1
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
2
|
Abstract
More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model.
Collapse
Affiliation(s)
- Flemming G. Hansen
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Tove Atlung
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
3
|
Zhao D, Chen X, Li K, Fu YV. The application of thermophilic DNA primase TtDnaG2 to DNA amplification. Sci Rep 2017; 7:12809. [PMID: 28993626 PMCID: PMC5634424 DOI: 10.1038/s41598-017-12241-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/06/2017] [Indexed: 11/09/2022] Open
Abstract
For DNA replication in vivo, DNA primase uses a complementary single-stranded DNA template to synthesize RNA primers ranging from 4 to 20 nucleotides in length, which are then elongated by DNA polymerase. Here, we report that, in the presence of double-stranded DNA, the thermophilic DNA primase TtDnaG2 synthesizes RNA primers of around 100 nucleotides with low initiation specificity at 70 °C. Analysing the structure of TtDnaG2, we identified that it adopts a compact conformation. The conserved sites in its zinc binding domain are sequestered away from its RNA polymerase domain, which might give rise to the low initiation specificity and synthesis of long RNA segments by TtDnaG2. Based on these unique features of TtDnaG2, a DNA amplification method has been developed. We utilized TtDnaG2 to synthesize RNA primers at 70 °C after 95 °C denaturation, followed by isothermal amplification with the DNA polymerase Bst3.0 or phi29. Using this method, we successfully amplified genomic DNA of a virus with 100% coverage and low copy number variation. Our data also demonstrate that this method can efficiently amplify circular DNA from a mixture of circular DNA and linear DNA, thus providing a tool to amplify low-copy-number circular DNA such as plasmids.
Collapse
Affiliation(s)
- D Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuqiang Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
| | - Yu V Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, 100101, China. .,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
4
|
Khlebodarova TM, Likhoshvai VA. New evidence of an old problem: The coupling of genome replication to cell growth in bacteria. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541408002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Likhoshvai VA, Khlebodarova TM. Mathematical modeling of bacterial cell cycle: the problem of coordinating genome replication with cell growth. J Bioinform Comput Biol 2014; 12:1450009. [PMID: 24969747 DOI: 10.1142/s0219720014500097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we perform an analysis of bacterial cell-cycle models implementing different strategies to coordinately regulate genome replication and cell growth dynamics. It has been shown that the problem of coupling these processes does not depend directly on the dynamics of cell volume expansion, but does depend on the type of cell growth law. Our analysis has distinguished two types of cell growth laws, "exponential" and "linear", each of which may include both exponential and linear patterns of cell growth. If a cell grows following a law of the "exponential" type, including the exponential V(t) = V(0) exp (kt) and linear V(t) = V(0)(1 + kt) dynamic patterns, then the cell encounters the problem of coupling growth rates and replication. It has been demonstrated that to solve the problem, it is sufficient for a cell to have a repressor mechanism to regulate DNA replication initiation. For a cell expanding its volume by a law of the "linear" type, including exponential V(t) = V(0) + V(1) exp (kt) and linear V(t) = V(0) + kt dynamic patterns, the problem of coupling growth rates and replication does not exist. In other words, in the context of the coupling problem, a repressor mechanism to regulate DNA replication, and cell growth laws of the "linear" type displays the attributes of universality. The repressor-type mechanism allows a cell to follow any growth dynamic pattern, while the "linear" type growth law allows a cell to use any mechanism to regulate DNA replication.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentieva 10, Novosibirsk 630090, Russia , Novosibirsk State University, av. Pirogova 2, Novosibirsk 630090, Russia
| | | |
Collapse
|
6
|
Grant MAA, Saggioro C, Ferrari U, Bassetti B, Sclavi B, Cosentino Lagomarsino M. DnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate. BMC SYSTEMS BIOLOGY 2011; 5:201. [PMID: 22189092 PMCID: PMC3309966 DOI: 10.1186/1752-0509-5-201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022]
Abstract
Background In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability. Results In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate. Conclusions We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in accordance with the known characteristics of the dnaA promoter. Furthermore, both inactivation and autorepression reduce the amplitude of the cell-cycle oscillations of DnaA-ATP/DNA.
Collapse
Affiliation(s)
- Matthew A A Grant
- BSS Group, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | | | | | | | | | | |
Collapse
|
7
|
Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus. PLoS Comput Biol 2009; 5:e1000463. [PMID: 19680425 PMCID: PMC2714070 DOI: 10.1371/journal.pcbi.1000463] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 07/09/2009] [Indexed: 01/20/2023] Open
Abstract
The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella).
Collapse
|
8
|
Hansen FG, Christensen BB, Atlung T. The initiator titration model: computer simulation of chromosome and minichromosome control. Res Microbiol 1991; 142:161-7. [PMID: 1925015 DOI: 10.1016/0923-2508(91)90025-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The initiator titration model was formulated to explain the initiation control of the bacterial chromosome. In particular, features concerning the replication behaviour of minichromosomes, such as their high copy number and Escherichia coli's ability to coinitiate chromosome and many minichromosome origins, were considered during the formulation of the model. The model is based on the initiator protein DnaA and its binding sites, DnaA boxes, in oriC, in the dnaA promoter and at other positions on the chromosome. Another important factor in the model is the eclipse period created by the hemimethylation of a new oriC which makes it refractory to initiation. The model was analysed by computer simulations using a stochastic approach varying the different input parameters, and the resulting computer cells were compared with data on living E. coli cells. Here we present the outcome of a few of these simulations concerning the eclipse period, in silico-shift experiments blocking initiation or elongation of replication, and introduction of minichromosomes into the computer cells. We also discuss the synthesis of DnaA protein in the computer cells. From our simulations, we conclude that, whether true or not, the model can mimic the in vivo initiation control of E. coli.
Collapse
Affiliation(s)
- F G Hansen
- Department of Microbiology, Technical University of Denmark, Lyngby
| | | | | |
Collapse
|
9
|
Cook WR, de Boer PA, Rothfield LI. Differentiation of the bacterial cell division site. INTERNATIONAL REVIEW OF CYTOLOGY 1989; 118:1-31. [PMID: 2691424 DOI: 10.1016/s0074-7696(08)60871-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- W R Cook
- Department of Microbiology, University of Connecticut Health Center, Farmington 06032
| | | | | |
Collapse
|
10
|
Margalit H, Grover NB. Initiation of chromosome replication in bacteria: analysis of an inhibitor control model. J Bacteriol 1987; 169:5231-40. [PMID: 3667530 PMCID: PMC213931 DOI: 10.1128/jb.169.11.5231-5240.1987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This article contains an analysis of a version of the well-known inhibitor-dilution model for the control of initiation of chromosome replication in bacteria. According to this model, an unstable inhibitor interacts with an initiation primer in a hit-and-destroy fashion to prevent successful initiation; both constituents are presumed to be RNA species that are synthesized constitutively. The model further postulates that the inhibitor interacts cooperatively with the primer, that the inhibitor gene is removed some distance from the origin of replication, and that an eclipse period exists during which the chromosome origin is not able to reinitiate. This unstable-inhibitor version is characterized by four parameters: the inhibitor half-life, the cooperativity index, the location of the inhibitor gene, and the eclipse period; computer simulations are used to study the effect of each of these on the DNA and interdivision time distributions in exponentially growing steady-state cultures. In neither case was any combination of parameter values found that could provide even moderately satisfactory agreement between the simulation results and experimental data. From the examples furnished and the associated discussion, it appears that there are none--that no combination of parameter values exists that can reasonably be expected to produce a significantly better fit than those tested. We conclude that the model in its present form cannot be a valid description of chromosome replication control in bacteria. It is pointed out that this does not necessarily apply to negative initiation control models in general, or even to all inhibitor-dilution systems, merely to the particular ColE1-like mechanism considered here. Nevertheless, recent experimental results, which can only be understood in terms of a very high degree of initiation synchrony within individual cells, offer strong evidence against stochastic models of this kind for the control of chromosome replication.
Collapse
Affiliation(s)
- H Margalit
- Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|