1
|
Yudkina AV, Zharkov DO. The hidden elephant: Modified abasic sites and their consequences. DNA Repair (Amst) 2025; 148:103823. [PMID: 40056494 DOI: 10.1016/j.dnarep.2025.103823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Abasic, or apurinic/apyrimidinic sites (AP sites) are among the most abundant DNA lesions, appearing in DNA both through spontaneous base loss and as intermediates of base excision DNA repair. Natural aldehydic AP sites have been known for decades and their interaction with the cellular replication, transcription and repair machinery has been investigated in detail. Oxidized AP sites, produced by free radical attack on intact nucleotides, received much attention recently due to their ability to trap DNA repair enzymes and chromatin structural proteins such as histones. In the past few years, it became clear that the reactive nature of aldehydic and oxidized AP sites produces a variety of modifications, including AP site-protein and AP site-peptide cross-links, adducts with small molecules of metabolic or xenobiotic origin, and AP site-mediated interstrand DNA cross-links. The diverse chemical nature of these common-origin lesions is reflected in the wide range of their biological consequences. In this review, we summarize the data on the mechanisms of modified AP sites generation, their abundance, the ability to block DNA polymerases or cause nucleotide misincorporation, and the pathways of their repair.
Collapse
Affiliation(s)
- Anna V Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave, Novosibirsk 630090, Russia; Novosibirsk State University, 2 Pirogova St, Novosibirsk 630090, Russia.
| |
Collapse
|
2
|
Montemayor-Aldrete JA, Nieto-Villar JM, Villagómez CJ, Márquez-Caballé RF. An irreversible thermodynamic model of prebiological dissipative molecular structures inside vacuoles at the surface of the Archean Ocean. Biosystems 2025; 247:105379. [PMID: 39710184 DOI: 10.1016/j.biosystems.2024.105379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
A prebiotic model, based in the framework of thermodynamic efficiency loss from small dissipative eukaryote organisms is developed to describe the maximum possible concentration of solar power to be dissipated on topological circular molecules structures encapsulated in lipid-walled vacuoles, which floated in the Archean oceans. By considering previously, the analysis of 71 species examined by covering 18 orders of mass magnitude from the Megapteranovaeangliae to Saccharomyces cerevisiae suggest that in molecular structures of smaller masses than any living being known nowadays, the power dissipation must be directly proportional to the power of the photons of solar origin that impinge them to give rise to the formation of more complex self-assembled molecular structures at the prebiotic stage by a quantum mechanics model of resonant photon wavelength excitation. The analysis of 12 circular molecules (encapsulated in lipid-walled vacuoles) relevant to the evolution of life on planet Earth such as the five nucleobases, and some aromatic molecules as pyrimidine, porphyrin, chlorin, coumarin, xanthine, etc., were carried out. Considering one vacuole of each type of molecule per square meter of the ocean's surface of planet Earth (1.8∗1015 vacuoles), their dissipative operation would require only 10-10 times the matter used by the biomass currently existing on Earth. Relevant numbers (1020-1021) for the annual dissipative cycles corresponding to high energy photo chemical events, which in principle allow the assembling of more complex polymers, were obtained. The previous figures are compatible with some results obtained by followers of the primordial soup theory where under certain suppositions about the Archean chemical kinetical changes on the precursors of RNA and DNA try to justify the formation rate of RNA and DNA components and the emergence of life within a 10-million-year window, 3.5 billion years ago. The physical foundation perspective and the simplicity of the proposed approach suggests that it can serve as a possible template for both, the development of new kind of experiments, and for prebiotic theories that address self-organization occurring inside such vacuoles. Our model provides a new way to conceptualize the self-production of simple cyclic dissipative molecular structures in the Archean period of planet Earth. © 2017 ElsevierInc.Allrightsreserved.
Collapse
Affiliation(s)
- Jorge A Montemayor-Aldrete
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - José Manuel Nieto-Villar
- Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems of M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Cuba
| | - Carlos J Villagómez
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Rafael F Márquez-Caballé
- Departamento de Estado Sólido, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
3
|
Farias STD, Nunes-Alves AK, José M. From RNA to DNA: Emergence of reverse transcriptases from an ancestral RNA-dependent RNA polymerase. Biosystems 2024; 246:105345. [PMID: 39349132 DOI: 10.1016/j.biosystems.2024.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The transition from RNA as the informational molecule of primordial biological systems to the DNA genomes of modern organisms represents one of the greatest evolutionary transitions in the history of life. One way to understand this transition is to comprehend the origin of the enzymes responsible for the metabolism of nucleic acid polymers. In the present work, we reconstructed the ancestral sequence of RNA-dependent DNA polymerase (RdDp) and modeled its structure. The data demonstrate that, in terms of primary sequence, the ancestral sequences exhibit characteristic elements of RdDp; however, structurally, they are more similar to RNA-dependent RNA polymerase (RdRp). The presented data suggest that RdDp may have originated through modifications and neofunctionalization from an RdRp-like ancestor.
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, 58051-900, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK.
| | - Ana Karoline Nunes-Alves
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, 58051-900, Brazil
| | - Marco José
- Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK; Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, C.P. 04510, Mexico
| |
Collapse
|
4
|
Muñoz-Velasco I, Cruz-González A, Hernández-Morales R, Campillo-Balderas JA, Cottom-Salas W, Jácome R, Vázquez-Salazar A. Pioneering role of RNA in the early evolution of life. Genet Mol Biol 2024; 47Suppl 1:e20240028. [PMID: 39437147 PMCID: PMC11445735 DOI: 10.1590/1678-4685-gmb-2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 10/25/2024] Open
Abstract
The catalytic, regulatory and structural properties of RNA, combined with their extraordinary ubiquity in cellular processes, are consistent with the proposal that this molecule played a much more conspicuous role in heredity and metabolism during the early stages of biological evolution. This review explores the pivotal role of RNA in the earliest life forms and its relevance in modern biological systems. It examines current models that study the early evolution of life, providing insights into the primordial RNA world and its legacy in contemporary biology.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Celular, Mexico City, Mexico
| | - Adrián Cruz-González
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Ricardo Hernández-Morales
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | | | - Wolfgang Cottom-Salas
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Rodrigo Jácome
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Departamento de Biología Evolutiva, Mexico City, Mexico
| | - Alberto Vázquez-Salazar
- University of California Los Angeles, Department of Chemical and Biomolecular Engineering, California, USA
| |
Collapse
|
5
|
Agmon I. Three Biopolymers and Origin of Life Scenarios. Life (Basel) 2024; 14:277. [PMID: 38398786 PMCID: PMC10890401 DOI: 10.3390/life14020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA-protein combination and assigns negligible likelihood to the existence of an RNA-DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA-protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it.
Collapse
Affiliation(s)
- Ilana Agmon
- Institute for Advanced Studies in Theoretical Chemistry, Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
- Fritz Haber Research Center for Molecular Dynamics, Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
6
|
Wallen M, Aqil F, Spencer W, Gupta RC. Exosomes as an Emerging Plasmid Delivery Vehicle for Gene Therapy. Pharmaceutics 2023; 15:1832. [PMID: 37514019 PMCID: PMC10384126 DOI: 10.3390/pharmaceutics15071832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Despite its introduction more than three decades ago, gene therapy has fallen short of its expected potential for the treatment of a broad spectrum of diseases and continues to lack widespread clinical use. The fundamental limitation in clinical translatability of this therapeutic modality has always been an effective delivery system that circumvents degradation of the therapeutic nucleic acids, ensuring they reach the intended disease target. Plasmid DNA (pDNA) for the purpose of introducing exogenous genes presents an additional challenge due to its size and potential immunogenicity. Current pDNA methods include naked pDNA accompanied by electroporation or ultrasound, liposomes, other nanoparticles, and cell-penetrating peptides, to name a few. While the topic of numerous reviews, each of these methods has its own unique set of limitations, side effects, and efficacy concerns. In this review, we highlight emerging uses of exosomes for the delivery of pDNA for gene therapy. We specifically focus on bovine milk and colostrum-derived exosomes as a nano-delivery "platform". Milk/colostrum represents an abundant, scalable, and cost-effective natural source of exosomes that can be loaded with nucleic acids for targeted delivery to a variety of tissue types in the body. These nanoparticles can be functionalized and loaded with pDNA for the exogenous expression of genes to target a wide variety of disease phenotypes, overcoming many of the limitations of current gene therapy delivery techniques.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY 40202, USA
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
7
|
Prosdocimi F, de Farias ST. Origin of life: Drawing the big picture. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:28-36. [PMID: 37080436 DOI: 10.1016/j.pbiomolbio.2023.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Trying to provide a broad overview about the origin of life in Earth, the most significant transitions of life before cells are listed and discussed. The current approach emphasizes the symbiotic relationships that emerged with life. We propose a rational, stepwise scenario for the origin of life that starts with the origin of the first biomolecules and steps forward until the origins of the first cells. Along this path, we aim to provide a brief, though comprehensive theoretical model that will consider the following steps: (i) how nucleotides and other biomolecules could be made prebiotically in specific prebiotic refuges; (ii) how the first molecules of RNAs were formed; (iii) how the proto-peptidyl transferase center was built by the concatenation of proto-tRNAs; (iv) how the ribosome and the genetic code could be structured; (v) how progenotes could live and reproduce as "naked" ribonucleoprotein molecules; (vi) how peptides started to bind molecules in the prebiotic soup allowing biochemical pathways to evolve from those bindings; (vii) how genomes got bigger by the symbiotic relationship of progenotes and lateral transference of genetic material; (viii) how the progenote LUCA has been formed by assembling most biochemical routes; (ix) how the first virion capsids probably emerged and evolved; (x) how phospholipid membranes emerged probably twice by the evolution of lipid-binding proteins; (xi) how DNA synthesis have been formed in parallel in Bacteria and Archaea; and, finally, (xii) how DNA-based cells of Bacteria and Archaeabacteria have been constituted. The picture provided is conjectural and present epistemological gaps. Future research will help to advance into the elucidation of gaps and confirmation/refutation of current statements.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
8
|
Xu F, Crisp A, Schinkel T, Dubini RCA, Hübner S, Becker S, Schelter F, Rovó P, Carell T. Isoxazole Nucleosides as Building Blocks for a Plausible Proto-RNA. Angew Chem Int Ed Engl 2022; 61:e202211945. [PMID: 36063071 PMCID: PMC9828505 DOI: 10.1002/anie.202211945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Indexed: 01/12/2023]
Abstract
The question of how RNA, as the principal carrier of genetic information evolved is fundamentally important for our understanding of the origin of life. The RNA molecule is far too complex to have formed in one evolutionary step, suggesting that ancestral proto-RNAs (first ancestor of RNA) may have existed, which evolved over time into the RNA of today. Here we show that isoxazole nucleosides, which are quickly formed from hydroxylamine, cyanoacetylene, urea and ribose, are plausible precursors for RNA. The isoxazole nucleoside can rearrange within an RNA-strand to give cytidine, which leads to an increase of pairing stability. If the proto-RNA contains a canonical seed-nucleoside with defined stereochemistry, the seed-nucleoside can control the configuration of the anomeric center that forms during the in-RNA transformation. The results demonstrate that RNA could have emerged from evolutionarily primitive precursor isoxazole ribosides after strand formation.
Collapse
Affiliation(s)
- Felix Xu
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Antony Crisp
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Thea Schinkel
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Romeo C. A. Dubini
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Sarah Hübner
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Sidney Becker
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Current address: Max Planck Institute of Molecular PhysiologyOtto-Hahn-Straße 1144227DortmundGermany
| | - Florian Schelter
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| | - Petra Rovó
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
- Current address: Institute of Science and Technology Austria (ISTA)Am Campus 13400KlosterneuburgAustria
| | - Thomas Carell
- Department of ChemistryLudwig-Maximilians-Universität MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
9
|
Sydow C, Seiband C, Siegle AF, Trapp O. Phosphorylation in liquid sulfur dioxide under prebiotically plausible conditions. Commun Chem 2022; 5:143. [PMID: 36697619 PMCID: PMC9814524 DOI: 10.1038/s42004-022-00761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
In nature, organophosphates provide key functions such as information storage and transport, structural tasks, and energy transfer. Since condensations are unfavourable in water and nucleophilic attack at phosphate is kinetically inhibited, various abiogenesis hypotheses for the formation of organophosphate are discussed. Recently, the application of phosphites as phosphorylation agent showed promising results. However, elevated temperatures and additional reaction steps are required to obtain organophosphates. Here we show that in liquid sulfur dioxide, which acts as solvent and oxidant, efficient organophosphate formation is enabled. Phosphorous acid yields up to 32.6% 5' nucleoside monophosphate, 3.6% 5' nucleoside diphosphate, and the formation of nucleoside triphosphates and dinucleotides in a single reaction step at room temperature. In addition to the phosphorylation of organic compounds, we observed diserine formation. Thus, we suggest volcanic environments as reaction sites for biopolymer formation on Early Earth. Because of the simple recyclability of sulfur dioxide, the reaction is also interesting for synthesis chemistry.
Collapse
Affiliation(s)
- Constanze Sydow
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Christiane Seiband
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Alexander F. Siegle
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Oliver Trapp
- grid.5252.00000 0004 1936 973XDepartment of Chemistry and Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5-13, 81377 Munich, Germany ,grid.429508.20000 0004 0491 677XMax-Planck-Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany
| |
Collapse
|
10
|
Prosdocimi F, de Farias ST. Entering the labyrinth: A hypothesis about the emergence of metabolism from protobiotic routes. Biosystems 2022; 220:104751. [DOI: 10.1016/j.biosystems.2022.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 11/26/2022]
|
11
|
Müller UF, Elsila J, Trail D, DasGupta S, Giese CC, Walton CR, Cohen ZR, Stolar T, Krishnamurthy R, Lyons TW, Rogers KL, Williams LD. Frontiers in Prebiotic Chemistry and Early Earth Environments. ORIGINS LIFE EVOL B 2022; 52:165-181. [PMID: 35796897 PMCID: PMC9261198 DOI: 10.1007/s11084-022-09622-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
The Prebiotic Chemistry and Early Earth Environments (PCE3) Consortium is a community of researchers seeking to understand the origins of life on Earth and in the universe. PCE3 is one of five Research Coordination Networks (RCNs) within NASA’s Astrobiology Program. Here we report on the inaugural PCE3 workshop, intended to cross-pollinate, transfer information, promote cooperation, break down disciplinary barriers, identify new directions, and foster collaborations. This workshop, entitled, “Building a New Foundation”, was designed to propagate current knowledge, identify possibilities for multidisciplinary collaboration, and ultimately define paths for future collaborations. Presentations addressed the likely conditions on early Earth in ways that could be incorporated into prebiotic chemistry experiments and conceptual models to improve their plausibility and accuracy. Additionally, the discussions that followed among workshop participants helped to identify within each subdiscipline particularly impactful new research directions. At its core, the foundational knowledge base presented in this workshop should underpin future workshops and enable collaborations that bridge the many disciplines that are part of PCE3.
Collapse
Affiliation(s)
| | - Jamie Elsila
- NASA/Goddard Space Flight Center, Greenbelt, United States
| | - Dustin Trail
- University of Rochester, Rochester, United States
| | | | - Claudia-Corina Giese
- Leiden University, Leiden, The Netherlands.,Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Jácome R, Campillo-Balderas JA, Becerra A, Lazcano A. Structural Analysis of Monomeric RNA-Dependent Polymerases Revisited. J Mol Evol 2022; 90:283-295. [PMID: 35639164 PMCID: PMC9153872 DOI: 10.1007/s00239-022-10059-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
In the past few years, our understanding of the RNA virosphere has changed dramatically due to the growth and spurt of metagenomics, exponentially increasing the number of RNA viral sequences, and providing a better understanding of their range of potential hosts. As of today, the only conserved protein among RNA viruses appears to be the monomeric RNA-dependent RNA polymerase. This enzyme belongs to the right-hand DNA-and RNA polymerases, which also includes reverse transcriptases and eukaryotic replicative DNA polymerases. The ubiquity of this protein in RNA viruses makes it a unique evolutionary marker and an appealing broad-spectrum antiviral target. In this work pairwise structural comparisons of viral RdRps and RTs were performed, including tertiary structures that have been obtained in the last few years. The resulting phylogenetic tree shows that the RdRps from (+)ss- and dsRNA viruses might have been recruited several times throughout the evolution of mobile genetic elements. RTs also display multiple evolutionary routes. We have identified a structural core comprising the entire palm, a large moiety of the fingers and the N-terminal helices of the thumb domain, comprising over 300 conserved residues, including two regions that we have named the “knuckles” and the “hypothenar eminence”. The conservation of an helix bundle in the region preceding the polymerase domain confirms that (−)ss and dsRNA Reoviruses’ polymerases share a recent ancestor. Finally, the inclusion of DNA polymerases into our structural analyses suggests that monomeric RNA-dependent polymerases might have diverged from B-family polymerases.
Collapse
Affiliation(s)
- Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico
| | | | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico, Mexico.
- Miembro de El Colegio Nacional, Mexico, Mexico.
| |
Collapse
|
13
|
Lin H, Jiménez EI, Arriola JT, Müller UF, Krishnamurthy R. Concurrent Prebiotic Formation of Nucleoside‐Amidophosphates and Nucleoside‐Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huacan Lin
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution Atlanta GA 30332 USA
| | - Eddy I. Jiménez
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Joshua T. Arriola
- Department of Chemistry and Biochemistry UC San Diego 9500 Gilman Drive La Jolla CA 92037 USA
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry UC San Diego 9500 Gilman Drive La Jolla CA 92037 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution Atlanta GA 30332 USA
| |
Collapse
|
14
|
Farias STD, Prosdocimi F. RNP-world: The ultimate essence of life is a ribonucleoprotein process. Genet Mol Biol 2022; 45:e20220127. [PMID: 36190700 PMCID: PMC9528728 DOI: 10.1590/1678-4685-gmb-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
The fundamental essence of life is based on process of interaction between nucleic acids and proteins. In a prebiotic world, amino acids, peptides, ions, and other metabolites acted in protobiotic routes at the same time on which RNAs performed catalysis and self-replication. Nevertheless, it was only when nucleic acids and peptides started to interact together in an organized process that life emerged. First, the ignition was sparked with the formation of a Peptidyl Transferase Center (PTC), possibly by concatenation of proto-tRNAs. This molecule that would become the catalytic site of ribosomes started a process of self-organization that gave origin to a protoorganism named FUCA, a ribonucleic ribosomal-like apparatus capable to polymerize amino acids. In that sense, we review hypotheses about the origin and early evolution of the genetic code. Next, populations of open biological systems named progenotes were capable of accumulating and exchanging genetic material, producing the first genomes. Progenotes then evolved in two paths: some presented their own ribosomes and others used available ribosomes in the medium to translate their encoded information. At some point, two different types of organisms emerged from populations of progenotes: the ribosome-encoding organisms (cells) and the capsid-encoding organisms (viruses).
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Universidade Federal da Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life, UK
| | | |
Collapse
|
15
|
Lin H, Jiménez EI, Arriola JT, Müller UF, Krishnamurthy R. Concurrent Prebiotic Formation of Nucleoside-Amidophosphates and Nucleoside-Triphosphates Potentiates Transition from Abiotic to Biotic Polymerization. Angew Chem Int Ed Engl 2021; 61:e202113625. [PMID: 34738300 DOI: 10.1002/anie.202113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/10/2022]
Abstract
Polymerization of nucleic acids in biology utilizes 5'-nucleoside triphosphates (NTPs) as substrates. The prebiotic availability of NTPs has been unresolved and other derivatives of nucleoside-monophosphates (NMPs) have been studied. However, this latter approach necessitates a change in chemistries when transitioning to biology. Herein we show that diamidophosphate (DAP), in a one-pot amidophosphorylation-hydrolysis setting converts NMPs into the corresponding NTPs via 5'-nucleoside amidophosphates (NaPs). The resulting crude mixture of NTPs are accepted by proteinaceous- and ribozyme-polymerases as substrates for nucleic acid polymerization. This phosphorylation also operates at the level of oligonucleotides enabling ribozyme-mediated ligation. This one-pot protocol for simultaneous generation of NaPs and NTPs suggests that the transition from prebiotic-phosphorylation and oligomerization to an enzymatic processive-polymerization can be more continuous than previously anticipated.
Collapse
Affiliation(s)
- Huacan Lin
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF-NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA
| | - Eddy I Jiménez
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joshua T Arriola
- Department of Chemistry and Biochemistry, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.,NSF-NASA Center for Chemical Evolution, Atlanta, GA, 30332, USA
| |
Collapse
|
16
|
Kockler ZW, Gordenin DA. From RNA World to SARS-CoV-2: The Edited Story of RNA Viral Evolution. Cells 2021; 10:1557. [PMID: 34202997 PMCID: PMC8234929 DOI: 10.3390/cells10061557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The current SARS-CoV-2 pandemic underscores the importance of understanding the evolution of RNA genomes. While RNA is subject to the formation of similar lesions as DNA, the evolutionary and physiological impacts RNA lesions have on viral genomes are yet to be characterized. Lesions that may drive the evolution of RNA genomes can induce breaks that are repaired by recombination or can cause base substitution mutagenesis, also known as base editing. Over the past decade or so, base editing mutagenesis of DNA genomes has been subject to many studies, revealing that exposure of ssDNA is subject to hypermutation that is involved in the etiology of cancer. However, base editing of RNA genomes has not been studied to the same extent. Recently hypermutation of single-stranded RNA viral genomes have also been documented though its role in evolution and population dynamics. Here, we will summarize the current knowledge of key mechanisms and causes of RNA genome instability covering areas from the RNA world theory to the SARS-CoV-2 pandemic of today. We will also highlight the key questions that remain as it pertains to RNA genome instability, mutations accumulation, and experimental strategies for addressing these questions.
Collapse
Affiliation(s)
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA;
| |
Collapse
|
17
|
Prosdocimi F, de Farias ST. Life and living beings under the perspective of organic macrocodes. Biosystems 2021; 206:104445. [PMID: 34033908 DOI: 10.1016/j.biosystems.2021.104445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022]
Abstract
A powerful and concise concept of life is crucial for studies aiming to understand the characteristics that emerged from an inorganic world. Among biologists, the most accepted argument define life under a top-down strategy by looking into the shared characteristics observed in all cellular organisms. This is often made highlighting (i) autonomy and (ii) evolutionary capacity as fundamental characteristics observed in all cellular organisms. Along the present work, we assume the framework of code biology considering that biology started with the emergence of the first organic code by self-organization. We reinforces that the conceptual structure of life should be reallocated from the ontology class of Matter to its sister class of Process. Along the emergence and early evolution of biological systems, biological codes changed from open systems of "naked" molecules (at the progenote era), to close, encapsulated systems (at the organismic era). Living beings appeared at the very moment when nucleic acids with coding properties became encapsulated. This led to the origin of viruses and, then, to the origin of cells. In this context, we propose that the single character that makes a clear distinction between the abiotic and the biotic world is the capacity to process organic codes. Thus, life appears with the self-assembly of a genetic code and evolves by the emergence of other overlapping codes. Once life has been clearly conceptualized, we go further to conceptualize organisms, parents, lineages, and species in terms of code biology.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK.
| |
Collapse
|
18
|
Jiménez EI, Gibard C, Krishnamurthy R. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eddy I. Jiménez
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Clémentine Gibard
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Ramanarayanan Krishnamurthy
- The Department of Chemistry The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
19
|
Jiménez EI, Gibard C, Krishnamurthy R. Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA. Angew Chem Int Ed Engl 2021; 60:10775-10783. [PMID: 33325148 DOI: 10.1002/anie.202015910] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Indexed: 12/14/2022]
Abstract
Recent demonstrations of RNA-DNA chimeras (RDNA) enabling RNA and DNA replication, coupled with prebiotic co-synthesis of deoxyribo- and ribo-nucleotides, have resurrected the hypothesis of co-emergence of RNA and DNA. As further support, we show that diamidophosphate (DAP) with 2-aminoimidazole (amido)phosphorylates and oligomerizes deoxynucleosides to form DNA-under conditions similar to those of ribonucleosides. The pyrimidine deoxynucleoside 5'-O-amidophosphates are formed in good (≈60 %) yields. Intriguingly, the presence of pyrimidine deoxynucleos(t)ides increased the yields of purine deoxynucleotides (≈20 %). Concomitantly, oligomerization (≈18-31 %) is observed with predominantly 3',5'-phosphodiester DNA linkages, and some (<5 %) pyrophosphates. Combined with previous observations of DAP-mediated chemistries and the constructive role of RDNA chimeras, the results reported here help set the stage for systematic investigation of a systems chemistry approach of RNA-DNA coevolution.
Collapse
Affiliation(s)
- Eddy I Jiménez
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Clémentine Gibard
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ramanarayanan Krishnamurthy
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
20
|
Cruz-González A, Muñoz-Velasco I, Cottom-Salas W, Becerra A, Campillo-Balderas JA, Hernández-Morales R, Vázquez-Salazar A, Jácome R, Lazcano A. Structural analysis of viral ExoN domains reveals polyphyletic hijacking events. PLoS One 2021; 16:e0246981. [PMID: 33730017 PMCID: PMC7968707 DOI: 10.1371/journal.pone.0246981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Nidoviruses and arenaviruses are the only known RNA viruses encoding a 3’-5’ exonuclease domain (ExoN). The proofreading activity of the ExoN domain has played a key role in the growth of nidoviral genomes, while in arenaviruses this domain partakes in the suppression of the host innate immune signaling. Sequence and structural homology analyses suggest that these proteins have been hijacked from cellular hosts many times. Analysis of the available nidoviral ExoN sequences reveals a high conservation level comparable to that of the viral RNA-dependent RNA polymerases (RdRp), which are the most conserved viral proteins. Two highly preserved zinc fingers are present in all nidoviral exonucleases, while in the arenaviral protein only one zinc finger can be identified. This is in sharp contrast with the reported lack of zinc fingers in cellular ExoNs, and opens the possibility of therapeutic strategies in the struggle against COVID-19.
Collapse
Affiliation(s)
- Adrián Cruz-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | - Wolfgang Cottom-Salas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
| | | | | | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, United States of America
| | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- * E-mail: (AL); (RJ)
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México
- El Colegio Nacional, México City, México
- * E-mail: (AL); (RJ)
| |
Collapse
|
21
|
Is it possible that cells have had more than one origin? Biosystems 2021; 202:104371. [PMID: 33524470 DOI: 10.1016/j.biosystems.2021.104371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
Cells occupy a prominent place in the history of life in Earth. The central role of cellular organization can be understood by the fact that "cellular life" is often used as a synonym for life itself. Thus, most characteristics used to define cell overlap with those ones used to define life. However, innovative scenarios for the origin of life are bringing alternative views to describe how cells may have evolved from the open biological systems named progenotes. Here, using a logical and conceptual analysis, we re-evaluate the characteristics used to infer a single origin for cells. We argue that some evidences used to support cell monophyly, such as the presence of elements from the translation mechanism together with the universality of the genetic code, actually indicate a unique origin for all "biological systems", a term used to define not only cells, but also viruses and progenotes. Besides, we present evidence that at least two biochemical pathways as important as (i) DNA replication and (ii) lipid biosynthesis are not homologous between Bacteria and Archaea. The identities observed between the proteins involved in those pathways along representatives of these two ancestral domains of life are too low to indicate common genic ancestry. Altogether these facts can be seen as an indication that cellular organization has possibly evolved two or more times and that LUCA (the Last Universal Common Ancestor) may not have existed as a cellular entity. Thus, we aim to consider the possibility that different strategies acquired by biological systems to exist, such as viral, bacterial and archaeal were most likely originated independently from the evolution of different progenote populations.
Collapse
|
22
|
Frenkel-Pinter M, Haynes JW, Mohyeldin AM, C M, Sargon AB, Petrov AS, Krishnamurthy R, Hud NV, Williams LD, Leman LJ. Mutually stabilizing interactions between proto-peptides and RNA. Nat Commun 2020; 11:3137. [PMID: 32561731 PMCID: PMC7305224 DOI: 10.1038/s41467-020-16891-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
The close synergy between peptides and nucleic acids in current biology is suggestive of a functional co-evolution between the two polymers. Here we show that cationic proto-peptides (depsipeptides and polyesters), either produced as mixtures from plausibly prebiotic dry-down reactions or synthetically prepared in pure form, can engage in direct interactions with RNA resulting in mutual stabilization. Cationic proto-peptides significantly increase the thermal stability of folded RNA structures. In turn, RNA increases the lifetime of a depsipeptide by >30-fold. Proto-peptides containing the proteinaceous amino acids Lys, Arg, or His adjacent to backbone ester bonds generally promote RNA duplex thermal stability to a greater magnitude than do analogous sequences containing non-proteinaceous residues. Our findings support a model in which tightly-intertwined biological dependencies of RNA and protein reflect a long co-evolutionary history that began with rudimentary, mutually-stabilizing interactions at early stages of polypeptide and nucleic acid co-existence.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jay W Haynes
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ahmad M Mohyeldin
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Martin C
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alyssa B Sargon
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anton S Petrov
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ramanarayanan Krishnamurthy
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Nicholas V Hud
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Loren Dean Williams
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA. .,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, Atlanta, GA, USA. .,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
23
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
24
|
de Farias ST, José MV. Transfer RNA: The molecular demiurge in the origin of biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:28-34. [PMID: 32105652 DOI: 10.1016/j.pbiomolbio.2020.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 01/24/2023]
Abstract
Herein, we review recent works on the role that the tRNA molecule played in the early origins of biological systems. tRNAs gave origin to the first genes (mRNA), the peptidyl transferase center (PTC), the 16S ribosomal molecule, proto-tRNAs were at the core of a proto-translation system, and the anticodon and operational codes appeared in tRNAs molecules. Metabolic pathways emerged from evolutionary pressures of the decoding systems. The transitions from the RNA world to the ribonucleoprotein world to modern biological systems were driven by two kinds of tRNAs transitions, to wit, tRNAs leading to both mRNA and rRNA.
Collapse
Affiliation(s)
- Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México CDMX, C.P. 04510, Mexico.
| |
Collapse
|
25
|
Abstract
The chemistry of abiotic nucleotide synthesis of RNA and DNA in the context of their prebiotic origins on early earth is a continuing challenge. How did (or how can) the nucleotides form and assemble from the small molecule inventories and under conditions that prevailed on early earth 3.5-4 billion years ago? This review provides a background and up-to-date progress that will allow the reader to judge where the field stands currently and what remains to be achieved. We start with a brief primer on the biological synthesis of nucleotides, followed by an extensive focus on the prebiotic formation of the components of nucleotides-either via the synthesis of ribose and the canonical nucleobases and then joining them together or by building both the conjoined sugar and nucleobase, part-by-part-toward the ultimate goal of forming RNA and DNA by polymerization. The review will emphasize that there are-and will continue to be-many more questions than answers from the synthetic, mechanistic, and analytical perspectives. We wrap up the review with a cautionary note in this context about coming to conclusions as to whether the problem of chemistry of prebiotic nucleotide synthesis has been solved.
Collapse
Affiliation(s)
- Mahipal Yadav
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ravi Kumar
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States.,NSF-NASA Center for Chemical Evolution, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Abstract
Viruses are diverse parasites of cells and extremely abundant. They might have arisen during an early phase of the evolution of life on Earth dominated by ribonucleic acid or RNA-like macromolecules, or when a cellular world was already well established. The theories of the origin of life on Earth shed light on the possible origin of primitive viruses or virus-like genetic elements in our biosphere. Some features of present-day viruses, notably error-prone replication, might be a consequence of the selective forces that mediated their ancestral origin. Two views on the role of viruses in our biosphere predominate; viruses considered as opportunistic, selfish elements, and viruses considered as active participants in the construction of the cellular world via the lateral transfer of genes. These two models have a bearing on viruses being considered predominantly as disease agents or predominantly as cooperators in the shaping of differentiated cellular organisms.
Collapse
|
27
|
Pérez-Ortín JE, Tordera V, Chávez S. Homeostasis in the Central Dogma of molecular biology: the importance of mRNA instability. RNA Biol 2019; 16:1659-1666. [PMID: 31418631 PMCID: PMC6844571 DOI: 10.1080/15476286.2019.1655352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/22/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022] Open
Abstract
Cell survival requires the control of biomolecule concentration, i.e. biomolecules should approach homeostasis. With information-carrying macromolecules, the particular concentration variation ranges depend on each type: DNA is not buffered, but mRNA and protein concentrations are homeostatically controlled, which leads to the ribostasis and proteostasis concepts. In recent years, we have studied the particular features of mRNA ribostasis and proteostasis in the model organism S. cerevisiae. Here we extend this study by comparing published data from three other model organisms: E. coli, S. pombe and cultured human cells. We describe how mRNA ribostasis is less strict than proteostasis. A constant ratio appears between the average decay and dilution rates during cell growth for mRNA, but not for proteins. We postulate that this is due to a trade-off between the cost of synthesis and the response capacity. This compromise takes place at the transcription level, but is not possible at the translation level as the high stability of proteins, versus that of mRNAs, precludes it. We hypothesize that the middle-place role of mRNA in the Central Dogma of Molecular Biology and its chemical instability make it more suitable than proteins for the fast changes needed for gene regulation.
Collapse
Affiliation(s)
| | | | - Sebastián Chávez
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario Virgen del Rocío. Campus Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
28
|
Bhowmik S, Krishnamurthy R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat Chem 2019; 11:1009-1018. [PMID: 31527850 PMCID: PMC6815252 DOI: 10.1038/s41557-019-0322-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
Hypotheses of the origins of RNA and DNA are generally centred on the prebiotic synthesis of a pristine system (pre-RNA or RNA), which gives rise to its descendent. However, a lack of specificity in the synthesis of genetic polymers would probably result in chimeric sequences; the roles and fate of such sequences are unknown. Here, we show that chimeras, exemplified by mixed threose nucleic acid (TNA)-RNA and RNA-DNA oligonucleotides, preferentially bind to, and act as templates for, homogeneous TNA, RNA and DNA ligands. The chimeric templates can act as a catalyst that mediates the ligation of oligomers to give homogeneous backbone sequences, and the regeneration of the chimeric templates potentiates a scenario for a possible cross-catalytic cycle with amplification. This process provides a proof-of-principle demonstration of a heterogeneity-to-homogeneity scenario and also gives credence to the idea that DNA could appear concurrently with RNA, instead of being its later descendent.
Collapse
Affiliation(s)
- Subhendu Bhowmik
- The Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
29
|
Mariscal C, Barahona A, Aubert-Kato N, Aydinoglu AU, Bartlett S, Cárdenas ML, Chandru K, Cleland C, Cocanougher BT, Comfort N, Cornish-Bowden A, Deacon T, Froese T, Giovannelli D, Hernlund J, Hut P, Kimura J, Maurel MC, Merino N, Moreno A, Nakagawa M, Peretó J, Virgo N, Witkowski O, James Cleaves H. Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report. ORIGINS LIFE EVOL B 2019; 49:111-145. [PMID: 31399826 DOI: 10.1007/s11084-019-09580-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
In this review, we describe some of the central philosophical issues facing origins-of-life research and provide a targeted history of the developments that have led to the multidisciplinary field of origins-of-life studies. We outline these issues and developments to guide researchers and students from all fields. With respect to philosophy, we provide brief summaries of debates with respect to (1) definitions (or theories) of life, what life is and how research should be conducted in the absence of an accepted theory of life, (2) the distinctions between synthetic, historical, and universal projects in origins-of-life studies, issues with strategies for inferring the origins of life, such as (3) the nature of the first living entities (the "bottom up" approach) and (4) how to infer the nature of the last universal common ancestor (the "top down" approach), and (5) the status of origins of life as a science. Each of these debates influences the others. Although there are clusters of researchers that agree on some answers to these issues, each of these debates is still open. With respect to history, we outline several independent paths that have led to some of the approaches now prevalent in origins-of-life studies. These include one path from early views of life through the scientific revolutions brought about by Linnaeus (von Linn.), Wöhler, Miller, and others. In this approach, new theories, tools, and evidence guide new thoughts about the nature of life and its origin. We also describe another family of paths motivated by a" circularity" approach to life, which is guided by such thinkers as Maturana & Varela, Gánti, Rosen, and others. These views echo ideas developed by Kant and Aristotle, though they do so using modern science in ways that produce exciting avenues of investigation. By exploring the history of these ideas, we can see how many of the issues that currently interest us have been guided by the contexts in which the ideas were developed. The disciplinary backgrounds of each of these scholars has influenced the questions they sought to answer, the experiments they envisioned, and the kinds of data they collected. We conclude by encouraging scientists and scholars in the humanities and social sciences to explore ways in which they can interact to provide a deeper understanding of the conceptual assumptions, structure, and history of origins-of-life research. This may be useful to help frame future research agendas and bring awareness to the multifaceted issues facing this challenging scientific question.
Collapse
Affiliation(s)
- Carlos Mariscal
- Department of Philosophy, Ecology, Evolution, and Conservation Biology (EECB) Program, and Integrative Neuroscience Program, University of Nevada, Reno (UNR), Reno, Nevada, USA
| | - Ana Barahona
- Department of Evolutionary Biology, School of Sciences, UNAM, 04510, CDMX, Coyoacán, Mexico
| | - Nathanael Aubert-Kato
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Department of Information Sciences, Ochanomizu University, Bunkyoku, Otsuka, 2-1-1, Tokyo, 112-0012, Japan
| | - Arsev Umur Aydinoglu
- Blue Marble Space Institute of Science, Washington, DC, 20011, USA
- Science and Technology Policies Department, Middle East Technical University (METU), 06800, Ankara, Turkey
| | - Stuart Bartlett
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA
| | | | - Kuhan Chandru
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Space Science Centre (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technicka 5, 16628, Prague, 6, Dejvice, Czech Republic
| | - Carol Cleland
- Department of Philosophy, University of Colorado, Boulder, Colorado, USA
| | - Benjamin T Cocanougher
- Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Nathaniel Comfort
- Department of the History of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Terrence Deacon
- Department of Anthropology & Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Tom Froese
- Institute for Applied Mathematics and Systems Research (IIMAS), National Autonomous University of Mexico (UNAM), 04510, Mexico City, Mexico
- Centre for the Sciences of Complexity (C3), National Autonomous University of Mexico (UNAM), 04510, Mexico City, Mexico
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
- Department of Marine and Coastal Science, Rutgers University, 71 Dudley Rd, New Brunswick, NJ, 08901, USA
- YHouse, Inc., NY, 10159, New York, USA
- Department of Biology, University of Naples "Federico II", Via Cinthia, 80156, Naples, Italy
| | - John Hernlund
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Piet Hut
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - Jun Kimura
- Department of Earth and Space Science, Osaka University, Machikaneyama-Chou 1-1, Toyonaka City, Osaka, 560-0043, Japan
| | | | - Nancy Merino
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Department of Earth Sciences, University of Southern California, California, Los Angeles, 90089, USA
| | - Alvaro Moreno
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country, Avenida de Tolosa 70, 20018, Donostia-San Sebastian, Spain
| | - Mayuko Nakagawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
| | - Juli Peretó
- Department of Biochemistry and Molecular Biology, University of Valéncia and Institute for Integrative Systems Biology I2SysBio (University of Valéncia-CSIC), València, Spain
| | - Nathaniel Virgo
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- European Centre for Living Technology, Venice, Italy
| | - Olaf Witkowski
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8551, Japan.
- Blue Marble Space Institute of Science, Washington, DC, 20011, USA.
- Institute for Advanced Study, Princeton, NJ, 08540, USA.
- European Centre for Living Technology, Venice, Italy.
- Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
30
|
Frenkel-Pinter M, Haynes JW, C M, Petrov AS, Burcar BT, Krishnamurthy R, Hud NV, Leman LJ, Williams LD. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc Natl Acad Sci U S A 2019; 116:16338-16346. [PMID: 31358633 PMCID: PMC6697887 DOI: 10.1073/pnas.1904849116] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous long-standing questions in origins-of-life research center on the history of biopolymers. For example, how and why did nature select the polypeptide backbone and proteinaceous side chains? Depsipeptides, containing both ester and amide linkages, have been proposed as ancestors of polypeptides. In this paper, we investigate cationic depsipeptides that form under mild dry-down reactions. We compare the oligomerization of various cationic amino acids, including the cationic proteinaceous amino acids (lysine, Lys; arginine, Arg; and histidine, His), along with nonproteinaceous analogs of Lys harboring fewer methylene groups in their side chains. These analogs, which have been discussed as potential prebiotic alternatives to Lys, are ornithine, 2,4-diaminobutyric acid, and 2,3-diaminopropionic acid (Orn, Dab, and Dpr). We observe that the proteinaceous amino acids condense more extensively than these nonproteinaceous amino acids. Orn and Dab readily cyclize into lactams, while Dab and Dpr condense less efficiently. Furthermore, the proteinaceous amino acids exhibit more selective oligomerization through their α-amines relative to their side-chain groups. This selectivity results in predominantly linear depsipeptides in which the amino acids are α-amine-linked, analogous to today's proteins. These results suggest a chemical basis for the selection of Lys, Arg, and His over other cationic amino acids for incorporation into proto-proteins on the early Earth. Given that electrostatics are key elements of protein-RNA and protein-DNA interactions in extant life, we hypothesize that cationic side chains incorporated into proto-peptides, as reported in this study, served in a variety of functions with ancestral nucleic acid polymers in the early stages of life.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jay W Haynes
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Martin C
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anton S Petrov
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| | - Bradley T Burcar
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Ramanarayanan Krishnamurthy
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Nicholas V Hud
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
| | - Luke J Leman
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332;
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Loren Dean Williams
- National Science Foundation (NSF)-National Aeronautics and Space Administration (NASA) Center for Chemical Evolution, Atlanta, GA 30332;
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332
- NASA Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
31
|
Kaur S, Sharma P, Wetmore SD. Can Cyanuric Acid and 2,4,6-Triaminopyrimidine Containing Ribonucleosides be Components of Prebiotic RNA? Insights from QM Calculations and MD Simulations. Chemphyschem 2019; 20:1425-1436. [PMID: 30997731 DOI: 10.1002/cphc.201900237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/09/2019] [Indexed: 01/05/2023]
Abstract
As a step toward assessing their fitness as pre-RNA nucleobases, we employ DFT and MD simulations to analyze the noncovalent interactions of cyanuric acid (CA) and 2,4,6-triaminopyrimidine (TAP), and the structural properties of the associated ribonucleosides (rNs) and oligonucleotides. Our calculations reveal that the TAP : CA pair has a comparable hydrogen-bond strength to the canonical A : U pair. This strengthens the candidature of CA and TAP as prebiotic nucleobases. Further, the stacking between two canonical nucleobases is stronger than those between TAP or CA and a canonical base, as well as those between two TAP and/or CA, which indicates that enhanced stacking may have served as a driving force for the evolution from prebiotic to canonical nucleobases. Similarities in the DFT-derived anti/syn rotational barriers and MD-derived (anti) glycosidic conformation of the CA and TAP rNs and canonical rNs further substantiate their candidature as pre-RNA components. Greater deglycosylation barriers (as obtained by DFT calculations) for TAP rNs compared to canonical rNs suggest TAP rNs indicate higher resistance to environmental factors, while lower barriers indicate that CA rNs were likely more suitable for less-challenging locations. Finally, the tight packing in narrow CA:TAP-containing helices suggests that the prebiotic polymers were shielded from water, which would aid their evolution into self-replicating systems. Our calculations thus support proposals that CA and TAP can act as nucleobases of pre-RNA.
Collapse
Affiliation(s)
- Sarabjeet Kaur
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Alberta, T1K 3M4, Canada
| |
Collapse
|
32
|
Cassone G, Kruse H, Sponer J. Interactions between cyclic nucleotides and common cations: an ab initio molecular dynamics study. Phys Chem Chem Phys 2019; 21:8121-8132. [PMID: 30932112 DOI: 10.1039/c8cp07492e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present the first, to the best of our knowledge, ab initio molecular dynamics (AIMD) investigation on three aqueous solutions where an abasic cyclic nucleotide model is solvated in the presence of distinct cations (i.e., Na+, K+ and Mg2+). We elucidate the typical modalities of interaction between those ionic species and the nucleotide moiety by first-principles numerical simulations, starting from an inner-shell binding configuration on a time scale of 100 ps (total simulation time of ∼600 ps). Whereas the strong "structure-maker" Mg2+ is permanently bound to one of the two oxygen atoms of the phosphate group of the nucleotide model, Na+ and K+ show binding times τb of 65 ps and 10-15 ps, respectively, thus reflecting their chemical nature in aqueous solutions. Furthermore, we qualitatively relate these findings to approximate free-energy barriers of the cations' unbinding obtained by means of exploratory well-tempered metadynamics. With the aim of shedding light on the features of commonly employed force-fields (FFs), classical MD simulations (almost 200 trajectories with a total simulation time of ∼18 μs) using the biomolecular AMBER FF are also reported. By choosing several combinations of the parametrization for the water environment (i.e., TIP3P, SPC/E and OPC) and cations (i.e., Joung-Cheatham, Li-Merz 12-6 and Li-Merz 12-6-4), we found significant differences in the radial distribution functions and residence times compared to the ab initio results. The Na+ and K+ ions wrongly show quasi-identical radial distribution functions and the Li & Merz 12-6-4 Lennard-Jones parameters for Mg2+ were found to be essential in quickly reaching the binding state consistent with AIMD.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | |
Collapse
|
33
|
Hedwig GR, Jameson GB, Høiland H. Volumetric Properties of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at T = (288.15 and 313.15) K and p = (10 to 100) MPa. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00856-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Conceptual challenges for the emergence of the biological system: Cell theory and self-replication. Med Hypotheses 2018; 119:79-83. [DOI: 10.1016/j.mehy.2018.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 11/20/2022]
|
35
|
Wang W, Huang F, Sun C, Liu J, Sheng X, Chen D. A theoretical insight into the formation mechanisms of C/N-ribonucleosides with pyrimidine and ribose. Phys Chem Chem Phys 2017; 19:10413-10426. [PMID: 28379245 DOI: 10.1039/c6cp08068e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detailed formation mechanisms of C-ribonucleoside and N-ribonucleoside via the reaction of 2,4,6-triaminopyrimidine (TAP) with (d)-ribose in aqueous solution were explored using density functional theory (DFT). The calculations indicate that five isomers (α,β-furanose, α,β-pyranose and open-chain aldehyde) of (d)-ribose can exist in equilibrium in aqueous solution. In contrast to cyclic isomers, an open-chain aldehyde is most feasible to react with TAP. In general, the formation pathways of C-nucleoside and N-nucleoside proceed in three steps including nucleophilic addition, dehydration and cyclization. The calculated apparent activation energies are 28.8 kcal mol-1 and 29.2 kcal mol-1, respectively. It suggests that both C- and N-nucleoside can be formed in aqueous solution, which is in good agreement with the experimental results. The water molecule plays an important "H-bridge" role by the hydrogen atom relay. Finally, a model structure of nucleobase, which will be beneficial for the C-C glycosidic bond formation, is proposed.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | | | | | | | | | | |
Collapse
|
36
|
The Partial Molar Isothermal Compressions of the Nucleosides Adenosine, Cytidine, and Uridine in Aqueous Solution at T = (288.15 and 313.15) K. J SOLUTION CHEM 2017. [DOI: 10.1007/s10953-017-0606-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Krishnamurthy R. Giving Rise to Life: Transition from Prebiotic Chemistry to Protobiology. Acc Chem Res 2017; 50:455-459. [PMID: 28945387 DOI: 10.1021/acs.accounts.6b00470] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The challenge of a chemical approach to the origins of life problem involves comprehending the transition from prebiotic chemistry to protobiology. This endeavor demands demonstrating the metamorphosis of a diverse pool of prebiotic building blocks (heterogeneous heterogeneity) into a conglomerate self-assembling system (homogeneous heterogeneity) capable of evolution.
Collapse
Affiliation(s)
- Ramanarayanan Krishnamurthy
- The Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
38
|
Gavette JV, Stoop M, Hud NV, Krishnamurthy R. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse V. Gavette
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Matthias Stoop
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| |
Collapse
|
39
|
Gavette JV, Stoop M, Hud NV, Krishnamurthy R. RNA-DNA Chimeras in the Context of an RNA World Transition to an RNA/DNA World. Angew Chem Int Ed Engl 2016; 55:13204-13209. [DOI: 10.1002/anie.201607919] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Jesse V. Gavette
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Matthias Stoop
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Nicholas V. Hud
- School of Chemistry and Biochemistry; Georgia Institute of Technology; Atlanta GA 30332 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| | - Ramanarayanan Krishnamurthy
- Department of Chemistry; The Scripps Research Institute; 10550 N. Torrey Pines Rd. La Jolla CA 92037 USA
- NSF-NASA Center for Chemical Evolution; Atlanta GA 30332 USA
| |
Collapse
|
40
|
Sharma C, Awasthi SK. Versatility of peptide nucleic acids (PNAs): role in chemical biology, drug discovery, and origins of life. Chem Biol Drug Des 2016; 89:16-37. [PMID: 27490868 DOI: 10.1111/cbdd.12833] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/03/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022]
Abstract
This review briefly discussed nomenclature, synthesis, chemistry, and biophysical properties of a plethora of PNA derivatives reported since the discovery of aegPNA. Different synthetic methods and structural analogs of PNA synthesized till date were also discussed. An insight was gained into various chemical, physical, and biological properties of PNA which make it preferable over all other classes of modified nucleic acid analogs. Thereafter, various approaches with special attention to the practical constraints, characteristics, and inherent drawbacks leading to the delay in the development of PNA as gene therapeutic drug were outlined. An explicit account of the successful application of PNA in different areas of research such as antisense and antigene strategies, diagnostics, molecular probes, and so forth was described along with the current status of PNA as gene therapeutic drug. Further, the plausibility of the existence of PNA and its role in primordial chemistry, that is, origin of life was explored in an endeavor to comprehend the mystery and open up its deepest secrets ever engaging and challenging the human intellect. We finally concluded it with a discussion on the future prospects of PNA technology in the field of therapeutics, diagnostics, and origin of life.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
41
|
Smith KE, House CH, Dworkin JP, Callahan MP. Spontaneous Oligomerization of Nucleotide Alternatives in Aqueous Solutions. ORIGINS LIFE EVOL B 2016; 47:3-11. [PMID: 27029792 DOI: 10.1007/s11084-016-9484-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/23/2016] [Indexed: 11/25/2022]
Abstract
On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.
Collapse
Affiliation(s)
- Karen E Smith
- Department of Geosciences and Penn State Astrobiology Research Center, Pennsylvania State University, University Park, PA, 16802, USA
| | - Christopher H House
- Department of Geosciences and Penn State Astrobiology Research Center, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jason P Dworkin
- Solar System Exploration Division and Goddard Center for Astrobiology, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Michael P Callahan
- Solar System Exploration Division and Goddard Center for Astrobiology, National Aeronautics and Space Administration Goddard Space Flight Center, Greenbelt, MD, 20771, USA.
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
42
|
tRNA Core Hypothesis for the Transition from the RNA World to the Ribonucleoprotein World. Life (Basel) 2016; 6:life6020015. [PMID: 27023615 PMCID: PMC4931452 DOI: 10.3390/life6020015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/29/2016] [Accepted: 03/18/2016] [Indexed: 01/10/2023] Open
Abstract
Herein we present the tRNA core hypothesis, which emphasizes the central role of tRNAs molecules in the origin and evolution of fundamental biological processes. tRNAs gave origin to the first genes (mRNA) and the peptidyl transferase center (rRNA), proto-tRNAs were at the core of a proto-translation system, and the anticodon and operational codes then arose in tRNAs molecules. Metabolic pathways emerged from evolutionary pressures of the decoding systems. The transitions from the RNA world to the ribonucleoprotein world to modern biological systems were driven by three kinds of tRNAs transitions, to wit, tRNAs leading to both mRNA and rRNA.
Collapse
|
43
|
Introduction to Virus Origins and Their Role in Biological Evolution. VIRUS AS POPULATIONS 2016. [PMCID: PMC7204881 DOI: 10.1016/b978-0-12-800837-9.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viruses are extremely abundant and diverse parasites of cells. They might have arisen during an early phase of the evolution of life on Earth dominated by RNA or RNA-like macromolecules, or when a cellular world was already well established. The theories of the origin of life on Earth shed light on the possible origin of primitive viruses or virus-like genetic elements in our biosphere. Some features of present day viruses, notably error-prone replication, might be a consequence of the selective forces that mediated their ancestral origin. Two views on the role of viruses in our biosphere predominate: viruses considered as opportunistic, selfish elements, and viruses considered as active participants in the construction of the cellular world via lateral transfers of genes. These two models bear on considering viruses predominantly as disease agents or predominantly as cooperators in the shaping of differentiated cellular organisms.
Collapse
|
44
|
Ma W, Yu C, Zhang W, Wu S, Feng Y. The emergence of DNA in the RNA world: an in silico simulation study of genetic takeover. BMC Evol Biol 2015; 15:272. [PMID: 26643199 PMCID: PMC4672488 DOI: 10.1186/s12862-015-0548-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is now popularly accepted that there was an "RNA world" in early evolution of life. This idea has a direct consequence that later on there should have been a takeover of genetic material - RNA by DNA. However, since genetic material carries genetic information, the "source code" of all living activities, it is actually reasonable to question the plausibility of such a "revolutionary" transition. Due to our inability to model relevant "primitive living systems" in reality, it is as yet impossible to explore the plausibility and mechanisms of the "genetic takeover" by experiments. RESULTS Here we investigated this issue by computer simulation using a Monte-Carlo method. It shows that an RNA-by-DNA genetic takeover may be triggered by the emergence of a nucleotide reductase ribozyme with a moderate activity in a pure RNA system. The transition is unstable and limited in scale (i.e., cannot spread in the population), but can get strengthened and globalized if certain parameters are changed against RNA (i.e., in favor of DNA). In relation to the subsequent evolution, an advanced system with a larger genome, which uses DNA as genetic material and RNA as functional material, is modeled - the system cannot sustain if the nucleotide reductase ribozyme is "turned off" (thus, DNA cannot be synthesized). Moreover, the advanced system cannot sustain if only DNA's stability, template suitability or replication fidelity (any of the three) is turned down to the level of RNA's. CONCLUSIONS Genetic takeover should be plausible. In the RNA world, such a takeover may have been triggered by the emergence of some ribozyme favoring the formation of deoxynucleotides. The transition may initially have been "weak", but could have been reinforced by environmental changes unfavorable to RNA (such as temperature or pH rise), and would have ultimately become irreversible accompanying the genome's enlargement. Several virtues of DNA (versus RNA) - higher stability against hydrolysis, greater suitability as template and higher fidelity in replication, should have, each in its own way, all been significant for the genetic takeover in evolution. This study enhances our understandings of the relationship between information and material in the living world.
Collapse
Affiliation(s)
- Wentao Ma
- College of Life Sciences, Wuhan University, Wuhan, 430072, P.R.China.
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, 430072, P.R.China
| | - Wentao Zhang
- College of Computer Sciences, Wuhan University, Wuhan, 430072, P.R.China
| | - Sanmao Wu
- College of Life Sciences, Wuhan University, Wuhan, 430072, P.R.China
| | - Yu Feng
- College of Life Sciences, Wuhan University, Wuhan, 430072, P.R.China
| |
Collapse
|
45
|
Altstein AD. The progene hypothesis: the nucleoprotein world and how life began. Biol Direct 2015; 10:67. [PMID: 26612610 PMCID: PMC4662029 DOI: 10.1186/s13062-015-0096-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/13/2015] [Indexed: 12/16/2022] Open
Abstract
In this article, I review the results of studies on the origin of life distinct from the popular RNA world hypothesis. The alternate scenario postulates the origin of the first bimolecular genetic system (a polynucleotide gene and a polypeptide processive polymerase) with simultaneous replication and translation and includes the following key features: 1. The bimolecular genetic system emerges not from mononucleotides and monoamino acids, but from progenes, namely, trinucleotides aminoacylated on 3'-end by a non-random amino acid (NpNpNp ~ pX ~ Aa, where N--deoxyribo- or ribonucleoside, p--phosphate, X--a bifunctional agent, for example ribose, Aa--amino acid, ~ macroerge bond). Progenes are used as substrates for simultaneous synthesis of a polynucleotide and a polypeptide. Growth of the system is controlled by the growing polypeptide, and the bimolecular genetic system emerges as an extremely rare event. The first living being (virus-like organism protoviroid, Protoviroidum primum) arises and reproduces in prebiotic liposome-like structures using progenes. A population of protoviroids possessing the genetic system evolves in accordance with the Darwinian principle. Early evolution from protoviroid world to protocell world is shortly described. 2. The progene forming mechanism (NpNp + Np ~ pX ~ Aa) makes it possible to explain the emergence of the prebiotic physicochemical group genetic code, as well as the selection of organic compounds for the future genetic system from the racemic environment. 3. The protoviroid is reproduced on a progene basis via replicative transcription-translation (RTT, the first molecular genetic process) that is similar to its modern counterparts. Nothing is required for the emergence and reproduction of the protoviroid except for progenes and conditions for their formation. 4. The general scheme of early evolution is as follows: prebiotic world → protoviroid (nucleoprotein) world → protocell (DNA-RNA-protein) world → LUCA (Last Universal Common Ancestor) → modern cell world. This scheme exclude the existence of an independent RNA world as predecessor of the cellular world.
Collapse
Affiliation(s)
- Anatoly D Altstein
- Institute of Gene Biology RAS, NF Gamaleya Federal Center of Epidemiology and Microbiology, IM Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
46
|
Pino S, Sponer JE, Costanzo G, Saladino R, Mauro ED. From formamide to RNA, the path is tenuous but continuous. Life (Basel) 2015; 5:372-84. [PMID: 25647486 PMCID: PMC4390857 DOI: 10.3390/life5010372] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/11/2023] Open
Abstract
Reactions of formamide (NH2COH) in the presence of catalysts of both terrestrial and meteoritic origin yield, in plausible and variegated conditions, a large panel of precursors of (pre)genetic and (pre)metabolic interest. Formamide chemistry potentially satisfies all of the steps from the very initial precursors to RNA. Water chemistry enters the scene in RNA non-enzymatic synthesis and recombination.
Collapse
Affiliation(s)
- Samanta Pino
- Fondazione "Istituto Pasteur-Fondazione Cenci-Bolognetti" c/o Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
- CEITEC-Central European Institute of Technology, Masaryk University, Campus Bohunice, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Giovanna Costanzo
- Istituto di Biologia e Patologia Molecolari, CNR, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Raffaele Saladino
- Dipartimento di Scienze Ecologiche e Biologiche Università della Tuscia Via San Camillo De Lellis, 01100 Viterbo, Italy.
| | - Ernesto Di Mauro
- Fondazione "Istituto Pasteur-Fondazione Cenci-Bolognetti" c/o Dipartimento di Biologia e Biotecnologie "Charles Darwin", "Sapienza" Università di Roma, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
47
|
The case for an early biological origin of DNA. J Mol Evol 2014; 79:204-12. [PMID: 25425102 PMCID: PMC4247479 DOI: 10.1007/s00239-014-9656-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
Abstract
All life generates deoxyribonucleotides, the building blocks of DNA, via ribonucleotide reductases (RNRs). The complexity of this reaction suggests it did not evolve until well after the advent of templated protein synthesis, which in turn suggests DNA evolved later than both RNA and templated protein synthesis. However, deoxyribonucleotides may have first been synthesised via an alternative, chemically simpler route—the reversal of the deoxyriboaldolase (DERA) step in deoxyribonucleotide salvage. In light of recent work demonstrating that this reaction can drive synthesis of deoxyribonucleosides, we consider what pressures early adoption of this pathway would have placed on cell metabolism. This in turn provides a rationale for the replacement of DERA-dependent DNA production by RNR-dependent production.
Collapse
|
48
|
Szilágyi A, Kun Á, Szathmáry E. Local neutral networks help maintain inaccurately replicating ribozymes. PLoS One 2014; 9:e109987. [PMID: 25299454 PMCID: PMC4192543 DOI: 10.1371/journal.pone.0109987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/05/2014] [Indexed: 12/03/2022] Open
Abstract
The error threshold of replication limits the selectively maintainable genome size against recurrent deleterious mutations for most fitness landscapes. In the context of RNA replication a distinction between the genotypic and the phenotypic error threshold has been made; where the latter concerns the maintenance of secondary structure rather than sequence. RNA secondary structure is treated as a proxy for function. The phenotypic error threshold allows higher per digit mutation rates than its genotypic counterpart, and is known to increase with the frequency of neutral mutations in sequence space. Here we show that the degree of neutrality, i.e. the frequency of nearest-neighbour (one-step) neutral mutants is a remarkably accurate proxy for the overall frequency of such mutants in an experimentally verifiable formula for the phenotypic error threshold; this we achieve by the full numerical solution for the concentration of all sequences in mutation-selection balance up to length 16. We reinforce our previous result that currently known ribozymes could be selectively maintained by the accuracy known from the best available polymerase ribozymes. Furthermore, we show that in silico stabilizing selection can increase the mutational robustness of ribozymes due to the fact that they were produced by artificial directional selection in the first place. Our finding offers a better understanding of the error threshold and provides further insight into the plausibility of an ancient RNA world.
Collapse
Affiliation(s)
- András Szilágyi
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
| | - Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE-MTM Ecology Research Group, Budapest, Hungary
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Budapest, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
49
|
Whelan DR, Hiscox TJ, Rood JI, Bambery KR, McNaughton D, Wood BR. Detection of an en masse and reversible B- to A-DNA conformational transition in prokaryotes in response to desiccation. J R Soc Interface 2014; 11:20140454. [PMID: 24898023 PMCID: PMC4208382 DOI: 10.1098/rsif.2014.0454] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/12/2014] [Indexed: 02/02/2023] Open
Abstract
The role that DNA conformation plays in the biochemistry of cells has been the subject of intensive research since DNA polymorphism was discovered. B-DNA has long been considered the native form of DNA in cells although alternative conformations of DNA are thought to occur transiently and along short tracts. Here, we report the first direct observation of a fully reversible en masse conformational transition between B- and A-DNA within live bacterial cells using Fourier transform infrared (FTIR) spectroscopy. This biospectroscopic technique allows for non-invasive and reagent-free examination of the holistic biochemistry of samples. For this reason, we have been able to observe the previously unknown conformational transition in all four species of bacteria investigated. Detection of this transition is evidence of a previously unexplored biological significance for A-DNA and highlights the need for new research into the role that A-DNA plays as a cellular defence mechanism and in stabilizing the DNA conformation. Such studies are pivotal in understanding the role of A-DNA in the evolutionary pathway of nucleic acids. Furthermore, this discovery demonstrates the exquisite capabilities of FTIR spectroscopy and opens the door for further investigations of cell biochemistry with this under-used technique.
Collapse
Affiliation(s)
- Donna R Whelan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Victoria 3800, Australia
| | - Thomas J Hiscox
- Department of Microbiology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Julian I Rood
- Department of Microbiology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Keith R Bambery
- Centre for Biospectroscopy, School of Chemistry, Monash University, Victoria 3800, Australia Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Don McNaughton
- Centre for Biospectroscopy, School of Chemistry, Monash University, Victoria 3800, Australia
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Victoria 3800, Australia
| |
Collapse
|
50
|
Volumetric Properties of the Nucleoside Thymidine in Aqueous Solution at T = 298.15 K and p = (10 to 100) MPa. J SOLUTION CHEM 2014. [DOI: 10.1007/s10953-014-0162-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|