1
|
Schleutker R, Luschnig S. Palmitoylation of proteolipid protein M6 promotes tricellular junction assembly in epithelia of Drosophila. J Cell Sci 2024; 137:jcs261916. [PMID: 38345097 PMCID: PMC11698045 DOI: 10.1242/jcs.261916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024] Open
Abstract
Tricellular junctions (TCJs) seal epithelial cell vertices and are essential for tissue integrity and physiology, but how TCJs are assembled and maintained is poorly understood. In Drosophila, the transmembrane proteins Anakonda (Aka, also known as Bark), Gliotactin (Gli) and M6 organize occluding TCJs. Aka and M6 localize in an interdependent manner to vertices and act jointly to localize Gli, but how these proteins interact to assemble TCJs was not previously known. Here, we show that the proteolipid protein M6 physically interacts with Aka and with itself, and that M6 is palmitoylated on conserved juxta-membrane cysteine residues. This modification promotes vertex localization of M6 and binding to Aka, but not to itself, and becomes essential when TCJ protein levels are reduced. Abolishing M6 palmitoylation leads to delayed localization of M6 and Aka but does not affect the rate of TCJ growth or mobility of M6 or Aka. Our findings suggest that palmitoylation-dependent recruitment of Aka by M6 promotes initiation of TCJ assembly, whereas subsequent TCJ growth relies on different mechanisms that are independent of M6 palmitoylation.
Collapse
Affiliation(s)
- Raphael Schleutker
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Centre, University of Münster, D-48149 Münster, Germany
| | - Stefan Luschnig
- Institute of Integrative Cell Biology and Physiology, Cells in Motion (CiM) Interfaculty Centre, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
2
|
Sharifkhodaei Z, Auld VJ. Overexpressed Gliotactin activates BMP signaling through interfering with the Tkv-Dad association. Genome 2020; 64:97-108. [PMID: 33064024 DOI: 10.1139/gen-2020-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial junctions ensure cell-cell adhesion and establish permeability barriers between cells. At the corners of epithelia, the tricellular junction (TCJ) is formed by three adjacent epithelial cells and generates a functional barrier. In Drosophila, a key TCJ protein is Gliotactin (Gli) where loss of Gli disrupts barrier formation and function. Conversely, overexpressed Gli spreads away from the TCJ and triggers apoptosis, delamination, and cell migration. Thus, Gli protein levels are tightly regulated and by two mechanisms, at the protein levels by tyrosine phosphorylation and endocytosis and at the mRNA level through microRNA-184. Regulation of Gli mRNA is mediated through a Gli-BMP-miR184 feedback loop. Excessive Gli triggers BMP signaling pathway through the activation of Tkv type-I BMP receptor and Mad. Elevated level of pMad induces micrRNA-184 expression which in turn targets the Gli 3'UTR and mRNA degradation. Gli activation of Tkv is not through its ligand Dpp but rather through the inhibition of Dad, an inhibitory-Smad. Here, we show that ectopic expression of Gli interferes with Tkv-Dad association by sequestering Dad away from Tkv. The reduced inhibitory effect of Dad on Tkv results in the increased Tkv-pMad signaling activity, and this effect is continuous through larval and pupal wing formation.
Collapse
Affiliation(s)
| | - Vanessa J Auld
- Department of Zoology, University of British Columbia, Vancouver, B.C., Canada.,Department of Zoology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
3
|
Interplay between Anakonda, Gliotactin, and M6 for Tricellular Junction Assembly and Anchoring of Septate Junctions in Drosophila Epithelium. Curr Biol 2020; 30:4245-4253.e4. [PMID: 32857971 DOI: 10.1016/j.cub.2020.07.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
In epithelia, tricellular junctions (TCJs) serve as pivotal sites for barrier function and integration of both biochemical and mechanical signals [1-3]. In Drosophila, TCJs are composed of the transmembrane protein Sidekick at the adherens junction (AJ) level, which plays a role in cell-cell contact rearrangement [4-6]. At the septate junction (SJ) level, TCJs are formed by Gliotactin (Gli) [7], Anakonda (Aka) [8, 9], and the Myelin proteolipid protein (PLP) M6 [10, 11]. Despite previous data on TCJ organization [12-14], TCJ assembly, composition, and links to adjacent bicellular junctions (BCJs) remain poorly understood. Here, we have characterized the making of TCJs within the plane of adherens junctions (tricellular adherens junction [tAJ]) and the plane of septate junctions (tricellular septate junction [tSJ]) and report that their assembly is independent of each other. Aka and M6, whose localizations are interdependent, act upstream to localize Gli. In turn, Gli stabilizes Aka at tSJ. Moreover, tSJ components are not only essential at vertex, as we found that loss of tSJ integrity induces micron-length bicellular SJ (bSJ) deformations. This phenotype is associated with the disappearance of SJ components at tricellular contacts, indicating that bSJs are no longer connected to tSJs. Reciprocally, SJ components are required to restrict the localization of Aka and Gli at vertex. We propose that tSJs function as pillars to anchor bSJs to ensure the maintenance of tissue integrity in Drosophila proliferative epithelia.
Collapse
|
4
|
Oda Y, Sugawara T, Fukata Y, Izumi Y, Otani T, Higashi T, Fukata M, Furuse M. The extracellular domain of angulin-1 and palmitoylation of its cytoplasmic region are required for angulin-1 assembly at tricellular contacts. J Biol Chem 2020; 295:4289-4302. [PMID: 32079676 PMCID: PMC7105312 DOI: 10.1074/jbc.ra119.010491] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Tricellular tight junctions (tTJs) create paracellular barriers at tricellular contacts (TCs), where the vertices of three polygonal epithelial cells meet. tTJs are marked by the enrichment of two types of membrane proteins, tricellulin and angulin family proteins. However, how TC geometry is recognized for tTJ formation remains unknown. In the present study, we examined the molecular mechanism for the assembly of angulin-1 at the TCs. We found that clusters of cysteine residues in the juxtamembrane region within the cytoplasmic domain of angulin-1 are highly palmitoylated. Mutagenesis analyses of the cysteine residues in this region revealed that palmitoylation is essential for localization of angulin-1 at TCs. Consistently, suppression of Asp-His-His-Cys motif-containing palmitoyltransferases expressed in EpH4 cells significantly impaired the TC localization of angulin-1. Cholesterol depletion from the plasma membrane of cultured epithelial cells hampered the localization of angulin-1 at TCs, suggesting the existence of a lipid membrane microdomain at TCs that attracts highly palmitoylated angulin-1. Furthermore, the extracellular domain of angulin-1 was also required for its TC localization, irrespective of the intracellular palmitoylation. Taken together, our findings suggest that both angulin-1's extracellular domain and palmitoylation of its cytoplasmic region are required for its assembly at TCs.
Collapse
Affiliation(s)
- Yukako Oda
- Division of Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Taichi Sugawara
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yuko Fukata
- Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Membrane Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yasushi Izumi
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tomohito Higashi
- Division of Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masaki Fukata
- Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan; Division of Membrane Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Mikio Furuse
- Division of Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Division of Cell Structure, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
5
|
Molecular organization, regulation and function of tricellular junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183143. [DOI: 10.1016/j.bbamem.2019.183143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
|
6
|
Sharifkhodaei Z, Gilbert MM, Auld VJ. Scribble and Discs Large mediate tricellular junction formation. Development 2019; 146:dev.174763. [PMID: 31444218 DOI: 10.1242/dev.174763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/15/2019] [Indexed: 01/22/2023]
Abstract
Junctional complexes that mediate cell adhesion are key to epithelial integrity, cell division and permeability barrier formation. In Drosophila, the scaffolding proteins Scribble (Scrib) and Discs Large (Dlg) are key regulators of epithelial polarity, proliferation, assembly of junctions and protein trafficking. We found that Scrib and Dlg are necessary for the formation of the tricellular junction (TCJ), a unique junction that forms in epithelia at the point of convergence of three neighboring cells. Scrib and Dlg are in close proximity with the TCJ proteins Gliotactin (Gli) and Bark Beetle (Bark), and both are required for TCJ protein recruitment. Loss of Bark or Gli led to basolateral spread of the TCJ complex at the cell corners. Loss of the septate junction proteins Nrx-IV and the Na+/K+ ATPase also resulted in basolateral spread of the entire TCJ complex at the cell corners. The Scrib PDZ1-2 domains and the Dlg GUK domain are necessary for Bark and Gli localization to the TCJ. Overall, we propose a model in which Scrib and Dlg are key components of the TCJ, and form a complex with Bark and Gli.
Collapse
Affiliation(s)
- Zohreh Sharifkhodaei
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Mary M Gilbert
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Vanessa J Auld
- Department of Zoology, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
7
|
Babatz F, Naffin E, Klämbt C. The Drosophila Blood-Brain Barrier Adapts to Cell Growth by Unfolding of Pre-existing Septate Junctions. Dev Cell 2018; 47:697-710.e3. [PMID: 30482667 DOI: 10.1016/j.devcel.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/07/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier is crucial for nervous system function. It is established early during development and stays intact during growth of the brain. In invertebrates, septate junctions are the occluding junctions of this barrier. Here, we used Drosophila to address how septate junctions grow during larval stages when brain size increases dramatically. We show that septate junctions are preassembled as long, highly folded strands during embryonic stages, connecting cell vertices. During subsequent cell growth, these corrugated strands are stretched out and stay intact during larval life with very little protein turnover. The G-protein coupled receptor Moody orchestrates the continuous organization of junctional strands in a process requiring F-actin. Consequently, in moody mutants, septate junction strands cannot properly stretch out during cell growth. To compensate for the loss of blood-brain barrier function, moody mutants form interdigitating cell-cell protrusions, resembling the evolutionary ancient barrier type found in primitive vertebrates or invertebrates such as cuttlefish.
Collapse
Affiliation(s)
- Felix Babatz
- University of Münster, Institute for Neuro and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- University of Münster, Institute for Neuro and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- University of Münster, Institute for Neuro and Behavioral Biology, Badestr. 9, 48149 Münster, Germany.
| |
Collapse
|
8
|
Bosveld F, Wang Z, Bellaïche Y. Tricellular junctions: a hot corner of epithelial biology. Curr Opin Cell Biol 2018; 54:80-88. [DOI: 10.1016/j.ceb.2018.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
|
9
|
Resnik-Docampo M, Sauer V, Schinaman JM, Clark RI, Walker DW, Jones DL. Keeping it tight: The relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in Drosophila. Fly (Austin) 2018; 12:34-40. [PMID: 29455581 PMCID: PMC5927685 DOI: 10.1080/19336934.2018.1441651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Maladaptive changes in the intestinal flora, typically referred to as bacterial dysbiosis, have been linked to intestinal aging phenotypes, including an increase in intestinal stem cell (ISC) proliferation, activation of inflammatory pathways, and increased intestinal permeability1,2. However, the causal relationships between these phenotypes are only beginning to be unravelled. We recently characterized the age-related changes that occur to septate junctions (SJ) between adjacent, absorptive enterocytes (EC) in the fly intestine. Changes could be observed in the overall level of SJ proteins, as well as the localization of a subset of SJ proteins. Such age-related changes were particularly noticeable at tricellular junctions (TCJ)3. Acute loss of the Drosophila TCJ protein Gliotactin (Gli) in ECs led to rapid activation of stress signalling in stem cells and an increase in ISC proliferation, even under axenic conditions; a gradual disruption of the intestinal barrier was also observed. The uncoupling of changes in bacteria from alterations in ISC behaviour and loss of barrier integrity has allowed us to begin to explore the interrelationship of these intestinal aging phenotypes in more detail and has shed light on the importance of the proteins that contribute to maintenance of the intestinal barrier.
Collapse
Affiliation(s)
- Martin Resnik-Docampo
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
| | - Vivien Sauer
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
| | - Joseph M. Schinaman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Rebecca I. Clark
- School of Biological and Biomedical Sciences, Durham University, Durham , UK
| | - David W. Walker
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - D. Leanne Jones
- Department of Molecular, Cell, and Developmental Biology and University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, California, USA
| |
Collapse
|
10
|
Samarasekera GDNG, Auld VJ. C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src. Mol Biol Cell 2017; 29:123-136. [PMID: 29167383 PMCID: PMC5909926 DOI: 10.1091/mbc.e17-04-0251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
The tricellular junction (TCJ) forms at the convergence of three neighboring epithelia. The targeting of Gliotactin, an essential TCJ protein, to the TCJ is controlled by phosphorylation and endocytosis. C-terminal Src kinase controls endocytosis of Gliotactin in an Src-independent manner. Tricellular junctions (TCJs) are uniquely placed permeability barriers formed at the corners of polarized epithelia where tight junctions in vertebrates or septate junctions (SJ) in invertebrates from three cells converge. Gliotactin is a Drosophila TCJ protein, and loss of Gliotactin results in SJ and TCJ breakdown and permeability barrier loss. When overexpressed, Gliotactin spreads away from the TCJs, resulting in disrupted epithelial architecture, including overproliferation, cell delamination, and migration. Gliotactin levels are tightly controlled at the mRNA level and at the protein level through endocytosis and degradation triggered by tyrosine phosphorylation. We identified C-terminal Src kinase (Csk) as a tyrosine kinase responsible for regulating Gliotactin endocytosis. Increased Csk suppresses the Gliotactin overexpression phenotypes by increasing endocytosis. Loss of Csk causes Gliotactin to spread away from the TCJ. Although Csk is known as a negative regulator of Src kinases, the effects of Csk on Gliotactin are independent of Src and likely occur through an adherens junction associated complex. Overall, we identified a new Src-independent role for Csk in the control of Gliotactin, a key tricellular junction protein.
Collapse
Affiliation(s)
| | - Vanessa Jane Auld
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Higashi T, Miller AL. Tricellular junctions: how to build junctions at the TRICkiest points of epithelial cells. Mol Biol Cell 2017; 28:2023-2034. [PMID: 28705832 PMCID: PMC5509417 DOI: 10.1091/mbc.e16-10-0697] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 01/07/2023] Open
Abstract
Tricellular contacts are the places where three cells meet. In vertebrate epithelial cells, specialized structures called tricellular tight junctions (tTJs) and tricellular adherens junctions (tAJs) have been identified. tTJs are important for the maintenance of barrier function, and disruption of tTJ proteins contributes to familial deafness. tAJs have recently been attracting the attention of mechanobiologists because these sites are hot spots of epithelial tension. Although the molecular components, regulation, and function of tTJs and tAJs, as well as of invertebrate tricellular junctions, are beginning to be characterized, many questions remain. Here we broadly cover what is known about tricellular junctions, propose a new model for tension transmission at tAJs, and discuss key open questions.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Sharifkhodaei Z, Padash-Barmchi M, Gilbert MM, Samarasekera G, Fulga TA, Van Vactor D, Auld VJ. The Drosophila tricellular junction protein Gliotactin regulates its own mRNA levels through BMP-mediated induction of miR-184. J Cell Sci 2016; 129:1477-89. [PMID: 26906422 DOI: 10.1242/jcs.178608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at theDrosophilatricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3'UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184.
Collapse
Affiliation(s)
- Zohreh Sharifkhodaei
- Department of Zoology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | | | - Mary M Gilbert
- Department of Zoology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | | | - Tudor A Fulga
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vanessa J Auld
- Department of Zoology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| |
Collapse
|
13
|
Abstract
Tricellular junctions tightly seal epithelia at the corners of three cells. In this issue of Developmental Cell, Byri et al. (2015) show that Anakonda, a novel Drosophila transmembrane protein, contains an unusual tripartite extracellular domain organization, which explains the tripartite septum filling the tricellular junction, previously revealed by ultrastructure analysis.
Collapse
Affiliation(s)
- David Flores-Benitez
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307-Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307-Dresden, Germany.
| |
Collapse
|
14
|
Byri S, Misra T, Syed ZA, Bätz T, Shah J, Boril L, Glashauser J, Aegerter-Wilmsen T, Matzat T, Moussian B, Uv A, Luschnig S. The Triple-Repeat Protein Anakonda Controls Epithelial Tricellular Junction Formation in Drosophila. Dev Cell 2015; 33:535-48. [PMID: 25982676 DOI: 10.1016/j.devcel.2015.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 02/09/2015] [Accepted: 03/26/2015] [Indexed: 11/24/2022]
Abstract
In epithelia, specialized tricellular junctions (TCJs) mediate cell contacts at three-cell vertices. TCJs are fundamental to epithelial biology and disease, but only a few TCJ components are known, and how they assemble at tricellular vertices is not understood. Here we describe a transmembrane protein, Anakonda (Aka), which localizes to TCJs and is essential for the formation of tricellular, but not bicellular, junctions in Drosophila. Loss of Aka causes epithelial barrier defects associated with irregular TCJ structure and geometry, suggesting that Aka organizes cell corners. Aka is necessary and sufficient for accumulation of Gliotactin at TCJs, suggesting that Aka initiates TCJ assembly by recruiting other proteins to tricellular vertices. Aka's extracellular domain has an unusual tripartite repeat structure that may mediate self-assembly, directed by the geometry of tricellular vertices. Conversely, Aka's cytoplasmic tail is dispensable for TCJ localization. Thus, extracellular interactions, rather than TCJ-directed intracellular transport, appear to mediate TCJ assembly.
Collapse
Affiliation(s)
- Sunitha Byri
- Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 40530 Gothenburg, Sweden
| | - Tvisha Misra
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Zulfeqhar A Syed
- Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 40530 Gothenburg, Sweden
| | - Tilmann Bätz
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jimit Shah
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lukas Boril
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jade Glashauser
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Tinri Aegerter-Wilmsen
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, CiM, 48149 Münster, Germany
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Anne Uv
- Institute of Biomedicine, University of Gothenburg, Medicinaregatan 9A, 40530 Gothenburg, Sweden.
| | - Stefan Luschnig
- Institute of Neurobiology, University of Münster, Badestrasse 9, 48149 Münster, Germany; Cluster of Excellence EXC 1003, Cells in Motion, CiM, 48149 Münster, Germany; Institute of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
15
|
Limmer S, Weiler A, Volkenhoff A, Babatz F, Klämbt C. The Drosophila blood-brain barrier: development and function of a glial endothelium. Front Neurosci 2014; 8:365. [PMID: 25452710 PMCID: PMC4231875 DOI: 10.3389/fnins.2014.00365] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023] Open
Abstract
The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.
Collapse
Affiliation(s)
- Stefanie Limmer
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Astrid Weiler
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Anne Volkenhoff
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Felix Babatz
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster Münster, Germany
| |
Collapse
|
16
|
Izumi Y, Furuse M. Molecular organization and function of invertebrate occluding junctions. Semin Cell Dev Biol 2014; 36:186-93. [PMID: 25239398 DOI: 10.1016/j.semcdb.2014.09.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
Abstract
Septate junctions (SJs) are specialized intercellular junctions that function as permeability barriers to restrict the free diffusion of solutes through the paracellular routes in invertebrate epithelia. SJs are subdivided into several morphological types that vary among different animal phyla. In several phyla, different types of SJ have been described in different epithelia within an individual. Arthropods have two types of SJs: pleated SJs (pSJs) and smooth SJs (sSJs), found in ectodermally and endodermally derived epithelia, respectively. Several lines of Drosophila research have identified and characterized a large number of pSJ-associated proteins. Two sSJ-specific proteins have been recently reported. Molecular dissection of SJs in Drosophila and animals in other phyla will lead to a better understanding of the functional differences among SJ types and of evolutionary aspects of these permeability barriers.
Collapse
Affiliation(s)
- Yasushi Izumi
- Division of Cell Biology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Mikio Furuse
- Division of Cell Biology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
17
|
Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N. Molecular organization of tricellular tight junctions. Tissue Barriers 2014; 2:e28960. [PMID: 25097825 PMCID: PMC4117683 DOI: 10.4161/tisb.28960] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 01/22/2023] Open
Abstract
When the apicolateral border of epithelial cells is compared with a polygon, its sides correspond to the apical junctional complex, where cell adhesion molecules assemble from the plasma membranes of two adjacent cells. On the other hand, its vertices correspond to tricellular contacts, where the corners of three cells meet. Vertebrate tricellular contacts have specialized structures of tight junctions, termed tricellular tight junctions (tTJs). tTJs were identified by electron microscopic observations more than 40 years ago, but have been largely forgotten in epithelial cell biology since then. The identification of tricellulin and angulin family proteins as tTJ-associated membrane proteins has enabled us to study tTJs in terms of not only the paracellular barrier function but also unknown characteristics of epithelial cell corners via molecular biological approaches.
Collapse
Affiliation(s)
- Mikio Furuse
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan ; Division of Cerebral Structure; National Institute for Physiological Sciences; Okazaki, Aichi Japan
| | - Yasushi Izumi
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan
| | - Yukako Oda
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan
| | - Tomohito Higashi
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan
| | - Noriko Iwamoto
- Division of Cell Biology; Department of Physiology and Cell Biology; Kobe University Graduate School of Medicine; Kobe, Japan
| |
Collapse
|
18
|
Padash-Barmchi M, Charish K, Que J, Auld VJ. Gliotactin and Discs-large are co-regulated to maintain epithelial integrity. J Cell Sci 2013; 126:1134-43. [DOI: 10.1242/jcs.113803] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Establishment and maintenance of permeability barriers is one of the most important functions of epithelial cells. Tricellular junctions (TCJs) maintain the permeability barriers at the contact site of three epithelial cells. Gliotactin (Gli), a member of the Neuroligin family, is the only known Drosophila protein exclusively localized to the TCJ and is necessary for maintenance of the permeability barrier. Over-expression triggers the spread of Gliotactin away from the TCJ and causes epithelial cells to delaminate, migrate and die. Furthermore, excess Gli at the cell membrane results in an extensive down regulation of Dlg at the septate junctions. The intracellular domain of Gli contains two highly conserved tyrosine residues, and a PDZ binding motif. We previously found that phosphorylation of the tyrosine residues are necessary to control the level of Gliotactin at the TCJ. In this study we demonstrate that the phenotypes associated with excess Gliotactin is due to a functional interaction between Gliotactin and Dlg that is dependent on both tyrosine phosphorylation as well as the PDZ binding motif. We further show that elevated levels of Dlg strongly enhance Gliotactin over-expression phenotypes to the point where tissue over-growth is observed. The exhibition of these phenotypes require phosphorylation of Dlg on serine 797, a known Par1 phosphorylation target. Blocking this phosphorylation completely suppresses the cell invasiveness and apoptotic phenotypes associated with Gliotactin overexpression. Additionally, we show that Drosophila JNK acts downstream of Gliotactin and Dlg to mediate the overgrowth and apoptosis caused by the functional interaction of Gliotactin and Dlg.
Collapse
|
19
|
Padash-Barmchi M, Browne K, Sturgeon K, Jusiak B, Auld VJ. Control of Gliotactin localization and levels by tyrosine phosphorylation and endocytosis is necessary for survival of polarized epithelia. J Cell Sci 2010; 123:4052-62. [PMID: 21045109 DOI: 10.1242/jcs.066605] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tricellular junction (TCJ) forms at the convergence of bicellular junctions from three adjacent cells in polarized epithelia and is necessary for maintaining the transepithelial barrier. In the fruitfly Drosophila, the TCJ is generated at the meeting point of bicellular septate junctions. Gliotactin was the first identified component of the TCJ and is necessary for TCJ and septate junction development. Gliotactin is a member of the neuroligin family and associates with the PDZ protein discs large. Beyond this interaction, little is known about the mechanisms underlying Gliotactin localization and function at the TCJ. In this study, we show that Gliotactin is phosphorylated at conserved tyrosine residues, a process necessary for endocytosis and targeting to late endosomes and lysosomes for degradation. Regulation of Gliotactin levels through phosphorylation and endocytosis is necessary as overexpression results in displacement of Gliotactin away from the TCJ throughout the septate junction domain. Excessive Gliotactin in polarized epithelia leads to delamination, paired with subsequent migration, and apoptosis. The apoptosis and the resulting compensatory proliferation resulting from high levels of Gliotactin are mediated by the Drosophila JNK pathway. Therefore, Gliotactin levels within the cell membrane are regulated to ensure correct protein localization and cell survival.
Collapse
Affiliation(s)
- Mojgan Padash-Barmchi
- Department of Zoology, Cell and Developmental Biology, University of British Columbia, Vancouver, Canada BC V6T 1Z3
| | | | | | | | | |
Collapse
|
20
|
Schulte J, Charish K, Que J, Ravn S, MacKinnon C, Auld VJ. Gliotactin and Discs large form a protein complex at the tricellular junction of polarized epithelial cells in Drosophila. J Cell Sci 2006; 119:4391-401. [PMID: 17032735 DOI: 10.1242/jcs.03208] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tricellular junction (TCJ) forms at the convergence of pleated septate junctions (SJs) from three adjacent cells in polarized epithelia and is necessary for maintaining the transepithelial barrier. In Drosophila, the transmembrane protein Gliotactin was the first identified marker of the TCJ, but little is known about other molecular constituents. We now show that Gliotactin associates with Discs large at the TCJ in a Ca2+-dependent manner. Discs large is essential for the formation of the TCJ and the localization of Gliotactin. Surprisingly, Gliotactin localization at the TCJ was independent of its PDZ-binding motif and Gliotactin did not bind directly to Discs large. Therefore Gliotactin and Discs large association is through intermediary proteins at the TCJ. Gliotactin can associate with other septate junction proteins but this was detected only when Gliotactin was overexpressed and spread throughout the septate junction domain. Gliotactin overexpression and spread also resulted in a reduction of Discs large staining but not vice versa. These results suggest that Discs large participates in different protein interactions in the SJ and the TCJ. Finally this work supports a model where Gliotactin and Dlg are components of a larger protein complex that links the converging SJs with the TCJ to create the transepithelial barrier.
Collapse
Affiliation(s)
- Joost Schulte
- Department of Zoology, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Schulte J, Tepass U, Auld VJ. Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila. J Cell Biol 2003; 161:991-1000. [PMID: 12782681 PMCID: PMC2172969 DOI: 10.1083/jcb.200303192] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Septate junctions (SJs), similar to tight junctions, function as transepithelial permeability barriers. Gliotactin (Gli) is a cholinesterase-like molecule that is necessary for blood-nerve barrier integrity, and may, therefore, contribute to SJ development or function. To address this hypothesis, we analyzed Gli expression and the Gli mutant phenotype in Drosophila epithelia. In Gli mutants, localization of SJ markers neurexin-IV, discs large, and coracle are disrupted. Furthermore, SJ barrier function is lost as determined by dye permeability assays. These data suggest that Gli is necessary for SJ formation. Surprisingly, Gli distribution only colocalizes with other SJ markers at tricellular junctions, suggesting that Gli has a unique function in SJ development. Ultrastructural analysis of Gli mutants supports this notion. In contrast to other SJ mutants in which septa are missing, septa are present in Gli mutants, but the junction has an immature morphology. We propose a model, whereby Gli acts at tricellular junctions to bind, anchor, or compact SJ strands apically during SJ development.
Collapse
Affiliation(s)
- Joost Schulte
- Dept. of Zoology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
22
|
Kressin M, Sommer U, Schnorr B. [The spermathecal epithelium of the queen bee (Apis mellifera): morphology, age-dependent changes and cell contacts]. Anat Histol Embryol 1996; 25:31-5. [PMID: 8644931 DOI: 10.1111/j.1439-0264.1996.tb00056.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The spermatheca of the honey bee queen is covered by a single-layered, uniform, polarised epithelium. The apical cell surface is greatly enlarged by protrusions and plasma membrane infoldings, the basal cell surface by numerous interdigitating, long, small processes. Cytoplasmic organelles are chiefly represented by mitochondria. Numerous microtubuli extend throughout the cytoplasm. Golgi and endoplasmic profiles are rare. The cells are subject to senile degeneration: with increasing age, a variety of cytoplasmic inclusions appear, among which are myelinated membranes, dense bodies and dense filamentous aggregates. The spermathecal epithelium does not seem to be involved in exocrine secretion related to nutrition of the long-term stored spermatozoa. The ultra-structure points, however, to ion transport functions and to an engagement in the maintenance of an adequate physicochemical environment ensuring the viability of the spermatozoa. Cellular junctions are represented by luminal zonulae adherentes, focal cell-cell adhering junctions and hemiadhering junctions along the basal plasmalemma. Desmosomal contacts and cytoskeletal intermediate filaments are missing. Along the lateral plasmalemma, gap junctions and septate junctions are found.
Collapse
Affiliation(s)
- M Kressin
- Institut für Veterinär-Anatomie, -Histologie und -Embryologie der Justus-Liebig-Universität Giessen, Deutschland
| | | | | |
Collapse
|
23
|
|
24
|
Hori I. Formation of the septate junction in regenerating planarian gastrodermis. J Morphol 1987; 192:205-215. [DOI: 10.1002/jmor.1051920303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Spiegel E, Spiegel M. Cell-cell interactions during sea urchin morphogenesis. DEVELOPMENTAL BIOLOGY (NEW YORK, N.Y. : 1985) 1986; 2:195-240. [PMID: 3078115 DOI: 10.1007/978-1-4613-2141-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- E Spiegel
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | | |
Collapse
|
26
|
Curtis SK, Cowden RR, Moore JD, Robertson JL. Histochemical and ultrastructural features of the epidermis of the land planarianBipalium adventitium. J Morphol 1983; 175:171-194. [DOI: 10.1002/jmor.1051750206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Graf F, Noirot-Timothée C, Noirot C. The specialization of septate junctions in regions of tricellular junctions. I. Smooth septate junctions (=continuous junctions). JOURNAL OF ULTRASTRUCTURE RESEARCH 1982; 78:136-51. [PMID: 7086932 DOI: 10.1016/s0022-5320(82)80019-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|