleaving operation, molecular understanding of the enzymatic DNA ligation remains elusive. Topoisomerase poisons are widely used in anti-cancer and anti-bacterial therapy and have been employed to entrap the intermediates of topoisomerase IIβ with religatable DNA substrate. We removed drug molecules from the structure and conducted molecular dynamics simulations to investigate the enzyme-mediated DNA religation. The drug-unbound intermediate displayed transitions toward the resealing-compliant configuration: closing distance between the cleaved DNA termini, B-to-A transformation of the double helix, and restoration of the metal-binding motif. By mapping the contact configurations and the correlated motions between enzyme and DNA, we identified the indispensable role of the linker preceding winged helix domain (WHD) in coordinating the movements of TOPRIM, the nucleotide-binding motifs, and the bound DNA substrate during gate closure. We observed a nearly vectorial transition in the recovery of the enzyme and identified the previously uncharacterized roles of Asn508 and Arg677 in DNA rejoining. Our findings delineate the dynamic mechanism of the DNA religation conducted by type II topoisomerases.
Collapse
Affiliation(s)
- Nan-Lan Huang
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Jung-Hsin Lin
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan Institute of Biomedical Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan School of Pharmacy, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
5
|
Del Vecchio P, Carullo P, Barone G, Pagano B, Graziano G, Iannetti A, Acquaviva R, Leonardi A, Formisano S. Conformational stability and DNA binding energetics of the rat thyroid transcription factor 1 homeodomain. Proteins 2008; 70:748-60. [PMID: 17729273 DOI: 10.1002/prot.21552] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The conformational stability of the rat thyroid transcription factor 1 homeodomain, TTF-1HD, has been investigated by means of circular dichroism (CD) and differential scanning calorimetry (DSC) measurements at pH 5.0 as a function of KCl concentration. Thermal unfolding of TTF-1HD is a reversible two-state transition. The protein is not stable against temperature, showing a denaturation temperature of 32 degrees C in the absence of salt and 50 degrees C at 75 mM KCl. The binding energetics of TTF-1HD to its target DNA sequence has been characterized by means of isothermal titration calorimetry (ITC) measurements, complemented with CD data. At 25 degrees C, pH 5.0 and 75 mM KCl, the binding constant amounts to 1.5 x 10(8)M(-1) and the binding enthalpy change amounts to -41 kJ mol(-1). The process is enthalpy driven, but also the entropy change is favorable to complex formation. To gain a molecular level understanding of the interactions determining the association of TTF-1HD to the target DNA sequence structural information would be requested, but it is not yet available. Therefore, structural models of two complexes, TTF-1HD with the target DNA sequence and TTF-1HD with a modified DNA sequence, have been constructed by using as a template the NMR structure of the complex between NK-2 HD and its target DNA, and by performing molecular dynamics simulations 3.5 ns long. Analysis of these models allows one to shed light on the origin of the DNA binding specificity characteristic of TTF-1HD.
Collapse
Affiliation(s)
- Pompea Del Vecchio
- Dipartimento di Chimica, Università di Napoli Federico II, Via Cintia, 80126, Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kormos BL, Baranger AM, Beveridge DL. A study of collective atomic fluctuations and cooperativity in the U1A-RNA complex based on molecular dynamics simulations. J Struct Biol 2006; 157:500-13. [PMID: 17194603 PMCID: PMC1994251 DOI: 10.1016/j.jsb.2006.10.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 10/02/2006] [Accepted: 10/04/2006] [Indexed: 11/21/2022]
Abstract
Cooperative interactions play an important role in recognition and binding in macromolecular systems. In this study, we find that cross-correlated atomic fluctuations can be used to identify cooperative networks in a protein-RNA system. The dynamics of the RRM-containing protein U1A-stem loop 2 RNA complex have been calculated theoretically from a 10 ns molecular dynamics (MD) simulation. The simulation was analyzed by calculating the covariance matrix of all atomic fluctuations. These matrix elements are then presented in the form of a two-dimensional grid, which displays fluctuations on a per residue basis. The results indicate the presence of strong, selective cross-correlated fluctuations throughout the RRM in U1A-RNA. The atomic fluctuations correspond well with previous biophysical studies in which a multiplicity of cooperative networks have been reported and indicate that the various networks identified in separate individual experiments are fluctuationally correlated into a hyper-network encompassing most of the RRM. The calculated results also correspond well with independent results from a statistical covariance analysis of 330 aligned RRM sequences. This method has significant implications as a predictive tool regarding cooperativity in the protein-nucleic acid recognition process.
Collapse
Affiliation(s)
- Bethany L Kormos
- Chemistry Department and Molecular Biophysics Program, Wesleyan University, 237 Church St., Middletown, CT 06459, USA.
| | | | | |
Collapse
|
7
|
Abstract
Is it by design or by default that water molecules are observed at the interfaces of some protein-DNA complexes? Both experimental and theoretical studies on the thermodynamics of protein-DNA binding overwhelmingly support the extended hydrophobic view that water release from interfaces favors binding. Structural and energy analyses indicate that the waters that remain at the interfaces of protein-DNA complexes ensure liquid-state packing densities, screen the electrostatic repulsions between like charges (which seems to be by design), and in a few cases act as linkers between complementary charges on the biomolecules (which may well be by default). This review presents a survey of the current literature on water in protein-DNA complexes and a critique of various interpretations of the data in the context of the role of water in protein-DNA binding and principles of protein-DNA recognition in general.
Collapse
Affiliation(s)
- B Jayaram
- Department of Chemistry and Supercomputing Facility for Bioinformatics and Computational Biology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| | | |
Collapse
|
8
|
Wibowo FR, Rauch C, Trieb M, Wellenzohn B, Liedl KR. Water-mediated contacts in thetrp-repressor operator complex recognition process. Biopolymers 2004; 73:668-81. [PMID: 15048770 DOI: 10.1002/bip.20023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Water-mediated contacts are known as an important recognition tool in trp-repressor operator systems. One of these contacts involves two conserved base pairs (G(6).C(-6) and A(5). T(-5)) and three amino acids (Lys 72, Ile 79, and Ala 80). To investigate the nature of these contacts, we analyzed the X-ray structure (PDB code: 1TRO) of the trp-repressor operator complex by means of molecular dynamics simulations. This X-ray structure contains two dimers that exhibit structural differences. From these two different starting structures, two 10 ns molecular dynamics simulations have been performed. Both of our simulations show an increase of water molecules in the major groove at one side of the dimer, while the other side remains unchanged compared to the X-ray structure. Though the maximum residence time of the concerned water molecules decreases with an increase of solvent at the interface, these water molecules continue to play an important role in mediating DNA-protein contacts. This is shown by new stable amino acids-DNA distances and a long water residence time compared to free DNA simulation. To maintain stability of the new contacts, the preferential water binding site on O6(G6) is extended. This extension agrees with mutation experiment data on A5 and G6, which shows different relative affinity due to mutation on these bases [A. Joachimiak, T. E. Haran, P. B. Sigler, EMBO Journal 1994, Vol. 13, No. (2) pp. 367-372]. Due to the rearrangements in the system, the phosphate of the base G6 is able to interconvert to the B(II) substate, which is not observed on the other half side of the complex. The decrease of the number of hydrogen bonds between protein and DNA backbone could be the initial step of the dissociation process of the complex, or in other words an intermediate complex conformation of the association process. Thus, we surmise that these features show the importance of water-mediated contacts in the trp-repressor operator recognition process.
Collapse
Affiliation(s)
- Fajar R Wibowo
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
9
|
Abstract
Recent years have seen considerable progress in simulations of nucleic acids. Improvements in force fields, simulation techniques and protocols, and increasing computer power have all contributed to making nanosecond-scale simulations of both DNA and RNA commonplace. The results are already helping to explain how nucleic acids respond to their environment and to their base sequence and to reveal the factors underlying recognition processes by probing biologically important nucleic acid-protein interactions and medically important nucleic acid-drug complexation. This Account summarizes methodological progress and applications of molecular dynamics to nucleic acids over the past few years and tries to identify remaining challenges.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, Paris 75005, France
| | | |
Collapse
|
10
|
Lynch TW, Sligar SG. Experimental and theoretical high pressure strategies for investigating protein-nucleic acid assemblies. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1595:277-82. [PMID: 11983402 DOI: 10.1016/s0167-4838(01)00350-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A method was developed to investigate the stability of protein-nucleic acid complexes using hydrostatic pressure during electrophoretic gel mobility shift analysis. The initial system probed by this technique was the well-characterized cognate BamHI-DNA complex. Band shift analysis at several elevated pressures found the equilibrium dissociation (K(d)) constant to be dependent on pressure, which allowed the volume change of dissociation (deltaV) to be calculated. In order to describe the effects of pressure on the specific BamHI-DNA complex at the molecular level, molecular dynamics simulations at both ambient and elevated pressure was performed. Comparison of the simulation trajectories identified several individual BamHI-DNA contacts that are disrupted due to pressure. The disruption of these contacts can be attributed to an observed pressure-induced increase in hydration at the protein-DNA interface during the elevated pressure simulation.
Collapse
Affiliation(s)
- T W Lynch
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
11
|
Komeiji Y, Uebayasi M. Peach-Grape system-a high performance simulator for biomolecules. CHEM-BIO INFORMATICS JOURNAL 2002. [DOI: 10.1273/cbij.2.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuto Komeiji
- IBRF/RICS, National Institute of Advanced Industrial Science and Technology
| | - Masami Uebayasi
- IBRF/RICS, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|