1
|
Zhao X, Long J, Liang F, Liu N, Sun Y, Xi Y. Dynamic profiles, biodistribution and integration evaluation after intramuscular/intravenous delivery of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in vaccinated normal rodent. J Nanobiotechnology 2019; 17:94. [PMID: 31492169 PMCID: PMC6729025 DOI: 10.1186/s12951-019-0528-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/28/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The persistence, biodistribution, and risk of integration into the host genome of any new therapeutic DNA vaccine must be established in preclinical studies. We previously developed the DNA vaccine pcDNA-CCOL2A1 encoding chicken type II collagen (CCII) for the treatment of rheumatoid arthritis (RA). In the present study, we characterized its dynamic profile, biodistribution, and potential for genomic DNA integration in normal vaccinated rodent. RESULTS A real-time quantitative PCR analysis (RT-qPCR) of animals administered a single dose of pcDNA-CCOL2A1 (300 μg/kg by intramuscular injection) showed that CCOL2A1 mRNA level in the blood peaked between 2 and 6 h post-immunization and then rapidly declined, and was undetectable between day 1-42. CCOL2A1 transcript was detected at the muscle injection site on days 3-14 post-immunization. Starting from day 14, the transcript was detected in the heart, liver, lung, and kidney but not in the spleen or thymus, and was expressed only in the lung on day 28. There was no CCOL2A1 mRNA present in the testes or ovaries at any time point. Non-invasive in vivo fluorescence imaging revealed CCII protein expression from 2 h up to day 10 and from 2 h up to day 35 after administration of pcDNA-CCOL2A1 via the intravenous and intramuscular routes, respectively; the protein had disappeared by day 42. Importantly, CCOL2A1 was not integrated into the host genome. CONCLUSIONS These results indicate that pcDNA-CCOL2A1 vaccine is rapidly cleared within a short period of time and is therefore safe, and merits further development as a therapeutic vaccine for RA treatment.
Collapse
Affiliation(s)
- Xiao Zhao
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Juan Long
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Fei Liang
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Nan Liu
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yuying Sun
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China
| | - Yongzhi Xi
- Department of Immunology and National Center for Biomedicine Analysis, the Fifth Medical Center (formerly known as Beijing 307 Hospital), Chinese PLA General Hospital, No. 8, Dongda Ave, Fengtai District, Beijing, 100071, People's Republic of China.
| |
Collapse
|
2
|
Chen WZ, Li YM, Yu X, Li Y, Li WK, Wang QL, Liang AX, Li X, Yang LG, Han L. The efficacy, biodistribution and safety of an inhibin DNA vaccine delivered by attenuated Salmonella choleraesuis. Microb Biotechnol 2017; 11:248-256. [PMID: 29205848 PMCID: PMC5743813 DOI: 10.1111/1751-7915.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/17/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
DNA vaccines, the third‐generation vaccines, were extensively studied. The attenuated Salmonella choleraesuis (S. choleraesuis) was widely focused as a carrier to deliver DNA vaccines in the chromosome–plasmid balanced‐lethal system. The efficacy of inhibin DNA vaccine delivered by attenuated S. choleraesuis was proved in mice and cows in our previous studies. In this study, the efficacy of inhibin DNA vaccine was confirmed in rhesus monkeys. To further study the biodistribution and safety, the mice were immunized under laboratory conditions. The results of the rhesus monkeys showed the plasma IgA and IgG titres against inhibin were elevated, and the oestradiol (E2) and progesterone (P4) levels were increased with immunizing inhibin DNA vaccine. The biodistribution and safety assessment displayed the body weight, pathological change and haematology indexes where there is no significant difference between vaccinated mice and control. And the genomics analysis showed there was no integration of the inhibin gene into the mouse genome 2 months after immunization. This study indicated the inhibin DNA vaccine delivered by attenuated S. choleraesuis was safe. And this vaccine was a potential means to improve their reproductive traits in primates and other animals.
Collapse
Affiliation(s)
- Wei-Zhen Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying-Mei Li
- Tianjin Helaiente biological science and Technology Co., Ltd, Tianjin, 301709, China
| | - Xue Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Ke Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Ling Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ai-Xin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Guo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Han
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Zhang Y, Wang X, Pan X, Liu Y, Wang H, Dong P, Liang X. The effects of food components on the digestion of DNA by pepsin. Int J Food Sci Nutr 2016; 67:797-805. [DOI: 10.1080/09637486.2016.1197186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanfang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xingyu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- College of Food Engineering and Nutritional Science, Shanxi Normal University, Xi’an, China
| | - Xiaoming Pan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yu Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hanqing Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ping Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Poidevin L, Andreeva K, Khachatoorian C, Judelson HS. Comparisons of Ribosomal Protein Gene Promoters Indicate Superiority of Heterologous Regulatory Sequences for Expressing Transgenes in Phytophthora infestans. PLoS One 2015; 10:e0145612. [PMID: 26716454 PMCID: PMC4696810 DOI: 10.1371/journal.pone.0145612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022] Open
Abstract
Molecular genetics approaches in Phytophthora research can be hampered by the limited number of known constitutive promoters for expressing transgenes and the instability of transgene activity. We have therefore characterized genes encoding the cytoplasmic ribosomal proteins of Phytophthora and studied their suitability for expressing transgenes in P. infestans. Phytophthora spp. encode a standard complement of 79 cytoplasmic ribosomal proteins. Several genes are duplicated, and two appear to be pseudogenes. Half of the genes are expressed at similar levels during all stages of asexual development, and we discovered that the majority share a novel promoter motif named the PhRiboBox. This sequence is enriched in genes associated with transcription, translation, and DNA replication, including tRNA and rRNA biogenesis. Promoters from the three P. infestans genes encoding ribosomal proteins S9, L10, and L23 and their orthologs from P. capsici were tested for their ability to drive transgenes in stable transformants of P. infestans. Five of the six promoters yielded strong expression of a GUS reporter, but the stability of expression was higher using the P. capsici promoters. With the RPS9 and RPL10 promoters of P. infestans, about half of transformants stopped making GUS over two years of culture, while their P. capsici orthologs conferred stable expression. Since cross-talk between native and transgene loci may trigger gene silencing, we encourage the use of heterologous promoters in transformation studies.
Collapse
Affiliation(s)
- Laetitia Poidevin
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Kalina Andreeva
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Careen Khachatoorian
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
| | - Howard S. Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Liang A, Riaz H, Dong F, Luo X, Yu X, Han Y, Chong Z, Han L, Guo A, Yang L. Evaluation of efficacy, biodistribution and safety of antibiotic-free plasmid encoding somatostatin genes delivered by attenuated Salmonella enterica serovar Choleraesuis. Vaccine 2014; 32:1368-74. [PMID: 24486312 DOI: 10.1016/j.vaccine.2014.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/02/2013] [Accepted: 01/14/2014] [Indexed: 01/18/2023]
Abstract
We describe here a balanced-lethal system using an Asd(+) expression plasmid pVGS/2SS-asd encoding two copies of somatostatin (SS) genes carried by Δasd/Δcrp double mutant Salmonella enterica serovar Choleraesuis (named C501). The advantage of this novel system is the use of asd (aspartate-semialdehyde dehydrogenase) gene as selection marker to replace the antibiotic resistance markers, thus eliminating the industrial cultivation and environmental problems. We then evaluated the efficacy, biodistribution and safety of antibiotic-free plasmid delivered by strains C501. Mice orally immunized with C501 (pVGS/2SS-asd) had significantly higher levels of anti-SS total IgG and IgA antibodies than control mice and demonstrated a bias toward Th2-associated responses (IgG1/IgG2a ratio>1). Safety evaluation indicated that vaccinated mice displayed no abnormal clinical signs and histological changes. Biodistribution result revealed that the GS/2SS message was detected in several examined tissues with the exception of ovary and brain, but was rapidly cleared from the body (approximately 10 days). Furthermore, the risk of integration of plasmid pVGS/2SS-asd into the host cellular genome was considered to be negligible. These results may have important implications for the use of vaccine strain C501 (pVGS/2SS-asd) in domestic animals and prompt new perspectives on the safety of DNA vaccines delivered by attenuated bacteria.
Collapse
Affiliation(s)
- Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hasan Riaz
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fangxiao Dong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuan Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xue Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanguo Han
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhenlu Chong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Li Han
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
6
|
Carlson DF, Garbe JR, Tan W, Martin MJ, Dobrinsky JR, Hackett PB, Clark KJ, Fahrenkrug SC. Strategies for selection marker-free swine transgenesis using the Sleeping Beauty transposon system. Transgenic Res 2011; 20:1125-37. [PMID: 21221779 DOI: 10.1007/s11248-010-9481-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 12/22/2010] [Indexed: 12/11/2022]
Abstract
Swine transgenesis by pronuclear injection or cloning has traditionally relied on illegitimate recombination of DNA into the pig genome. This often results in animals containing concatemeric arrays of transgenes that complicate characterization and can impair long-term transgene stability and expression. This is inconsistent with regulatory guidance for transgenic livestock, which also discourages the use of selection markers, particularly antibiotic resistance genes. We demonstrate that the Sleeping Beauty (SB) transposon system effectively delivers monomeric, multi-copy transgenes to the pig embryo genome by pronuclear injection without markers, as well as to donor cells for founder generation by cloning. Here we show that our method of transposon-mediated transgenesis yielded 38 cloned founder pigs that altogether harbored 100 integrants for five distinct transposons encoding either human APOBEC3G or YFP-Cre. Two strategies were employed to facilitate elimination of antibiotic genes from transgenic pigs, one based on Cre-recombinase and the other by segregation of independently transposed transgenes upon breeding.
Collapse
Affiliation(s)
- Daniel F Carlson
- The Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Albertini RJ, Judice SA, Recio L, Walker VE. Hprt mutant frequency and p53 gene status in mice chronically exposed by inhalation to benzene. Chem Biol Interact 2010; 184:77-85. [DOI: 10.1016/j.cbi.2009.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 11/30/2022]
|
8
|
Abstract
Myocardial regeneration using stem and progenitor cell transplantation in the injured heart has recently become a major goal in the treatment of cardiac disease. Experimental studies and clinical applications have generally been encouraging, although the functional benefits that have been attained clinically are modest and inconsistent. Low cell retention and engraftment after myocardial delivery is a key factor limiting the successful application of cell therapy, irrespective of the type of cell or the delivery method. To improve engraftment, accurate methods for tracking cell fate and quantifying cell survival need to be applied. Several laboratory techniques (histological methods, real-time quantitative polymerase chain reaction, radiolabeling) have provided invaluable information about cell engraftment. In vivo imaging (nuclear medicine modalities, bioluminescence, and MRI) has the potential to provide quantitative information noninvasively, enabling longitudinal assessment of cell fate. In the present review, we present several available methods for assessing cell engraftment, and we critically discuss their strengths and limitations. In addition to providing insights about the mechanisms mediating cell loss after transplantation, these methods can evaluate techniques for augmenting engraftment, such as tissue engineering approaches, preconditioning, and genetic modification, allowing optimization of cell therapies.
Collapse
Affiliation(s)
| | | | - Eduardo Marbán
- The Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Liang A, Cao S, Han L, Yao Y, Moaeen-ud-Din M, Yang L. Construction and evaluation of the eukaryotic expression plasmid encoding two copies of somatostatin genes fused with hepatitis B surface antigen gene S. Vaccine 2008; 26:2935-41. [DOI: 10.1016/j.vaccine.2008.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 12/11/2022]
|
10
|
Abstract
Swine production has been an important part of our lives since the late Mesolithic or early Neolithic periods, and ranks number one in world meat production. Pig production also contributes to high-value-added medical markets in the form of pharmaceuticals, heart valves, and surgical materials. Genetic engineering, including the addition of exogenous genetic material or manipulation of the endogenous genome, holds great promise for changing pig phenotypes for agricultural and medical applications. Although the first transgenic pigs were described in 1985, poor survival of manipulated embryos; inefficiencies in the integration, transmission, and expression of transgenes; and expensive husbandry costs have impeded the widespread application of pig genetic engineering. Sequencing of the pig genome and advances in reproductive technologies have rejuvenated efforts to apply transgenesis to swine. Pigs provide a compelling new resource for the directed production of pharmaceutical proteins and the provision of cells, vascular grafts, and organs for xenotransplantation. Additionally, given remarkable similarities in the physiology and size of people and pigs, swine will increasingly provide large animal models of human disease where rodent models are insufficient. We review the challenges facing pig transgenesis and discuss the utility of transposases and recombinases for enhancing the success and sophistication of pig genetic engineering. 'The paradise of my fancy is one where pigs have wings.' (GK Chesterton).
Collapse
Affiliation(s)
- Karl J Clark
- Department of Animal Science at the University of Minnesota, Fitch Ave, St, Paul, MN 55108, USA
| | | | | |
Collapse
|
11
|
Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol 2007; 7:42. [PMID: 17640337 PMCID: PMC1939997 DOI: 10.1186/1472-6750-7-42] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 07/17/2007] [Indexed: 11/10/2022] Open
Abstract
Background Swine is an important agricultural commodity and biomedical model. Manipulation of the pig genome provides opportunity to improve production efficiency, enhance disease resistance, and add value to swine products. Genetic engineering can also expand the utility of pigs for modeling human disease, developing clinical treatment methodologies, or donating tissues for xenotransplantation. Realizing the full potential of pig genetic engineering requires translation of the complete repertoire of genetic tools currently employed in smaller model organisms to practical use in pigs. Results Application of transposon and recombinase technologies for manipulation of the swine genome requires characterization of their activity in pig cells. We tested four transposon systems- Sleeping Beauty, Tol2, piggyBac, and Passport in cultured porcine cells. Transposons increased the efficiency of DNA integration up to 28-fold above background and provided for precise delivery of 1 to 15 transgenes per cell. Both Cre and Flp recombinase were functional in pig cells as measured by their ability to remove a positive-negative selection cassette from 16 independent clones and over 20 independent genomic locations. We also demonstrated a Cre-dependent genetic switch capable of eliminating an intervening positive-negative selection cassette and activating GFP expression from episomal and genome-resident transposons. Conclusion We have demonstrated for the first time that transposons and recombinases are capable of mobilizing DNA into and out of the porcine genome in a precise and efficient manner. This study provides the basis for developing transposon and recombinase based tools for genetic engineering of the swine genome.
Collapse
|
12
|
Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics. BMC Mol Biol 2007; 8:30. [PMID: 17493262 PMCID: PMC1884169 DOI: 10.1186/1471-2199-8-30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 05/10/2007] [Indexed: 12/16/2022] Open
Abstract
Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes.
Collapse
|
13
|
Holkers M, De Vries AAF, Gonçalves MAFV. Modular and excisable molecular switch for the induction of gene expression by the yeast FLP recombinase. Biotechniques 2007; 41:711-3. [PMID: 17191615 DOI: 10.2144/000112307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Maarten Holkers
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
14
|
Coelho-Castelo AAM, Trombone AP, Rosada RS, Santos RR, Bonato VLD, Sartori A, Silva CL. Tissue distribution of a plasmid DNA encoding Hsp65 gene is dependent on the dose administered through intramuscular delivery. GENETIC VACCINES AND THERAPY 2006; 4:1. [PMID: 16445866 PMCID: PMC1403771 DOI: 10.1186/1479-0556-4-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 01/30/2006] [Indexed: 11/10/2022]
Abstract
In order to assess a new strategy of DNA vaccine for a more complete understanding of its action in immune response, it is important to determine the in vivo biodistribution fate and antigen expression. In previous studies, our group focused on the prophylactic and therapeutic use of a plasmid DNA encoding the Mycobacterium leprae 65-kDa heat shock protein (Hsp65) and achieved an efficient immune response induction as well as protection against virulent M. tuberculosis challenge. In the present study, we examined in vivo tissue distribution of naked DNA-Hsp65 vaccine, the Hsp65 message, genome integration and methylation status of plasmid DNA. The DNA-Hsp65 was detectable in several tissue types, indicating that DNA-Hsp65 disseminates widely throughout the body. The biodistribution was dose-dependent. In contrast, RT-PCR detected the Hsp65 message for at least 15 days in muscle or liver tissue from immunized mice. We also analyzed the methylation status and integration of the injected plasmid DNA into the host cellular genome. The bacterial methylation pattern persisted for at least 6 months, indicating that the plasmid DNA-Hsp65 does not replicate in mammalian tissue, and Southern blot analysis showed that plasmid DNA was not integrated. These results have important implications for the use of DNA-Hsp65 vaccine in a clinical setting and open new perspectives for DNA vaccines and new considerations about the inoculation site and delivery system.
Collapse
Affiliation(s)
- AAM Coelho-Castelo
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- REDE-TB: Rede Brasileira de combate à tuberculose, USP, Riberiao Preto, São Paulo, Brasil
| | - AP Trombone
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- REDE-TB: Rede Brasileira de combate à tuberculose, USP, Riberiao Preto, São Paulo, Brasil
| | - RS Rosada
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- REDE-TB: Rede Brasileira de combate à tuberculose, USP, Riberiao Preto, São Paulo, Brasil
| | - RR Santos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- REDE-TB: Rede Brasileira de combate à tuberculose, USP, Riberiao Preto, São Paulo, Brasil
| | - VLD Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- REDE-TB: Rede Brasileira de combate à tuberculose, USP, Riberiao Preto, São Paulo, Brasil
| | - A Sartori
- Instituto de Biociências, UNESP, Botucatu, São Paulo, Brasil
| | - CL Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- REDE-TB: Rede Brasileira de combate à tuberculose, USP, Riberiao Preto, São Paulo, Brasil
| |
Collapse
|
15
|
Peterson KR, Fedosyuk H, Zelenchuk L, Nakamoto B, Yannaki E, Stamatoyannopoulos G, Ciciotte S, Peters LL, Scott LM, Papayannopoulou T. Transgenic Cre expression mice for generation of erythroid-specific gene alterations. Genesis 2005; 39:1-9. [PMID: 15124222 DOI: 10.1002/gene.20020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transgenic mice that express Cre recombinase in erythroid cell lineages were developed so that genes affecting erythropoiesis/hematopoiesis may be altered without necessarily affecting fetus viability. A micro-LCR cassette-beta-globin promoter-Cre recombinase gene (microLCR-betapr-Cre) construct was synthesized and used to generate transgenic mice. Concurrently, we produced mice containing a microLCR-loxP-flanked beta sickle gene (microLCR-loxP-beta(S)-loxP) construct. microLCR-betapr-Cre mice with intact transgenes in variable copy number were identified. Cre expression was assessed by RNAse protection and RT-PCR. Cre function was ascertained by breeding to microLCR-loxP-beta(S)-loxP mice. We demonstrate that beta(S) expression was not detected in the blood of bigenics, but the gene was present in nonerythroid cells. Thus, excision of the loxP-flanked beta(S) gene was restricted to erythroid cell lineages.
Collapse
Affiliation(s)
- Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Foreign DNA injected into mouse embryos integrates into the host chromosomes and is usually transmitted stably to the progeny. Rare cases of transgene instability have been described, and these can help our understanding of the rules that govern the organization and stability of endogenous DNA. We have observed unusual inheritance in three transgenic lines produced with a partially in vitro methylated Igf2 construct. All three founders transmitted to their progeny two different transgene patterns, A and B. Pattern A was inherited in accordance with expectation, whereas pattern B was associated with several abnormal characteristics, including fewer than expected transgenic progeny, evidence for instability and loss from the somatic tissues of some of the progeny, and high incidence of runting and perinatal death that did not appear correlated with transgene retention. The absence of these features in transgenic mice produced with the unmethylated version of the same construct indicated that prior methylation played a role in the unusual behavior of these transgenes. We hypothesize that patterns A and B were formed by transgenes that differed in their methylation, and that pattern B methylation led to instability of the transgene locus. Runting and early lethality in the pattern B sublines may be the result of transgene rearrangements, which result in transgene amplification with adverse effects of increased IGFII dosage, and/or deletions, which may affect endogenous genes required for viability. These findings provide further evidence that DNA methylation plays a role in genome stability and indicate that perturbations in the normal pattern of methylation may have destabilizing effects that extend through several generations.
Collapse
Affiliation(s)
- Dimitrina D Pravtcheva
- Department of Human Genetics, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.
| | | |
Collapse
|
17
|
Abstract
Cancer represents the out-of-control proliferation of a particular cell type, which originates with an unwanted mutation, followed by an accumulation of defects in many classes of genes. The two well-known types of primary genes that govern cell division and are responsible for cancer include: protooncogenes (gain-of-function) that serve as accelerators to activate the cell cycle, and tumor suppressor genes (loss-of-function) that serve as brakes to slow the growth of cells. There are now 17 known signal transduction pathways, plus at least two stress-response pathways; all of these appear to be highly conserved in nematodes, flies and all vertebrates. Ultimately, transcription factors participate at the ends of all 19 pathways--by causing the up- or down-regulation of specific genes. All primary and modifier genes leading to cancer participate in one or another of these pathways. Innumerable exogenous and (autocrine and paracrine) endogenous signals bombard our cells each day and all are channeled through these 19 pathways, leading to the cell's response to these signals. Tumor progression represents a loss of normal cross-talk between cells, breakdown in communication between classes of genes, DNA methylation abnormalities, genetic instability, and hypermutability. Cancer is thus a multiplex phenotype: a crescendo of defects in hundreds if not thousands of genes, as a function of time, leading to an invasive and lethal disease.
Collapse
Affiliation(s)
- Daniel W Nebert
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA.
| |
Collapse
|
18
|
Yáñez RJ, Porter ACG. A chromosomal position effect on gene targeting in human cells. Nucleic Acids Res 2002; 30:4892-901. [PMID: 12433992 PMCID: PMC137162 DOI: 10.1093/nar/gkf614] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 09/17/2002] [Accepted: 09/17/2002] [Indexed: 11/13/2022] Open
Abstract
We describe gene targeting experiments involving a human cell line (RAN10) containing, in addition to its endogenous alleles, two ectopic alleles of the interferon-inducible gene 6-16. The frequency of gene targeting at one of the ectopic 6-16 alleles (H3.7) was 34-fold greater than the combined frequency of gene targeting involving endogenous 6-16 alleles in RAN10. Preference for H3.7 was maintained when the target loci in RAN10 were transcriptionally activated by interferon. Despite the 34-fold preference for H3.7, the absolute gene targeting efficiency in RAN10 was only 3-fold higher than in the parental HT1080 cell line. These data suggest that different alleles can compete with each other, and perhaps with non-homologous loci, in a step which is necessary, but not normally rate-limiting, for gene targeting. The efficiency of this step can therefore be more sensitive to chromosomal position effects than the rate-determining steps for gene targeting. The nature of the position effects involved remains unknown but does not correlate with transcription status, which in our system has a very modest influence on the frequency of gene targeting. In summary, our work unequivocally identifies a position effect on gene targeting in human cells.
Collapse
Affiliation(s)
- Rafael J Yáñez
- Gene Targeting Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | | |
Collapse
|
19
|
Abstract
In bacteria, coordinate expression of genes involved in lactose metabolism is regulated by the lac repressor and its DNA binding sequence, the lac operator. The lac operator-repressor complex can also be used to regulate gene expression in the laboratory mouse. In this review, I discuss the current state of murine trans-operons, and suggest ways this lac-based system might be used to build more advanced models of human diseases in the mouse.
Collapse
Affiliation(s)
- Heidi Scrable
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
20
|
Fedorov LM, Tyrsin OY, Sakk O, Ganscher A, Rapp UR. Generation dependent reduction of tTA expression in double transgenic NZL-2/tTA(CMV) mice. Genesis 2001; 31:78-84. [PMID: 11668682 DOI: 10.1002/gene.10007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the overall successful application of the tet-system to regulate gene expression in vitro and in vivo, nothing is known so far about the long-term stability of this system in transgenic mice. In this study, mice of generation F2, F3, F4, or F10 of two independent tTA(CMV) transgenic lines were bred with NZL-2 mice containing a tTA-responsive bidirectional promoter that allows the simultaneous expression of two reporter genes encoding luciferase and beta-galactosidase. Analysis of the expression of transgenes in double transgenic mice revealed a dramatic reduction of tTA transactivator mRNA over time. As a consequence, the expression of both reporter genes was gradually reduced from generation to generation in tissues of embryonic and adult NZL-2/tTA(CMV) mice. Luciferase activity in NZL-2/tTA(CMV)(F10) mice was reduced 8-10-fold compared to NZL-2/ tTA(CMV)(F2) mice, and beta-galactosidase expression was no longer detectable. In summary, we describe the long-term instability of the tet-system in our NZL-2/tTA(CMV) double transgenic mice. The molecular basis of this observation and experimental tools to overcome this limitation need to be addressed in future.
Collapse
|
21
|
Monroe JJ, Manjanatha MG, Skopek TR. Extent of CpG methylation is not proportional to the in vivo spontaneous mutation frequency at transgenic loci in Big Blue rodents. Mutat Res 2001; 476:1-11. [PMID: 11336978 DOI: 10.1016/s0027-5107(01)00081-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The lacI transgene used in the Big Blue (BB) mouse and rat mutation assays typically displays spontaneous mutation frequencies in the 5x10(-5) range. Recently, the bone marrow and bladder of the Big Blue rat were reported to have, by an order of magnitude, the lowest spontaneous mutation frequencies ever observed for lacI in a transgenic animal, approaching the value for endogenous targets such as hprt ( approximately 10(-6)). Since spontaneous mutations in transgenes have been attributed in part to deamination of 5-methylcytosine in CpG sequences, we have investigated the methylation status of the lacI transgene in bone marrow of BB rats and compared it to that present in other tissues including liver, spleen, and breast. The first 400 bases of the lacI gene were investigated using bisulfite genomic sequencing since this region contains the majority of both spontaneous and induced mutations. Surprisingly, all the CpG cytosines in the lacI sequence were fully methylated in all the tissues examined from both 2- and 14-week-old rats. Thus, there is no correlation between 5-methylcytosine content at CpG sites in lacI and the frequency of spontaneous mutation at this marker. We also investigated the methylation status of another widely used transgenic mutation target, the cII gene. The CpG sites in cII in BB rats were fully methylated while those in BB mice were partially methylated (each site approximately 50% methylated). Since spontaneous mutation frequency at cII is comparable in rat and mouse, the methylation status of CpG sequences in this gene also does not correlate with spontaneous frequency. We conclude that other mechanisms besides spontaneous deamination of 5-methylcytosine at CpG sites are driving spontaneous mutation at BB transgenic loci.
Collapse
Affiliation(s)
- J J Monroe
- Department of Genetic and Cellualar Toxicology, Merck Research Laboratories, WP45-333, West Point, PA 19486, USA.
| | | | | |
Collapse
|
22
|
Tosta CE. Coevolutionary networks: a novel approach to understanding the relationships of humans with the infectious agents. Mem Inst Oswaldo Cruz 2001; 96:415-25. [PMID: 11313655 DOI: 10.1590/s0074-02762001000300024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human organism is interpenetrated by the world of microorganisms, from the conception until the death. This interpenetration involves different levels of interactions between the partners including trophic exchanges, bi-directional cell signaling and gene activation, besides genetic and epigenetic phenomena, and tends towards mutual adaptation and coevolution. Since these processes are critical for the survival of individuals and species, they rely on the existence of a complex organization of adaptive systems aiming at two apparently conflicting purposes: the maintenance of the internal coherence of each partner, and a mutually advantageous coexistence and progressive adaptation between them. Humans possess three adaptive systems: the nervous, the endocrine and the immune system, each internally organized into subsystems functionally connected by intraconnections, to maintain the internal coherence of the system. The three adaptive systems aim at the maintenance of the internal coherence of the organism and are functionally linked by interconnections, in such way that what happens to one is immediately sensed by the others. The different communities of infectious agents that live within the organism are also organized into functional networks. The members of each community are linked by intraconnections, represented by the mutual trophic, metabolic and other influences, while the different infectious communities affect each other through interconnections. Furthermore, by means of its adaptive systems, the organism influences and is influenced by the microbial communities through the existence of transconnections. It is proposed that these highly complex and dynamic networks, involving gene exchange and epigenetic phenomena, represent major coevolutionary forces for humans and microorganisms.
Collapse
Affiliation(s)
- C E Tosta
- Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, DF, 70910-900, Brasil.
| |
Collapse
|