Zhang Z, Collum DB. Evans Enolates: Structures and Mechanisms Underlying the Aldol Addition of Oxazolidinone-Derived Boron Enolates.
J Org Chem 2017;
82:7595-7601. [PMID:
28686020 DOI:
10.1021/acs.joc.7b01365]
[Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The soft enolization of an acylated oxazolidinone using di-n-butylboron triflate (n-Bu2BOTf) and trialkylamines and subsequent aldol addition was probed structurally and mechanistically using a combination of IR and NMR spectroscopies. None of the species along the reaction coordinate show a penchant for aggregating. Complexation of the acylated oxazolidinone by n-Bu2BOTf was too rapid to monitor, as was the subsequent enolization with Et3N (triethylamine). The preformed n-Bu2BOTf·Et3N complex, displaying muted Lewis acidity and affiliated tractable rates, reveals a rate-limiting complexation via a transition structure with a complicated counterion. n-Bu2BOTf·i-Bu3N bearing a hindered amine shifts the rate-limiting step to proton transfer. Rate studies show that the aldol addition with isobutyraldehyde occurs as proffered by others.
Collapse