1
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
2
|
Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy. mBio 2022; 13:e0112122. [PMID: 35993747 PMCID: PMC9600662 DOI: 10.1128/mbio.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.
Collapse
|
3
|
Qu ZW, Hansen A, Grimme S. Co–C Bond Dissociation Energies in Cobalamin Derivatives and Dispersion Effects: Anomaly or Just Challenging? J Chem Theory Comput 2015; 11:1037-45. [DOI: 10.1021/acs.jctc.5b00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zheng-wang Qu
- Mulliken
Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstraße
4, 53115 Bonn, North Rhine-Westphalia, Germany
| | - Andreas Hansen
- Mulliken
Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstraße
4, 53115 Bonn, North Rhine-Westphalia, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstraße
4, 53115 Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
4
|
Perry CB, Shin N, Fernandes MA, Marques HM. Phenylvinylcobalamin: an alkenylcobalamin featuring a ligand with a large trans influence. Dalton Trans 2013; 42:7555-61. [PMID: 23532394 DOI: 10.1039/c3dt50336d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cob(I)alamin reacts with phenylacetylene to produce two diastereomers in which the organic ligand is coordinated to the upper (β) and lower (α) face of the corrin ring, respectively. The isomers were separated chromatographically and characterised by ESI-MS and, in the case of the β isomer, by (1)H and (13)C NMR. Only the β isomer crystallised and its molecular structure, determined by X-ray diffraction, shows that the organic ligand coordinates Co(III) through the β carbon of the phenylvinyl ligand. The Co-C bond length is 2.004(8) Å while the Co-N bond length to the trans 5,6-dimethylbenzimidazole (dmbzm) base is 2.217(8) Å, one of the longest Co-Ndmbzm bond lengths known in an organocobalamin. Unlike benzylcobalamin (BzCbl), phenylvinylcobalamin (PhVnCbl) is stable towards homolysis. DFT calculations (BP86/TZVP) on model compounds of BzCbl and PhVnCbl show that the Co-C bond dissociation energy for homolysis to Co(II) and an organic radical in the former is 8 kcal mol(-1) lower than in the latter. An analysis of the electron density at the Co-C bond critical point using Bader's QTAIM approach shows that the Co-C bond in PhVnCbl is shorter, stronger and somewhat more covalent than that in BzCbl, and has some multiple bond character. Together with calculations that show that the benzyl radical is more stable than the phenylvinyl radical, this rationalises the stability of PhVnCbl compared to BzCbl. The phenylvinyl ligand has a large trans influence. The pKa for deprotonation of dmbzm and its coordination by the metal in β-PhVnCbl is 4.60 ± 0.01, one of the highest values reported to date in cobalamin chemistry. The displacement of dmbzm ligand by CN(-) in β-PhVnCbl occurs with log K = 0.7 ± 0.1; the trans influence order of C-donor ligands is therefore CN(-) < CCH < CHCH2 = PhVn < Me < Et.
Collapse
Affiliation(s)
- Christopher B Perry
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Wits, Johannesburg, 2050, South Africa.
| | | | | | | |
Collapse
|
5
|
Hassanin HA, Hannibal L, Jacobsen DW, Brown KL, Marques HM, Brasch NE. NMR spectroscopy and molecular modelling studies of nitrosylcobalamin: further evidence that the deprotonated, base-off form is important for nitrosylcobalamin in solution. Dalton Trans 2009:424-33. [PMID: 19122899 PMCID: PMC2754767 DOI: 10.1039/b810895a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of nitrosylcobalamin (NOCbl) in solution has been studied by NMR spectroscopy and the 1H and 13C NMR spectra have been assigned. 13C and 31P NMR chemical shifts, the UV-vis spectrum of NOCbl and the observed pKbase-off value of approximately 5.1 for NOCbl provide evidence that a significant fraction of NOCbl is present in the base-off, 5,6-dimethylbenzimidazole (DMB) deprotonated, form in solution. NOE-restrained molecular mechanics modelling of base-on NOCbl gave annealed structures with minor conformational differences in the flexible side chains and the nucleotide loop position compared with the X-ray structure. A molecular dynamics simulation at 300 K showed that DMB remains in close proximity to the alpha face of the corrin in the base-off form of NOCbl. Simulated annealing calculations produced two major conformations of base-off NOCbl. In the first, the DMB is perpendicular to the corrin and its B3 nitrogen is about 3.1 A away from and pointing directly at the metal ion; in the second the DMB is parallel to and tucked beneath the D ring of the corrin.
Collapse
Affiliation(s)
- Hanaa A. Hassanin
- Department of Chemistry, School of Biomedical Sciences, Kent State University, Kent, OH44242
| | - Luciana Hannibal
- Department of Chemistry, School of Biomedical Sciences, Kent State University, Kent, OH44242
- School of Biomedical Sciences, Kent State University, Kent, OH 44242. E-mail:
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Donald W. Jacobsen
- School of Biomedical Sciences, Kent State University, Kent, OH 44242. E-mail:
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth L. Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701
| | - Helder M. Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, Johannesburg, 2050, South Africa. E-mail:
| | - Nicola E. Brasch
- Department of Chemistry, School of Biomedical Sciences, Kent State University, Kent, OH44242
- School of Biomedical Sciences, Kent State University, Kent, OH 44242. E-mail:
| |
Collapse
|
6
|
Affiliation(s)
- Kenneth L Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens, 45701, USA.
| |
Collapse
|
7
|
Perry CB, Brown KL, Zou X, Marques HM. The solution structure of some cobalamins determined by NMR-restrained molecular modelling. J Mol Struct 2005. [DOI: 10.1016/j.molstruc.2004.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Brown KL, Zou X, Banka RR, Perry CB, Marques HM. Solution Structure and Thermolysis of Coβ-5‘-Deoxyadenosylimidazolylcobamide, a Coenzyme B12 Analogue with an Imidazole Axial Nucleoside. Inorg Chem 2004; 43:8130-42. [PMID: 15578853 DOI: 10.1021/ic040079z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solution structure of Cobeta-5'-deoxyadenosylimidazolylcobamide, Ado(Im)Cbl, the coenzyme B(12) analogue in which the axial 5,6-dimethylbenzimidazole (Bzm) ligand is replaced by imidazole, has been determined by NMR-restrained molecular modeling. A two-state model, in which a conformation with the adenosyl moiety over the southern quadrant of the corrin and a conformation with the adenosyl ligand over the eastern quadrant of the corrin are both populated at room temperature, was required by the nOe data. A rotation profile and molecular dynamics simulations suggest that the eastern conformation is the more stable, in contrast to AdoCbl itself in which the southern conformation is preferred. Consensus structures of the two conformers show that the axial Co-N bond is slightly shorter and the corrin ring is less folded in Ado(Im)Cbl than in AdoCbl. A study of the thermolysis of Ado(Im)Cbl in aqueous solution (50-125 degrees C) revealed competing homolytic and heterolytic pathways as for AdoCbl but with heterolysis being 9-fold faster and homolysis being 3-fold slower at 100 degrees C than for AdoCbl. Determination of the pK(a)'s for the Ado(Im)Cbl base-on/base-off reaction and for the detached imidazole ribonucleoside as a function of temperature permitted correction of the homolysis and heterolysis rate constants for the temperature-dependent presence of the base-off species of Ado(Im)Cbl. Activation analysis of the resulting rate constants for the base-on species show that the entropy of activation for Ado(Im)Cbl homolysis (13.7 +/- 0.9 cal mol(-1) K(-1)) is identical with that of AdoCbl (13.5 +/- 0.7 cal mol(-1) K(-1)) but that the enthalpy of activation (34.8 kcal mol(-1)) is 1.0 +/- 0.4 kcal mol(-1) larger. The opposite effect is seen for heterolysis, where the enthalpies of activation are identical but the entropy of activation is 5 +/- 1 cal mol(-1) K(-1) less negative for Ado(Im)Cbl. Extrapolation to 37 degrees C provides a rate constant for Ado(Im)Cbl homolysis of 2.1 x 10(-9) s(-1), 4.3-fold smaller than for AdoCbl. Combined with earlier results for the enzyme-induced homolysis of Ado(Im)Cbl by the ribonucleoside triphosphate reductase from Lactobacillus leichmannii, the catalytic efficiency of the enzyme for homolysis of Ado(Im)Cbl at 37 degrees C can be calculated to be 4.0 x 10(8), 3.8-fold, or 0.8 kcal mol(-1), smaller than for AdoCbl. Thus, the bulky Bzm ligand makes at best a <1 kcal mol(-1) contribution to the enzymatic activation of coenzyme B(12).
Collapse
Affiliation(s)
- Kenneth L Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA.
| | | | | | | | | |
Collapse
|
9
|
Brown KL, Zou X, Chen G, Xia Z, Marques HM. Solution structure, enzymatic, and non-enzymatic reactivity of 3-isoadenosylcobalamin, a structural isomer of coenzyme B12 with surprising coenzymic activity. J Inorg Biochem 2004; 98:287-300. [PMID: 14729309 DOI: 10.1016/j.jinorgbio.2003.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The coenzymic activity of eight analogs of coenzyme B(12) (5'-deoxyadenosyl-cobalamin, AdoCbl) with structural alterations in the Ado ligand has been investigated with the AdoCbl-dependent ribonucleoside triphosphate reductase (RTPR) from Lactobacillus leichmannii. Six of the analogs were partially active coenzymes, and one, 3-iso-5'-deoxyadenosylcobalamin (3-IsoAdoCbl) was nearly as active as AdoCbl itself. NMR-restrained molecular modeling of 3-IsoAdoCbl revealed a highly conformationally mobile structure which required a four state model to be consistent with the NMR data. Thus, two conformations, one with the IsoAdo ligand over the eastern quadrant of the corrin, and one with the IsoAdo ligand over the northern quadrant, each undergo a facile syn/anti conformational equilibrium in the IsoAdo ligand. Spectrophotometric measurement of the kinetics of RTPR-induced cleavage of the carbon-cobalt bond of 3-IsoAdoCbl showed that it binds to the enzyme with the same affinity as AdoCbl, but its homolysis is only 20% as rapid. Investigation of the non-enzymatic thermolysis of 3-IsoAdoCbl showed that like AdoCbl, 3-IsoAdoCbl decomposes by competing homolytic and heterolytic pathways. A complete temperature-dependent kinetic and product analysis, followed by correction for the base-off species permitted deconvolution of the specific rate constant for both pathways. Eyring plots for the homolysis and heterolysis rate constant cross at 93 degrees C, so that homolysis is the predominant pathway at high temperature, but heterolysis is the predominant pathway at low temperature. At 37 degrees C, the homolysis of 3-IsoAdoCbl is 5.5-fold faster than that of AdoCbl, and the enzyme catalyzes carbon-cobalt bond homolysis in 3-IsoAdoCbl by a factor of 5.9 x 10(7), only 3.9% of the catalytic efficiency with AdoCbl itself. It seems likely that the conformational flexibility of 3-IsoAdoCbl allows it to adopt a coformation in which the hydrogen bonding patterns of the adenine moiety are similar to those of AdoCbl itself, and that this is responsible for the high enzymatic activity of this analog.
Collapse
Affiliation(s)
- Kenneth L Brown
- Department of Chemistry and Biochemistry, Clippinger Laboratories, Ohio University, Athens, OH 45701, USA.
| | | | | | | | | |
Collapse
|
10
|
Jensen KP, Ryde U. The axial N -base has minor influence on Co–C bond cleavage in cobalamins. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00049-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Marques HM, Brown KL. Molecular mechanics and molecular dynamics simulations of porphyrins, metalloporphyrins, heme proteins and cobalt corrinoids. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(01)00411-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Jensen KP, Mikkelsen KV. Semi-empirical studies of cobalamins, corrin models, and cobaloximes. The nucleotide loop does not strain the corrin ring in cobalamins. Inorganica Chim Acta 2001. [DOI: 10.1016/s0020-1693(01)00525-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Marques H, Ngoma B, Egan T, Brown K. Parameters for the amber force field for the molecular mechanics modeling of the cobalt corrinoids. J Mol Struct 2001. [DOI: 10.1016/s0022-2860(00)00920-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Brown KL, Marques HM. Molecular modeling of the mechanochemical triggering mechanism for catalysis of carbon-cobalt bond homolysis in coenzyme B12. J Inorg Biochem 2001; 83:121-32. [PMID: 11237251 DOI: 10.1016/s0162-0134(00)00188-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The possible contributions of the mechanochemical triggering effect to the enzymatic activation of the carbon-cobalt bond of coenzyme B12 (5'-deoxyadenosylcobalamin, AdoCbl) for homolytic cleavage have been studied by molecular modeling and semiempirical molecular orbital calculations. Classically, this effect has envisioned enzymatic compression of the axial Co-N bond in the ground state to cause upward folding of the corrin ring and subsequent sterically induced distortion of the Co-C bond leading to its destabilization. The models of this process show that in both methylcobalamin (CH3Cbl) and AdoCbl, compression of the axial Co-N bond does engender upward folding of the corrin ring, and that the extent of such upward folding is smaller in an analog in which the normal 5,6-dimethylbenzimidazole axial ligand is replaced by the sterically smaller ligand, imidazole (CH3(lm)Cbl and Ado(lm)Cbl). Furthermore, in AdoCbl, this upward folding of the corrin is accompanied by increases in the carbon-cobalt bond length and in the Co-C-C bond angle (which are also less pronounced in Ado(Im)Cbl), and which indicate that the Co-C bond is indeed destabilized by this mechanism. However, these effects on the Co-C bond are small, and destabilization of this bond by this mechanism is unlikely to contribute more than ca. 3 kcal mol(-1) towards the enzymatic catalysis of Co-C bond homolysis, far short of the observed ca. 14 kcal mol(-1). A second version of mechanochemical triggering, in which compression of the axial Co-N bond in the transition state for Co-C bond homolysis stabilizes the transition state by increased Co-N orbital overlap, has also been investigated. Stretching the Co-C bond to simulate the approach to the transition state was found to result in an upward folding of the corrin ring, a slight decrease in the axial Co-N bond length, a slight displacement of the metal atom from the plane of the equatorial nitrogens towards the "lower" axial ligand, and a decrease in strain energy amounting to about 8 kcal mol(-1) for both AdoCbl and Ado(Im)Cbl. In such modeled transition states, compression of the axial Co-N bond to just below 2.0 A (the distance subsequently found to provide maximal stabilization of the transition state by increased orbital overlap) required about 4 kcal mol(-1) for AdoCbl, and about 2.5 kcal mol(-1) for Ado(Im)Cbl. ZINDO/1 calculations on slightly simplified structures showed that maximal electronic stabilization of the transition state by about 10 kcal mol(-1) occurred at an axial Co-N bond distance of 1.96 A for both AdoCbl and Ado(Im)Cbl. The net result is that this type of transition state mechanochemical triggering can provide 14 kcal mol(-1) of transition state stabilization for AdoCbl, and about 15.5 kcal mol(-1) for the Ado(Im)Cbl, enough to completely explain the observed enzymatic catalysis. These results are discussed in the light of current knowledge about class I AdoCbl-dependent enzymes, in which the coenzyme is bound in its "base-off" conformation, with the lower axial ligand position occupied by the imidazole moiety of an active site histidine residue, and the class II enzymes, in which AdoCbl binds to the enzyme in its "base-on" conformation, and the pendent 5,6-dimethylbenzimidazole base remains coordinated to the metal during Co-C bond activation.
Collapse
Affiliation(s)
- K L Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens 45701-2979, USA.
| | | |
Collapse
|