1
|
Lee K, Huang X, Yang C, Lee D, Ho V, Nobuta K, Fan JB, Wang K. A genome-wide survey of highly expressed non-coding RNAs and biological validation of selected candidates in Agrobacterium tumefaciens. PLoS One 2013; 8:e70720. [PMID: 23950988 PMCID: PMC3738593 DOI: 10.1371/journal.pone.0070720] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/26/2013] [Indexed: 12/31/2022] Open
Abstract
Agrobacterium tumefaciens is a plant pathogen that has the natural ability of delivering and integrating a piece of its own DNA into plant genome. Although bacterial non-coding RNAs (ncRNAs) have been shown to regulate various biological processes including virulence, we have limited knowledge of how Agrobacterium ncRNAs regulate this unique inter-Kingdom gene transfer. Using whole transcriptome sequencing and an ncRNA search algorithm developed for this work, we identified 475 highly expressed candidate ncRNAs from A. tumefaciens C58, including 101 trans-encoded small RNAs (sRNAs), 354 antisense RNAs (asRNAs), 20 5' untranslated region (UTR) leaders including a RNA thermosensor and 6 riboswitches. Moreover, transcription start site (TSS) mapping analysis revealed that about 51% of the mapped mRNAs have 5' UTRs longer than 60 nt, suggesting that numerous cis-acting regulatory elements might be encoded in the A. tumefaciens genome. Eighteen asRNAs were found on the complementary strands of virA, virB, virC, virD, and virE operons. Fifteen ncRNAs were induced and 7 were suppressed by the Agrobacterium virulence (vir) gene inducer acetosyringone (AS), a phenolic compound secreted by the plants. Interestingly, fourteen of the AS-induced ncRNAs have putative vir box sequences in the upstream regions. We experimentally validated expression of 36 ncRNAs using Northern blot and Rapid Amplification of cDNA Ends analyses. We show functional relevance of two 5' UTR elements: a RNA thermonsensor (C1_109596F) that may regulate translation of the major cold shock protein cspA, and a thi-box riboswitch (C1_2541934R) that may transcriptionally regulate a thiamine biosynthesis operon, thiCOGG. Further studies on ncRNAs functions in this bacterium may provide insights and strategies that can be used to better manage pathogenic bacteria for plants and to improve Agrobacterum-mediated plant transformation.
Collapse
Affiliation(s)
- Keunsub Lee
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, Iowa, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, Iowa, United States of America
| | - Chichun Yang
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, Iowa, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | - Danny Lee
- Scientific Research, Illumina Inc., San Diego, California, United States of America
| | - Vincent Ho
- Scientific Research, Illumina Inc., San Diego, California, United States of America
| | - Kan Nobuta
- Scientific Research, Illumina Inc., San Diego, California, United States of America
| | - Jian-Bing Fan
- Scientific Research, Illumina Inc., San Diego, California, United States of America
| | - Kan Wang
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, Iowa, United States of America
- Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
2
|
Rogers TE, Ataide SF, Dare K, Katz A, Seveau S, Roy H, Ibba M. A pseudo-tRNA modulates antibiotic resistance in Bacillus cereus. PLoS One 2012; 7:e41248. [PMID: 22815980 PMCID: PMC3399842 DOI: 10.1371/journal.pone.0041248] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/19/2012] [Indexed: 01/18/2023] Open
Abstract
Bacterial genomic islands are often flanked by tRNA genes, which act as sites for the integration of foreign DNA into the host chromosome. For example, Bacillus cereus ATCC14579 contains a pathogenicity island flanked by a predicted pseudo-tRNA, tRNAOther, which does not function in translation. Deletion of tRNAOther led to significant changes in cell wall morphology and antibiotic resistance and was accompanied by changes in the expression of numerous genes involved in oxidative stress responses, several of which contain significant complementarities to sequences surrounding tRNAOther. This suggested that tRNAOther might be expressed as part of a larger RNA, and RACE analysis subsequently confirmed the existence of several RNA species that significantly extend both the 3′ and 5′-ends of tRNAOther. tRNAOther expression levels were found to be responsive to changes in extracellular iron concentration, consistent with the presence of three putative ferric uptake regulator (Fur) binding sites in the 5′ leader region of one of these larger RNAs. Taken together with previous data, this study now suggests that tRNAOther may function by providing a tRNA-like structural element within a larger regulatory RNA. These findings illustrate that while integration of genomic islands often leaves tRNA genes intact and functional, in other instances inactivation may generate tRNA-like elements that are then recruited to other functions in the cell.
Collapse
Affiliation(s)
- Theresa E. Rogers
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Sandro F. Ataide
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Kiley Dare
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Assaf Katz
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Stephanie Seveau
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Hervé Roy
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, United States of America
| | - Michael Ibba
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
- Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
3
|
Wegrzyn G, Wegrzyn A. Is tRNA only a translation factor or also a regulator of other processes? J Appl Genet 2008; 49:115-22. [PMID: 18263978 DOI: 10.1007/bf03195257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
tRNA has been discovered as a factor playing a central role in the translation of genetic information (encoded in DNA and transcribed to mRNA) into amino acid sequences of proteins. However, subsequent studies led to the hypothesis that during evolution, tRNA originated in replication, not translation. Indeed, there are many examples of tRNA-like molecules playing roles in reactions other than translation, including replication of various replicons. In this review, we have focused on functions of tRNA molecules (not tRNA-like structures) outside of their direct roles in translation as factors for a passive transportation of amino acids into a ribosome and deciphering triplets of nucleotides in codons of mRNA. Interestingly, it appears that such tRNA-dependent reactions are effective only when tRNA is uncharged. The most spectacular examples come from bacterial cells and include induction of the stringent control, regulation of transcription of some operons, and control of replication of ColE1-type plasmids. Recent studies indicated that tRNA (not only pre-tRNA, shown previously to be capable of self-excision of intron sequences) can be responsible for specific cleavage of another transcript, a ColE1 plasmid-encoded RNA I, which is involved in the regulation of plasmid DNA replication initiation. If this reaction is not restricted to RNA I but represents a more general phenomenon, one might suspect a potential role for uncharged tRNA molecules in regulation of various processes, whose efficiency depends on tRNA-cleavable RNAs. This kind of regulation would provide a possibility for a cell to respond to different nutrition conditions resulting in different levels of tRNA aminoacylation.
Collapse
Affiliation(s)
- Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland.
| | | |
Collapse
|
4
|
Chikova AK, Schaaper RM. The bacteriophage P1 hot gene product can substitute for the Escherichia coli DNA polymerase III {theta} subunit. J Bacteriol 2005; 187:5528-36. [PMID: 16077097 PMCID: PMC1196078 DOI: 10.1128/jb.187.16.5528-5536.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 05/20/2005] [Indexed: 11/20/2022] Open
Abstract
The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.
Collapse
Affiliation(s)
- Anna K Chikova
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|