1
|
Lin K, Sunko D, Wang J, Yang J, Parsey RV, DeLorenzo C. Investigating the relationship between hippocampus/dentate gyrus volume and hypothalamus metabolism in participants with major depressive disorder. Sci Rep 2024; 14:10622. [PMID: 38724691 PMCID: PMC11082185 DOI: 10.1038/s41598-024-61519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/07/2024] [Indexed: 05/12/2024] Open
Abstract
Reduced hippocampal volume occurs in major depressive disorder (MDD), potentially due to elevated glucocorticoids from an overactivated hypothalamus-pituitary-adrenal (HPA) axis. To examine this in humans, hippocampal volume and hypothalamus (HPA axis) metabolism was quantified in participants with MDD before and after antidepressant treatment. 65 participants (n = 24 males, n = 41 females) with MDD were treated in a double-blind, randomized clinical trial of escitalopram. Participants received simultaneous positron emission tomography (PET)/magnetic resonance imaging (MRI) before and after treatment. Linear mixed models examined the relationship between hippocampus/dentate gyrus volume and hypothalamus metabolism. Chi-squared tests and multivariable logistic regression examined the association between hippocampus/dentate gyrus volume change direction and hypothalamus activity change direction with treatment. Multiple linear regression compared these changes between remitter and non-remitter groups. Covariates included age, sex, and treatment type. No significant linear association was found between hippocampus/dentate gyrus volume and hypothalamus metabolism. 62% (38 of 61) of participants experienced a decrease in hypothalamus metabolism, 43% (27 of 63) of participants demonstrated an increase in hippocampus size (51% [32 of 63] for the dentate gyrus) following treatment. No significant association was found between change in hypothalamus activity and change in hippocampus/dentate gyrus volume, and this association did not vary by sex, medication, or remission status. As this multimodal study, in a cohort of participants on standardized treatment, did not find an association between hypothalamus metabolism and hippocampal volume, it supports a more complex pathway between hippocampus neurogenesis and hypothalamus metabolism changes in response to treatment.
Collapse
Affiliation(s)
| | | | - Junying Wang
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, NY, USA
| | - Jie Yang
- Department of Family, Population & Preventive Medicine, Stony Brook University, New York, NY, USA
| | - Ramin V Parsey
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| | - Christine DeLorenzo
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, Reichardt HM. The Role of Glucocorticoids in Inflammatory Diseases. Cells 2021; 10:cells10112921. [PMID: 34831143 PMCID: PMC8616489 DOI: 10.3390/cells10112921] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.
Collapse
Affiliation(s)
- Sybille D. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Agathe Amouret
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Chiara Muzzi
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany; (S.V.); (J.P.T.)
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Holger M. Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37073 Göttingen, Germany; (S.D.R.); (A.A.); (C.M.)
- Correspondence: ; Tel.: +49-551-3963365
| |
Collapse
|
3
|
Lachowicz J, Niedziałek K, Rostkowska E, Szopa A, Świąder K, Szponar J, Serefko A. Zebrafish as an Animal Model for Testing Agents with Antidepressant Potential. Life (Basel) 2021; 11:life11080792. [PMID: 34440536 PMCID: PMC8401799 DOI: 10.3390/life11080792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Depression is a serious mental disease that, according to statistics, affects 320 million people worldwide. Additionally, a current situation related to the COVID-19 pandemic has led to a significant deterioration of mental health in people around the world. So far, rodents have been treated as basic animal models used in studies on this disease, but in recent years, Danio rerio has emerged as a new organism that might serve well in preclinical experiments. Zebrafish have a lot of advantages, such as a quick reproductive cycle, transparent body during the early developmental stages, high genetic and physiological homology to humans, and low costs of maintenance. Here, we discuss the potential of the zebrafish model to be used in behavioral studies focused on testing agents with antidepressant potential.
Collapse
Affiliation(s)
- Joanna Lachowicz
- Student’s Scientific Circle at Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.L.); (K.N.)
| | - Karolina Niedziałek
- Student’s Scientific Circle at Laboratory of Preclinical Testing, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.L.); (K.N.)
| | | | - Aleksandra Szopa
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
- Correspondence: (A.S.); (A.S.)
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
| | - Jarosław Szponar
- Clinical Department of Toxicology and Cardiology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland;
- Toxicology Clinic, Stefan Wyszyński Regional Specialist Hospital in Lublin, Al. Kraśnicka 100, 20-718 Lublin, Poland
| | - Anna Serefko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
4
|
Li AFY, Wang CL, Tai HY, Fu YJ, Tsai FT, Tsai YC, Ko YL, Li MJ, Lin CC, Chang TJ. Pandemic aspect of dexamethasone: Molecular mechanisms and clinical application. J Chin Med Assoc 2021; 84:245-247. [PMID: 33433137 DOI: 10.1097/jcma.0000000000000485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The rapid spread of coronavirus disease (COVID-19) in many countries has caused inconvenience in conducting daily life activities, and even deaths. Dexamethasone is a corticosteroid applied in clinical medicine since 1957, especially in immune therapy fields. Herein, we present the characteristics of Dexamethasone, from molecular mechanisms such as genomic and nongenomic pathways by cellular signal regulations, to clinical applications in various phases of the disease. During COVID-19 pandemic, Dexamethasone given to patients who required oxygen or ventilation therapy showed improved life efficacy.
Collapse
Affiliation(s)
- Anna F Y Li
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chia-Lin Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsiao-Yun Tai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yun-Ju Fu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ching Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mei-Jane Li
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Chiou-Chyn Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tai-Jay Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Laboratory of Genome Research, Basic Research Division, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Biomedical science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Brivio E, Lopez JP, Chen A. Sex differences: Transcriptional signatures of stress exposure in male and female brains. GENES BRAIN AND BEHAVIOR 2020; 19:e12643. [PMID: 31989757 DOI: 10.1111/gbb.12643] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/19/2022]
Abstract
More than two-thirds of patients suffering from stress-related disorders are women but over two-thirds of suicide completers are men. These are just some examples of the many sex differences in the prevalence and manifestations of stress-related disorders, such as major depressive disorder, post-traumatic stress disorder, and anxiety disorders, which have been extensively documented in clinical research. Nonetheless, the molecular origins of this sex dimorphism are still quite obscure. In response to this lack of knowledge, the NIH recently advocated implementing sex as biological variable in the design of preclinical studies across disciplines. As a result, a newly emerging field within psychiatry is trying to elucidate the molecular causes underlying the clinically described sex dimorphism. Several studies in rodents and humans have already identified many stress-related genes that are regulated by acute and chronic stress in a sex-specific fashion. Furthermore, current transcriptomic studies have shown that pathways and networks in male and female individuals are not equally affected by stress exposure. In this review, we give an overview of transcriptional studies designed to understand how sex influences stress-specific transcriptomic changes in rodent models, as well as human psychiatric patients, highlighting the use of different methodological techniques. Understanding which mechanisms are more affected in males, and which in females, may lead to the identification of sex-specific mechanisms, their selective contribution to stress susceptibility, and their role in the development of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Elena Brivio
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Department of Neurobiology, Nella and Leon Benoziyo Center for Neurological Diseases, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Tantipongpiradet A, Monthakantirat O, Vipatpakpaiboon O, Khampukdee C, Umehara K, Noguchi H, Fujiwara H, Matsumoto K, Sekeroglu N, Kijjoa A, Chulikhit Y. Effects of Puerarin on the Ovariectomy-Induced Depressive-Like Behavior in ICR Mice and Its Possible Mechanism of Action. Molecules 2019; 24:molecules24244569. [PMID: 31847138 PMCID: PMC6943479 DOI: 10.3390/molecules24244569] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Daily treatment of ovariectomized (OVX) ICR mice with puerarin, a glycosyl isoflavone isolated from the root bark of Pueraria candollei var. mirifica, and 17β-estradiol attenuated ovariectomy-induced depression-like behavior, as indicated by a decrease in immobility times in the tail suspension test (TST) and the forced swimming test (FST), an increase in the uterine weight and volume, a decrease in serum corticosterone levels, and dose-dependently normalized the downregulated transcription of the brain-derived neurotrophic factor (BDNF) and estrogen receptor (Erβ and Erα) mRNAs. Like 17β-estradiol, puerarin also inhibited ovariectomy-induced suppression of neurogenesis in the dentate gyrus of the hippocampus (increased the number of doublecortin (DCX)-immunosuppressive cells). These results suggest that puerarin exerts antidepressant-like effects in OVX animals, possibly by attenuating the OVX-induced hyperactivation of the HPA axis and/or normalizing the downregulated transcription of BDNF and ER mRNA in the brain.
Collapse
Affiliation(s)
- Ariyawan Tantipongpiradet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Onchuma Vipatpakpaiboon
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Charinya Khampukdee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
| | - Kaoru Umehara
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan; (K.U.); (H.N.)
| | - Hiroshi Noguchi
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan; (K.U.); (H.N.)
| | - Hironori Fujiwara
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (H.F.); (K.M.)
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; (H.F.); (K.M.)
| | - Nazim Sekeroglu
- Department of Horticulture, Faculty of Agriculture, Killis 7 Aralik University, Killis 79000, Turkey;
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (Y.C.); Tel.: +351-220428331 (A.K.)
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.T.); (O.M.); (O.V.); (C.K.)
- Correspondence: (A.K.); (Y.C.); Tel.: +351-220428331 (A.K.)
| |
Collapse
|
7
|
Kolosov D, Kelly SP. The mineralocorticoid receptor contributes to barrier function of a model fish gill epithelium. ACTA ACUST UNITED AC 2019; 222:jeb.192096. [PMID: 31085602 DOI: 10.1242/jeb.192096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Cortisol-induced epithelial tightening of a primary cultured rainbow trout gill epithelium model occurs in association with reduced paracellular permeability and increased abundance of select barrier-forming tight junction (TJ) proteins. Corticosteroid receptor (CR) pharmacological blocker studies have suggested that to produce this tightening effect, cortisol acts on the mineralocorticoid receptor (MR) as well as glucocorticoid receptors (GRs). This study considered how cortisol influences model gill epithelium permeability and TJ properties by transcriptional knockdown of the gene encoding the MR (mr-KD) using double-stranded RNA. Following mr-KD, a significant reduction in MR protein abundance was observed in the epithelium. The mr-KD epithelium demonstrated reduced transepithelial resistance (TER) and an increase in the paracellular flux of [3H]polyethylene glycol (MW 400 kDa, PEG-400). Concurrently, mRNA abundance of gr2 and 11βhsd increased, indicating a possible compensatory response to mr-KD. Transcript abundance of claudin (cldn)-6, -8d, -23a and -28b decreased while that of cldn-20a increased in mr-KD preparations. Cortisol-induced epithelial tightening was enhanced in mr-KD preparations, suggesting that alterations in CRs and TJ composition augmented model epithelium barrier function in response to lowered MR abundance. Cortisol treatment significantly increased the transcript and protein abundance of TJ proteins such as Cldn-8d and -28b. However, in mr-KD preparations, Cldn-28b protein abundance did not significantly alter in response to cortisol treatment, while Cldn-8d abundance was significantly elevated. Data suggest that mr-KD compromises normal barrier function of a primary cultured rainbow trout gill epithelium in both the presence and absence of cortisol and that Cldn-28b protein abundance may be modulated by cortisol via the MR only.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
8
|
On the Developmental Timing of Stress: Delineating Sex-Specific Effects of Stress across Development on Adult Behavior. Brain Sci 2018; 8:brainsci8070121. [PMID: 29966252 PMCID: PMC6071226 DOI: 10.3390/brainsci8070121] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Stress, and the chronic overactivation of major stress hormones, is associated with several neuropsychiatric disorders. However, clinical literature on the exact role of stress either as a causative, triggering, or modulatory factor to mental illness remains unclear. We suggest that the impact of stress on the brain and behavior is heavily dependent on the developmental timing at which the stress has occurred, and as such, this may contribute to the overall variability reported on the association of stress and mental illness. Here, animal models provide a way to comprehensively assess the temporal impact of stress on behavior in a controlled manner. This review particularly focuses on the long-term impact of stress on behavior in various rodent stress models at three major developmental time points: early life, adolescence, and adulthood. We characterize the various stressor paradigms into physical, social, and pharmacological, and discuss commonalities and differences observed across these various stress-inducing methods. In addition, we discuss here how sex can influence the impact of stress at various developmental time points. We conclude here that early postnatal life and adolescence represent particular periods of vulnerability, but that stress exposure during early life can sometimes lead to resilience, particularly to fear-potentiated memories. In the adult brain, while shorter periods of stress tended to enhance spatial memory, longer periods caused impairments. Overall, males tended to be more vulnerable to the long-term effects of early life and adolescent stress, albeit very few studies incorporate both sexes, and further well-powered sex comparisons are needed.
Collapse
|
9
|
Sakamoto T, Yoshiki M, Sakamoto H. The mineralocorticoid receptor knockout in medaka is further validated by glucocorticoid receptor compensation. Sci Data 2017; 4:170189. [PMID: 29231924 PMCID: PMC5726310 DOI: 10.1038/sdata.2017.189] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/30/2017] [Indexed: 11/18/2022] Open
Abstract
To study the critical role of mineralocorticoid signalling, we generated a constitutive mineralocorticoid receptor (MR)-knockout (KO) medaka as the first adult-viable MR-KO animal. This KO medaka displayed abnormal behaviours affected by visual stimuli. In contrast, the loss of MR did not result in overt phenotypic changes in osmoregulation, despite the well-known osmoregulatory functions of MR in mammals. Since glucocorticoid receptor (GR) has been suggested to compensate for loss of MR, we examined expression of duplicated GRs with markedly different ligand sensitivities, in various tissues. qRT-PCR results revealed that the absence of MR induced GR1 in the brain and eyes, but not in osmoregulatory organs. This reinforces the important functions of glucocorticoid signalling, but the minor role of mineralocorticoid signalling, in fish osmoregulation. Because both 11-deoxycorticosterone (DOC) and cortisol are ligands for MR, whereas GRs are specific to cortisol, GR1 signalling may compensate for the absence of cortisol-MR, rather than that of DOC-MR. Thus, this GR expression suggests that our MR-KO model can be used specifically to characterize DOC-MR signalling.
Collapse
Affiliation(s)
- Tatsuya Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi 701-4303, Japan
| | - Madoka Yoshiki
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Faculty of Science, Okayama University, Setouchi 701-4303, Japan
| |
Collapse
|
10
|
Vogt MA, Pfeiffer N, Le Guisquet AM, Brandwein C, Brizard B, Gass P, Belzung C, Chourbaji S. May the use of different background strains 'strain' the stress-related phenotype of GR +/- mice? Behav Brain Res 2017; 335:71-79. [PMID: 28782590 DOI: 10.1016/j.bbr.2017.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023]
Abstract
Genetically altered mice are available on different background strains. While respective backcrosses are often performed for pragmatic reasons, e.g. references, comparability, or existing protocols, the interaction between the mutations per se and the background strain often remains a neglected factor. The heterozygous mutation of the glucocorticoid receptor gene (GR) represents a well-examined model for depressive-like behavior in mice. To address the question in how far a robust depressive-like phenotype on a distinct background strain may allow a generalized conclusion, we analyzed respective phenotypes in two commonly used inbred strains: i.) C57BL/6N and ii.) BALB/c. Beside the use of different genetic models, we also extended our approach by applying two alternative paradigms to induce a depressive-like phenotype. Our study therefore comprised the model of 'unpredictable chronic mild stress' (UCMS) for four weeks and 'learned helplessness' (LH), which were used to study the role of GR, a key player in the development of depression. In the course of the experiment two cohorts of male GR+/- mice on either C57BL/6N or BALB/c background strain underwent a behavioral test battery to assess basal and depressive-like features. While both stress paradigms were functional in inducing depressive-like changes, the results were strictly strain-dependent. The genetic consequences became even more obvious under non-stress conditions with significant effects detected in BALB/c mice, which indicates a different basal stress predisposition due to differences in the genetic background.
Collapse
Affiliation(s)
- Miriam A Vogt
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany; Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany.
| | - Natascha Pfeiffer
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Anne Marie Le Guisquet
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Christiane Brandwein
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Bruno Brizard
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Peter Gass
- Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| | - Catherine Belzung
- Brain & Imaging (INSERM - UMR 930), Université François Rabelais de Tours, Tours, France
| | - Sabine Chourbaji
- Interfaculty Biomedical Research Facility, University of Heidelberg, Heidelberg, Germany; Central Institute of Mental Health, RG Animal Models in Psychiatry, Medical Faculty of Mannheim/University of Heidelberg, Mannheim, Germany
| |
Collapse
|
11
|
Shewade LH, Schneider KA, Brown AC, Buchholz DR. In-vivo regulation of Krüppel-like factor 9 by corticosteroids and their receptors across tissues in tadpoles of Xenopus tropicalis. Gen Comp Endocrinol 2017; 248:79-86. [PMID: 28232027 DOI: 10.1016/j.ygcen.2017.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
Corticosteroids are critical for normal development and for mediating effects of stress during development in all vertebrates. Even though gene knockout studies in mouse and zebrafish have identified a number of developmental roles of corticosteroids and their receptors, the numerous pleiotropic actions of these hormones affecting various aspects of development are understudied. For the most part, neither the endogenous hormone(s) nor their receptor(s) regulating developmental processes during natural development have been determined. Here, we address this issue by elucidating the endogenous regulation of the transcription factor Krüppel-like factor 9 (klf9) across tissues during development by corticosteroid hormones (aldosterone and corticosterone) and their nuclear receptors (type-I and type-II receptors). First, we measured the developmental expression profiles of klf9 and type-I and type-II corticosteroid receptors in key target tissues, brain, lungs, and tail, during larval and metamorphic stages in Xenopus tropicalis. We also studied the corticosteroid regulation of klf9 in these tissues in-vivo using exogenous hormone treatments and receptor antagonists. Klf9 and the corticosteroid receptors were expressed in each tissue and significantly increased in expression reaching a peak at metamorphic climax, except for the type-II receptor in brain and tail whose expression did not change significantly across stages. Both corticosteroid hormones induced klf9 in each tissue, although aldosterone required a five times higher dose than corticosterone to cause a significant induction. The upregulation of klf9 by both corticosteroids was completely blocked by the use of the type-II receptor antagonist RU486 and not the type-I receptor antagonist spironolactone. These results are consistent with previous in-vitro studies and indicate for the first time in-vivo that corticosteroid regulation of klf9 occurs exclusively via corticosterone and type-II receptor interaction across tissues.
Collapse
Affiliation(s)
- Leena H Shewade
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, OH 45221, USA
| | - Katelin A Schneider
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, OH 45221, USA
| | - Audrey C Brown
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, OH 45221, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, 312 Clifton Court, Cincinnati, OH 45221, USA.
| |
Collapse
|
12
|
Stanisavljevic A, Peric I, Pantelic M, Filipovic DM. Olanzapine alleviates oxidative stress in the liver of socially isolated rats. Can J Physiol Pharmacol 2017; 95:634-640. [PMID: 28177683 DOI: 10.1139/cjpp-2016-0598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Olanzapine, an antipsychotic drug, is used to treat depressive disorder, but its effects on the liver, the main site of drug metabolism, still remain elusive. We studied the effects of 3 weeks of olanzapine treatment (7.5 mg/kg per day) on the malondialdehyde (MDA) and protein carbonyl (PCO) contents, protein expression of copper/zinc superoxide dismutase (CuZnSOD), and activity of total superoxide dismutase (SOD), as well as catalase (CAT) protein expression and activity levels in the liver cytosol of rats exposed to 6 weeks of chronic social isolation (CSIS), which causes depressive- and anxiety-like behaviors. Increased cytosolic MDA in CSIS rats (vehicle- or olanzapine-treated) indicated hepatic oxidative stress. Increase in PCO and CAT activity associated with unchanged total SOD activity following CSIS also confirm the presence of oxidative stress. Chronic olanzapine treatment in CSIS prevented increase in PCO without an effect on MDA content. Increased SOD activity in olanzapine-treated (controls and CSIS) groups compared with corresponding vehicle-treated groups and decreased CAT activity in olanzapine-treated CSIS rats compared with vehicle-treated CSIS group was found. The data suggest that chronic olanzapine treatment has a protective effect on hepatic protein oxidation and improves antioxidant defense. The beneficial effects of olanzapine may be due to its free radical scavenging properties and antioxidant activity.
Collapse
Affiliation(s)
- Andrijana Stanisavljevic
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Ivana Peric
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Marija Pantelic
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| | - Dragana M Filipovic
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
- Vinča Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Schmidt M, Lapert F, Brandwein C, Deuschle M, Kasperk C, Grimsley JM, Gass P. Prenatal stress changes courtship vocalizations and bone mineral density in mice. Psychoneuroendocrinology 2017; 75:203-212. [PMID: 27838514 DOI: 10.1016/j.psyneuen.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 02/03/2023]
Abstract
Stress during the prenatal period has various effects on social and sexual behavior in both human and animal offspring. The present study examines the effects of chronic restraint stress in the second vs third trimester in pregnancy and glucocorticoid receptor (GR) heterozygous mutation on C57BL/6N male offspring's vocal courtship behavior in adulthood by applying a novel analyzing method. Finally, corticosterone and testosterone levels as well as bone mineral density were measured. Prenatal stress in the third, but not in the second trimester caused a significant qualitative change in males' courtship vocalizations, independent of their GR genotype. Bone mineral density was decreased also by prenatal stress exclusively in the third trimester in GR mutant and wildtype mice and - in contrast to corticosterone and testosterone - highly correlated with courtship vocalizations. In Gr+/- males corticosterone serum levels were significantly increased in animals that had experienced prenatal stress in the third trimester. Testosterone serum levels were overall increased in Gr+/- males in comparison to wildtypes as a tendency - whereas prenatal stress had no influence. Prenatal stress alters adult males' courtship vocalizations exclusively when applied in the third trimester, with closely related changes in bone mineral density. Bone mineral density seems to reflect best the complex neuroendocrine mechanisms underlying the production of courtship vocalizations. Besides, we demonstrated for the first time elevated basal corticosterone levels in Gr+/- males after prenatal stress which suggests that the Gr+/- mouse model of depression might also serve as a model of prenatal stress in male offspring.
Collapse
Affiliation(s)
- Michaela Schmidt
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany.
| | - Florian Lapert
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Christiane Brandwein
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Michael Deuschle
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Christian Kasperk
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Jasmine M Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Peter Gass
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| |
Collapse
|
14
|
Principal function of mineralocorticoid signaling suggested by constitutive knockout of the mineralocorticoid receptor in medaka fish. Sci Rep 2016; 6:37991. [PMID: 27897263 PMCID: PMC5126551 DOI: 10.1038/srep37991] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 01/10/2023] Open
Abstract
As in osmoregulation, mineralocorticoid signaling is implicated in the control of brain-behavior actions. Nevertheless, the understanding of this role is limited, partly due to the mortality of mineralocorticoid receptor (MR)-knockout (KO) mice due to impaired Na+ reabsorption. In teleost fish, a distinct mineralocorticoid system has only been identified recently. Here, we generated a constitutive MR-KO medaka as the first adult-viable MR-KO animal, since MR expression is modest in osmoregulatory organs but high in the brain of adult medaka as for most teleosts. Hyper- and hypo-osmoregulation were normal in MR-KO medaka. When we studied the behavioral phenotypes based on the central MR localization, however, MR-KO medaka failed to track moving dots despite having an increase in acceleration of swimming. These findings reinforce previous results showing a minor role for mineralocorticoid signaling in fish osmoregulation, and provide the first convincing evidence that MR is required for normal locomotor activity in response to visual motion stimuli, but not for the recognition of these stimuli per se. We suggest that MR potentially integrates brain-behavioral and visual responses, which might be a conserved function of mineralocorticoid signaling through vertebrates. Importantly, this fish model allows for the possible identification of novel aspects of mineralocorticoid signaling.
Collapse
|
15
|
Arango-Lievano M, Jeanneteau F. Timing and crosstalk of glucocorticoid signaling with cytokines, neurotransmitters and growth factors. Pharmacol Res 2016; 113:1-17. [DOI: 10.1016/j.phrs.2016.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023]
|
16
|
Cattaneo A, Riva MA. Stress-induced mechanisms in mental illness: A role for glucocorticoid signalling. J Steroid Biochem Mol Biol 2016; 160:169-74. [PMID: 26241031 DOI: 10.1016/j.jsbmb.2015.07.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Stress represents the main environmental risk factor for mental illness. Exposure to stressful events, particularly early in life, has been associated with increased incidence and susceptibility of major depressive disorders as well as of other psychiatric illnesses. Among the key players in these events are glucocorticoid receptors. Dysfunctional glucocorticoid signalling may indeed contribute to psychopathology through a number of mechanisms that regulate the response to acute or chronic stress and that affect the function of genes and systems known to be relevant for mood disorders. Indeed, exposure to chronic stress early in life as well as in adulthood has been shown to reduce the expression of glucocorticoid receptors (GR), also through epigenetic mechanisms, and to up-regulate the expression of the co-chaperone gene FKBP5, which restrains GR activity by limiting the translocation of the receptor complex to the nucleus. Another mechanism that contributes to changes in GR responsiveness is the state of receptor phosphorylation that controls activation, subcellular localization as well as its transcriptional activity. Moreover, GR phosphorylation may represent an important mechanism for the cross talk between neurotrophic signalling and GR-dependent transcription, bridging two important players for mood disorders. One gene that lies downstream from GR and may contribute to stress-related changes is serum glucocorticoid kinase-1 (SGK1). We have demonstrated that the expression of SGK1 is significantly increased after exposure to chronic stress in rodents as well as in the blood of drug-free depressed patients. We have also shown that SGK1 up-regulation may ultimately reduce hippocampal neurogenesis and contribute to the structural abnormalities that have been reported to occur in depressed patients. In summary, GR signalling may represent a point of convergence as well as of divergence for defects associated with pathologic conditions characterized by heightened vulnerability to stress. The characterization of these abnormalities is crucial to identify novel targets for therapeutic intervention that may counteract more effectively stress-induced neurobiological abnormalities.
Collapse
Affiliation(s)
- A Cattaneo
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, UK; IRCCS Fatebenefratelli San Giovanni di Dio, Brescia, Italy
| | - M A Riva
- Laboratory of Psychopharmacology and Molecular Psychiatry, Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, Italy.
| |
Collapse
|
17
|
Oxidative and nitrosative stress pathways in the brain of socially isolated adult male rats demonstrating depressive- and anxiety-like symptoms. Brain Struct Funct 2016; 222:1-20. [PMID: 27033097 DOI: 10.1007/s00429-016-1218-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/17/2016] [Indexed: 01/18/2023]
Abstract
Various stressors may disrupt the redox homeostasis of an organism by causing oxidative and nitrosative stress that may activate stressor-specific pathways and provoke specific responses. Chronic social isolation (CSIS) represents a mild chronic stress that evokes a variety of neurobehavioral changes in rats similar to those observed in people with psychiatric disorders, including depression. Most rodent studies have focused on the effect of social isolation during weaning or adolescence, while its effect in adult rats has not been extensively examined. In this review, we discuss the current knowledge regarding the involvement of oxidative/nitrosative stress pathways in the prefrontal cortex and hippocampus of adult male rats exposed to CSIS, focusing on hypothalamic-pituitary-adrenocortical (HPA) axis activity, behavior parameters, antioxidative defense systems, stress signaling mediated by nuclear factor-kappa B (NF-κB), and mitochondria-related proapoptotic signaling. Although increased concentrations of corticosterone (CORT) have been shown to induce oxidative and nitrosative stress, we suggest a mechanism underlying the glucocorticoid paradox whereby a state of oxidative/nitrosative stress may exist under basal CORT levels. This review also highlights the differential susceptibility of prefrontal cortex and hippocampus to oxidative stress following CSIS and suggests a possible cellular pathway of stress tolerance that preserves the hippocampus from molecular damage and apoptosis. The differential regulation of the transcriptional factor NF-κB, and the enzymes inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) following CSIS may be one functional difference between the response of the prefrontal cortex and hippocampus, thus identifying potentially relevant targets for antidepressant treatment.
Collapse
|
18
|
Li YC, Wang LL, Pei YY, Shen JD, Li HB, Wang BY, Bai M. Baicalin decreases SGK1 expression in the hippocampus and reverses depressive-like behaviors induced by corticosterone. Neuroscience 2015; 311:130-7. [DOI: 10.1016/j.neuroscience.2015.10.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/24/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
|
19
|
Li X, Hu G, Li X, Wang YY, Hu YY, Zhou H, Latif SA, Morris DJ, Chu Y, Zheng Z, Ge RS. Metabolic Coupling Determines the Activity: Comparison of 11β-Hydroxysteroid Dehydrogenase 1 and Its Coupling between Liver Parenchymal Cells and Testicular Leydig Cells. PLoS One 2015; 10:e0141767. [PMID: 26528718 PMCID: PMC4631333 DOI: 10.1371/journal.pone.0141767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/13/2015] [Indexed: 11/25/2022] Open
Abstract
Background 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) interconverts active 11β-hydroxyl glucocorticoids and inactive 11keto forms. However, its directionality is determined by availability of NADP+/NADPH. In liver cells, 11β-HSD1 behaves as a primary reductase, while in Leydig cells it acts as a primary oxidase. However, the exact mechanism is not clear. The direction of 11β-HSD1 has been proposed to be regulated by hexose-6-phosphate dehydrogenase (H6PDH), which catalyzes glucose-6-phosphate (G6P) to generate NADPH that drives 11β-HSD1 towards reduction. Methodology To examine the coupling between 11β-HSD1 and H6PDH, we added G6P to rat and human liver and testis or Leydig cell microsomes, and 11β-HSD1 activity was measured by radiometry. Results and Conclusions G6P stimulated 11β-HSD1 reductase activity in rat (3 fold) or human liver (1.5 fold), but not at all in testis. S3483, a G6P transporter inhibitor, reversed the G6P-mediated increases of 11β-HSD1 reductase activity. We compared the extent to which 11β-HSD1 in rat Leydig and liver cells might be coupled to H6PDH. In order to clarify the location of H6PDH within the testis, we used the Leydig cell toxicant ethane dimethanesulfonate (EDS) to selectively deplete Leydig cells. The depletion of Leydig cells eliminated Hsd11b1 (encoding 11β-HSD1) expression but did not affect the expression of H6pd (encoding H6PDH) and Slc37a4 (encoding G6P transporter). H6pd mRNA level and H6PDH activity were barely detectable in purified rat Leydig cells. In conclusion, the availability of H6PDH determines the different direction of 11β-HSD1 in liver and Leydig cells.
Collapse
Affiliation(s)
- Xingwang Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
| | - Guoxin Hu
- Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
| | - Xiaoheng Li
- Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
| | - Yi-Yan Wang
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
| | - Yuan-Yuan Hu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
| | - Hongyu Zhou
- Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
| | - Syed A. Latif
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Brown University School of Medicine, Providence, RI 02906, United States of America
| | - David J. Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Brown University School of Medicine, Providence, RI 02906, United States of America
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China
| | - Zhiqiang Zheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
- * E-mail: (RG); (ZZ)
| | - Ren-Shan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
- Research Academy of Reproductive Biomedicine, Wenzhou Medical University, Wenzhou, ZJ 325000, PR China
- Population Council, 1230 York Avenue, New York, NY 10065, United States of America
- * E-mail: (RG); (ZZ)
| |
Collapse
|
20
|
Short-term withdrawal from developmental exposure to cocaine activates the glucocorticoid receptor and alters spine dynamics. Eur Neuropsychopharmacol 2015; 25:1832-41. [PMID: 26004981 DOI: 10.1016/j.euroneuro.2015.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 01/19/2023]
Abstract
Although glucocorticoid receptors (GRs) contribute to the action of cocaine, their role following developmental exposure to the psychostimulant is still unknown. To address this issue, we exposed adolescent male rats to cocaine (20mg/kg/day) from post-natal day (PND) 28 to PND 42 and sacrificed them at PND 45 or 90. We studied the medial prefrontal cortex (mPFC), a brain region that is still developing during adolescence. In PND 45 rats we found enhanced GR transcription and translation as well as increased trafficking toward the nucleus of the receptor, with no alteration in plasma corticosterone levels. We also showed reduced expression of the GR co-chaperone FKBP51, that normally keeps the receptor in the cytoplasm, and increased expression of Src1, which cooperates in the activation of GR transcriptional activity, revealing that short withdrawal alters the finely tuned mechanisms regulating GR action. Since activation of GRs regulate dendritic spine morphology, we next investigated spine dynamics in cocaine-withdrawn rats. We found that PSD95, cofilin and F-actin, molecules regulating spine actin network, are reduced in the mPFC of PND 45 rats suggesting reduced spine density, confirmed by confocal imaging. Further, formation of filopodia, i.e. the inactive spines, is enhanced suggesting the formation of non-functional spines. Of note, no changes were found in molecules related to GR machinery or spine dynamics following long-term abstinence, i.e. in adult rats (PND 90). These findings demonstrate that short withdrawal promotes plastic changes in the developing brain via the dysregulation of the GR system and alterations in the spine network.
Collapse
|
21
|
Altered mRNA Levels of Glucocorticoid Receptor, Mineralocorticoid Receptor, and Co-Chaperones (FKBP5 and PTGES3) in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects. Mol Neurobiol 2015; 53:2090-9. [DOI: 10.1007/s12035-015-9178-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/13/2015] [Indexed: 01/20/2023]
|
22
|
Shibata S, Iinuma M, Soumiya H, Fukumitsu H, Furukawa Y, Furukawa S. A novel 2-decenoic acid thioester ameliorates corticosterone-induced depression- and anxiety-like behaviors and normalizes reduced hippocampal signal transduction in treated mice. Pharmacol Res Perspect 2015; 3:e00132. [PMID: 26038707 PMCID: PMC4448981 DOI: 10.1002/prp2.132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 01/14/2023] Open
Abstract
We characterized mice administered corticosterone (CORT) at a dose of 20 mg/kg for 3 weeks to determine their suitability as a model of mood disorders and found that the time immobilized in the tail suspension test was longer and the time spent in the open arms of the elevated plus-maze test was shorter than those of the vehicle-treated group, findings demonstrating that chronic CORT induced both depression-like and anxiety-like behaviors. Furthermore, the levels of phosphorylated extracellular signal-regulated kinase (pERK) 1/2 in the hippocampus and cerebral cortex were reduced in the CORT-treated group. Using this model, we investigated the protective effect of the ester, thioester, and amide compounds of 2-decenoic acid derivatives (termed compounds A, B, and C, respectively). The potency of the protective activity against the CORT-induced depression-like or anxiety-like behaviors and the reduction in pERK1/2 level were found to be in the following order: compound B > compound C > compound A. Therefore, we further investigated the therapeutic activity of only compound B, and its effect on depression-like behavior was observed after oral administration for 1 or 2 weeks, and its effect on anxiety-like behavior was observed after oral administration for 3 weeks. The ratios of phosphorylated ERK1/2, Akt, and cAMP-response element-binding protein to their respective nonphosphorylated forms were smaller in the CORT-treated group than in the vehicle-treated group; however, subsequent treatment with compound B at either 0.3 or 1.5 mg/kg significantly ameliorated this reduction. Compound B appeared to elicit intracellular signaling, similar to that elicited by brain-derived neurotrophic factor, and its mode of action was shown to be novel and different from that of fluvoxamine, a currently prescribed drug for mood disorders.
Collapse
Affiliation(s)
- Shoyo Shibata
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University Daigaku-nishi 1-25-4, Gifu, 501-1196, Japan
| | - Munekazu Iinuma
- Laboratory of Pharmacognosy, Department of Bioactive Molecules, Gifu Pharmaceutical University Daigaku-nishi 1-25-4, Gifu, 501-1196, Japan
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University Daigaku-nishi 1-25-4, Gifu, 501-1196, Japan
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University Daigaku-nishi 1-25-4, Gifu, 501-1196, Japan
| | - Yoshiko Furukawa
- Department of Pharmaceutical Pharmacology, Faculty of Pharmaceutical Sciences, Matsuyama University Bunkyo-cho 4-2, Matsuyama, Ehime, 790-8578, Japan
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Department of Biofunctional Analysis, Gifu Pharmaceutical University Daigaku-nishi 1-25-4, Gifu, 501-1196, Japan
| |
Collapse
|
23
|
Paradoxical mineralocorticoid receptor-mediated effect in fear memory encoding and expression of rats submitted to an olfactory fear conditioning task. Neuropharmacology 2014; 79:201-11. [DOI: 10.1016/j.neuropharm.2013.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 10/30/2013] [Accepted: 11/21/2013] [Indexed: 12/21/2022]
|
24
|
Laryea G, Schütz G, Muglia LJ. Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Mol Endocrinol 2013; 27:1655-65. [PMID: 23979842 DOI: 10.1210/me.2013-1187] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The glucocorticoid receptor (GR) regulates hypothalamic-pituitary-adrenal (HPA) axis activity during the stress response. The paraventricular nucleus (PVN) is a major site of negative feedback to coordinate the degree of the HPA axis activity with the magnitude of the exposed stressor. To define the function of endogenous PVN GR, we used Cre-loxP technology to disrupt different GR exons in Sim1-expressing neurons of the hypothalamus. GR exon 2-deleted mice (Sim1Cre-GRe2Δ) demonstrated 43% loss of PVN GR compared with an 87% GR loss in exon 3-deleted mice (Sim1Cre-GRe3Δ). Sim1Cre-GRe3Δ mice display stunted growth at birth but develop obesity in adulthood and display impaired stress-induced glucose release. We observed elevated basal and stress-induced corticosterone levels in Sim1Cre-GRe3Δ mice, compared with control and Sim1Cre-GRe2Δ mice, and impaired dexamethasone suppression, indicating an inability to negatively regulate corticosterone secretion. Sim1Cre-GRe3Δ mice also showed increased CRH mRNA in the PVN, increased basal plasma ACTH levels, and reduced locomotor behavior. We observed no differences in Sim1Cre-GRe2Δ mice compared with control mice in any measure. Our behavioral data suggest that GR deletion in Sim1-expressing neurons has no effect on anxiety or despair-like behavior under basal conditions. We conclude that loss of PVN GR results in severe HPA axis hyperactivity and Cushing's syndrome-like phenotype but does not affect anxiety and despair-like behaviors.
Collapse
Affiliation(s)
- Gloria Laryea
- MD/PhD, 3333 Burnet Avenue, ML 7009, Cincinnati, Ohio 45229.
| | | | | |
Collapse
|
25
|
Learned helplessness: unique features and translational value of a cognitive depression model. Cell Tissue Res 2013; 354:171-8. [DOI: 10.1007/s00441-013-1654-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/03/2013] [Indexed: 12/24/2022]
|
26
|
Jeanneteau F, Chao MV. Are BDNF and glucocorticoid activities calibrated? Neuroscience 2013; 239:173-95. [PMID: 23022538 PMCID: PMC3581703 DOI: 10.1016/j.neuroscience.2012.09.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022]
Abstract
One hypothesis to account for the onset and severity of neurological disorders is the loss of trophic support. Indeed, changes in the levels and activities of brain-derived neurotrophic factor (BDNF) occur in numerous neurodegenerative and neuropsychiatric diseases. A deficit promotes vulnerability whereas a gain of function facilitates recovery by enhancing survival, synapse formation and synaptic plasticity. Implementation of 'BDNF therapies', however, faces numerous methodological and pharmacokinetic issues. Identifying BDNF mimetics that activate the BDNF receptor or downstream targets of BDNF signaling represent an alternative approach. One mechanism that shows great promise is to study the interplay of BDNF and glucocorticoid hormones, a major class of natural steroid secreted during stress reactions and in synchrony with circadian rhythms. While small amounts of glucocorticoids support normal brain function, excess stimulation by these steroid hormones precipitates stress-related affective disorders. To date, however, because of the paucity of knowledge of underlying cellular mechanisms, deleterious effects of glucocorticoids are not prevented following extreme stress. In the present review, we will discuss the complementary roles shared by BDNF and glucocorticoids in synaptic plasticity, and delineate possible signaling mechanisms mediating these effects.
Collapse
Affiliation(s)
- F Jeanneteau
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
27
|
Qi XR, Kamphuis W, Wang S, Wang Q, Lucassen PJ, Zhou JN, Swaab DF. Aberrant stress hormone receptor balance in the human prefrontal cortex and hypothalamic paraventricular nucleus of depressed patients. Psychoneuroendocrinology 2013; 38:863-870. [PMID: 23137715 DOI: 10.1016/j.psyneuen.2012.09.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/29/2012] [Accepted: 09/16/2012] [Indexed: 01/28/2023]
Abstract
The prefrontal cortex (PFC) plays an important role in the regulation of the hypothalamo-pituitary-adrenal (HPA)-axis regarding stress response and possibly also depression. We used quantitative real-time PCR to determine the mRNA levels of 17 stress-related genes in the human postmortem anterior cingulate cortex (ACC) and dorsolateral PFC (DLPFC) of patients with mood disorder and of well-matched controls. The correlation between the expression of these DLPFC genes and their earlier measured expression in the paraventricular nucleus (PVN) of the same subjects was also determined. Transcript level of mineralocorticoid receptor (MR) was significantly decreased, while the ratio of glucocorticoid receptor (GR) α to MR mRNA level was increased in the ACC/DLPFC, both in the bipolar and major depressive disorder subgroups and also in the pooled depression group. Significantly inverse correlations were found for MR mRNA level and for GRα/MR ratio between the DLPFC and PVN. A selective disturbance of MR and of the GRα/MR ratio thus seems to exist in the ACC/DLPFC in depression, which was inversely correlated with the corresponding levels in the PVN. These changes may contribute to HPA-axis hyperactivity and hence to depression etiology.
Collapse
Affiliation(s)
- Xin-Rui Qi
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Wu TC, Chen HT, Chang HY, Yang CY, Hsiao MC, Cheng ML, Chen JC. Mineralocorticoid receptor antagonist spironolactone prevents chronic corticosterone induced depression-like behavior. Psychoneuroendocrinology 2013; 38:871-83. [PMID: 23044404 DOI: 10.1016/j.psyneuen.2012.09.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 09/17/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
High level of serum corticosteroid is frequently associated with depression, in which a notable HPA (hypothalamus-pituitary-adrenal) axis hyperactivity is often observed. There are two types of corticosteroid receptors expressed in the hippocampus that provide potent negative feedback regulation on the HPA axis but dysfunction during depression, i.e. the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR). The balance between hippocampal MR and GR during chronic stress plays an important role in the occurrence of depression. The aim of this study is to explore if chronic corticosterone administration would induce depression-like behavior and affect the expression and function of hippocampal MR and GR, in addition to assess whether manipulation of corticosteroid receptors would modulate depressive behaviors. Hence, mice were treated with corticosterone (40 mg/kg) for 21 days followed by assessment in a battery of depression-like behaviors. The results show that chronic corticosterone-treated animals displayed an increased immobility time in a forced-swimming test, decreased preference to sucrose solution and novel object recognition performance, and enhanced hippocampal serotonin but decreased MR expression in both hippocampus and hypothalamus. On the other hand, co-administration of MR antagonist, spironolactone (25mg/kg, i.p. × 7 days) in corticosteroid-treated animals reduced immobility time in a forced-swimming test and improved performance in a novel object recognition test. In conclusion, we demonstrate that chronic corticosterone treatment triggers several depression-like behaviors, and in parallel, down-regulates MR expression in the hippocampus and hypothalamus. Administration of an MR antagonist confers an anti-depressant effect in chronic corticosterone-treated animals.
Collapse
Affiliation(s)
- Ting-Ching Wu
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang-Gung University, 259 Wen-Hwa 1st Road, Tao-Yuan 333, Taiwan
| | | | | | | | | | | | | |
Collapse
|
29
|
Sensitivity of depression-like behavior to glucocorticoids and antidepressants is independent of forebrain glucocorticoid receptors. Brain Res 2013; 1525:1-15. [PMID: 23727405 DOI: 10.1016/j.brainres.2013.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 12/13/2022]
Abstract
The location of glucocorticoid receptors (GR) implicated in depression symptoms and antidepressant action remains unclear. Forebrain glucocorticoid receptor deletion on a C57B/6×129×CBA background (FBGRKO-T50) reportedly produces increased depression-like behavior and elevated glucocorticoids. We further hypothesized that forebrain GR deletion would reduce behavioral sensitivity to glucocorticoids and to antidepressants. We have tested this hypothesis in mice with calcium calmodulin kinase IIα-Cre-mediated forebrain GR deletion derived from a new founder on a pure C57BL/6 background (FBGRKO-T29-1). We measured immobility in forced swim or tail suspension tests after manipulating glucocorticoids or after dose response experiments with tricyclic or monoamine oxidase inhibitor antidepressants. Despite forebrain GR deletion that was at least as rapid and more extensive than reported in the mixed-strain FBGRKO-T50 mice (Boyle et al. 2005), and possibly because of their different founder, our FBGRKO-T29-1 mice did not exhibit increases in depression-like behavior or adrenocortical axis hormones. Nevertheless, FBGRKO-T29-1 mice were at least as sensitive as floxed GR controls to the depressive effects of glucocorticoids and the effects of two different classes of antidepressants. FBGRKO-T29-1 mice also unexpectedly exhibited increased mineralocorticoid receptor (MR) gene expression. Our results reinforce prior evidence that antidepressant action does not require forebrain GR, and suggest a correlation between the absence of depression-like phenotype and combined MR up-regulation and central amygdala GR deficiency. Our findings demonstrate that GR outside the areas targeted in FBGRKO-T29-1 mice are involved in the depressive effects of glucocorticoids, and leave open the possibility that these GR populations also contribute to antidepressant action.
Collapse
|
30
|
O'Leary OF, Cryan JF. Towards translational rodent models of depression. Cell Tissue Res 2013; 354:141-53. [PMID: 23525777 DOI: 10.1007/s00441-013-1587-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 02/11/2013] [Indexed: 02/02/2023]
Abstract
Rodent models of depression have been developed in an effort to identify novel antidepressant compounds and to further our understanding of the pathophysiology of depression. Various rodent models of depression and antidepressant-like behaviour are currently used but, clearly, none of these current models fully recapitulate all features of depression. Moreover, these models have not resulted in the development of novel non-monoaminergic-based antidepressants with clinical efficacy. Thus, a refinement of the current models of depression is required. The present review outlines the most commonly used models of depression and antidepressant drug-like activity and suggests several factors that should be considered when refining these models.
Collapse
Affiliation(s)
- Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,
| | | |
Collapse
|
31
|
Hu GX, Lin H, Lian QQ, Zhou SH, Guo J, Zhou HY, Chu Y, Ge RS. Curcumin as a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase 1: improving lipid profiles in high-fat-diet-treated rats. PLoS One 2013; 8:e49976. [PMID: 23533564 PMCID: PMC3606385 DOI: 10.1371/journal.pone.0049976] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 10/17/2012] [Indexed: 11/18/2022] Open
Abstract
Background 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activates glucocorticoid locally in liver and fat tissues to aggravate metabolic syndrome. 11β-HSD1 selective inhibitor can be used to treat metabolic syndrome. Curcumin and its derivatives as selective inhibitors of 11β-HSD1 have not been reported. Methodology Curcumin and its 12 derivatives were tested for their potencies of inhibitory effects on human and rat 11β-HSD1 with selectivity against 11β-HSD2. 200 mg/kg curcumin was gavaged to adult male Sprague-Dawley rats with high-fat-diet-induced metabolic syndrome for 2 months. Results and Conclusions Curcumin exhibited inhibitory potency against human and rat 11β-HSD1 in intact cells with IC50 values of 2.29 and 5.79 µM, respectively, with selectivity against 11β-HSD2 (IC50, 14.56 and 11.92 µM). Curcumin was a competitive inhibitor of human and rat 11β-HSD1. Curcumin reduced serum glucose, cholesterol, triglyceride, low density lipoprotein levels in high-fat-diet-induced obese rats. Four curcumin derivatives had much higher potencies for Inhibition of 11β-HSD1. One of them is (1E,4E)-1,5-bis(thiophen-2-yl) penta-1,4-dien-3-one (compound 6), which had IC50 values of 93 and 184 nM for human and rat 11β-HSD1, respectively. Compound 6 did not inhibit human and rat kidney 11β-HSD2 at 100 µM. In conclusion, curcumin is effective for the treatment of metabolic syndrome and four novel curcumin derivatives had high potencies for inhibition of human 11β-HSD1 with selectivity against 11β-HSD2.
Collapse
Affiliation(s)
- Guo-Xin Hu
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Han Lin
- The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Qing-Quan Lian
- The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Shu-Hua Zhou
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Jingjing Guo
- The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Hong-Yu Zhou
- School of Pharmacy, Wenzhou Medical College, Wenzhou, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Anti-fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang, PR China
| | - Ren-Shan Ge
- The 2nd Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
- Population Council, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
32
|
Taborsky B, Tschirren L, Meunier C, Aubin-Horth N. Stable reprogramming of brain transcription profiles by the early social environment in a cooperatively breeding fish. Proc Biol Sci 2013; 280:20122605. [PMID: 23269853 PMCID: PMC3574353 DOI: 10.1098/rspb.2012.2605] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 12/04/2012] [Indexed: 01/31/2023] Open
Abstract
Adult social behaviour can be persistently modified by early-life social experience. In rodents, such effects are induced by tactile maternal stimulation resulting in neuroendocrine modifications of the hypothalamic-pituitary-adrenal axis involved in stress responsiveness. Whether similar long-term alterations can occur in the hypothalamic-pituitary-interrenal (HPI) axis of poikilothermic vertebrates is unknown. We compared the expression of four genes of the HPI axis in adults of the cooperatively breeding cichlid Neolamprologus pulcher, which had been exposed to two early-life social treatments 1.5 years prior to brain sampling. Fish reared with parents and siblings had less brain expression of corticotropin-releasing factor and of the functional homologue of the mammalian glucocorticoid receptor (GR1) than individuals reared with same-age siblings only. Expression of the mineralocorticoid receptors (MR) did not differ between treatments, but the MR/GR1 expression ratio was markedly higher in fish reared with parents and siblings. Thus, we show here that early social experience can alter the programming of the stress axis in poikilothermic vertebrates, suggesting that this mechanism is deeply conserved within vertebrates. Moreover, we show for the first time that reprogramming of the stress axis of a vertebrate can be induced without tactile stimulation by parents.
Collapse
Affiliation(s)
- Barbara Taborsky
- Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland.
| | | | | | | |
Collapse
|
33
|
Mitic M, Simic I, Djordjevic J, Radojcic MB, Adzic M. Gender-specific effects of fluoxetine on hippocampal glucocorticoid receptor phosphorylation and behavior in chronically stressed rats. Neuropharmacology 2013; 70:100-11. [PMID: 23353902 DOI: 10.1016/j.neuropharm.2012.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/10/2012] [Accepted: 12/22/2012] [Indexed: 12/13/2022]
Abstract
Chronic psychosocial isolation stress (CPSI) modulates glucocorticoid receptor (GR) functioning in Wistar male rat hippocampus (HIPPO) through alteration of nuclear GR phosphorylation and its upstream kinases signaling, which parallels animal depressive-like behavior. The current study investigated potential gender specificities regarding the effect of chronic therapy by an antidepressant fluoxetine (FLU) on GR signaling in HIPPO and depressive-like behavior in CPSI animals. FLU was administrated to female and male naïve or CPSI rats for 21 days and GR protein, its phosphorylation status and upstream kinases, as well as GR and BDNF mRNA were followed in HIPPO together with animal serum corticosterone (CORT) and depressive-like behavior. The results showed that CPSI increased immobility in males versus hyperactivity in females and disrupted nuclear pGR232-Cdk5 pathway and JNK signaling in a gender-specific way. In contrast, in both genders CPSI increased the nuclear levels of GR and pGR246 but decreased CORT and mRNA levels of GR and BDNF. Concomitant FLU normalized the depressive-like behavior and altered the nuclear pGR232-Cdk5 signaling in a gender-specific manner. In both females and males, FLU reversed the nuclear levels of GR and pGR246 without affecting CORT and GR mRNA levels. In contrast, FLU exhibited gender-specific effect on BDNF mRNA in CPSI animals, by increasing it in females, but not in males. In spite of normalization the total nuclear GR level upon FLU treatment in both gender, down-regulation of GR mRNA is possibly maintained through prevalence of pGR232 isoform only in males. The gender-specific alterations of pGR232-Cdk5 signaling and BDNF gene expression in HIPPO and normalization of depressive-like behavior upon FLU treatment distinguishes this signaling pathway as potential future antidepressant target for gender-specific therapy of stress related mood disorders.
Collapse
Affiliation(s)
- Milos Mitic
- Laboratory for Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, PO Box-522-MBE090, 11001 Belgrade, Serbia
| | | | | | | | | |
Collapse
|
34
|
Fkbp52 heterozygosity alters behavioral, endocrine and neurogenetic parameters under basal and chronic stress conditions in mice. Psychoneuroendocrinology 2012; 37:2009-21. [PMID: 22641006 DOI: 10.1016/j.psyneuen.2012.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 01/13/2023]
Abstract
Aversive life events represent one of the main risk factors for the development of many psychiatric diseases, but the interplay between environmental factors and genetic predispositions is still poorly understood. One major finding in many depressed patients is an impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis. The negative feedback loop of the HPA axis is mediated via the glucocorticoid receptor (GR) and the mineralocorticoid receptor. The co-chaperones FK506-binding protein 51 (FKBP51) and FK506-binding protein 52 (FKBP52) are components of the heat shock protein 90-receptor-heterocomplex and are functionally divergent regulators of both receptors. Here, we characterized heterozygous Fkbp52 knockout (Fkbp52(+/-)) mice under basal or chronic social defeat stress (CSDS) conditions with regard to physiological, neuroendocrine, behavioral and mRNA expression alterations. Fkbp52(+/-) mice displayed symptoms of increased stress sensitivity in a subset of behavioral and neuroendocrine parameters. These included increased anxiety-related behavior in the elevated plus-maze and an enhanced neuroendocrine response to a forced swim test (FST), possibly mediated by reduced GR sensitivity. At the same time, Fkbp52(+/-) mice also demonstrated signs of stress resilience in other behavioral and neuroendocrine aspects, such as reduced basal corticosterone levels and more active stress-coping behavior in the FST following CSDS. These contrasting results are in line with previous reports showing that FKBP52 is not involved in all branches of GR signaling, but rather acts in a gene-specific manner to regulate GR transcriptional activation.
Collapse
|
35
|
Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system. Neuroscience 2012; 239:157-72. [PMID: 23069755 DOI: 10.1016/j.neuroscience.2012.09.073] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/14/2012] [Accepted: 09/29/2012] [Indexed: 12/25/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) has multiple roles in the central nervous system (CNS), including maintaining cell survival and regulation of synaptic function. In CNS neurons, BDNF triggers activation of phospholipase Cγ (PLCγ), mitogen-activated protein/extracellular signal-regulated kinase (MAPK/ERK), and phosphoinositide 3-kinase (PI3K)/Akt pathways, influencing neuronal cells beneficially through these intracellular signaling cascades. There is evidence to suggest that decreased BDNF expression or function is related to the pathophysiology of brain diseases including psychiatric disorders. Additionally, glucocorticoids, which are critical stress hormones, also influence neuronal function in the CNS, and are putatively involved in the onset of depression when levels are abnormally high. In animal models of depression, changes in glucocorticoid levels, expression of glucocorticoid receptor (GR), and alterations in BDNF signaling are observed. Interestingly, several studies using in vivo and in vitro systems suggest that glucocorticoids interact with BDNF to ultimately affect CNS function. In the present review, we provide an overview of recent evidence concerning the interaction between BDNF and glucocorticoids.
Collapse
|
36
|
Abstract
Anxiety is a psychological, physiological, and behavioral state induced in animals and humans by a threat to well-being or survival, either actual or potential. It is characterized by increased arousal, expectancy, autonomic and neuroendocrine activation, and specific behavior patterns. The function of these changes is to facilitate coping with an adverse or unexpected situation. Pathological anxiety interferes with the ability to cope successfully with life challenges. Vulnerability to psychopathology appears to be a consequence of predisposing factors (or traits), which result from numerous gene-environment interactions during development (particularly during the perinatal period) and experience (life events), in this review, the biology of fear and anxiety will be examined from systemic (brain-behavior relationships, neuronal circuitry, and functional neuroanatomy) and cellular/molecular (neurotransmitters, hormones, and other biochemical factors) points of view, with particular reference to animal models. These models have been instrumental in establishing the biological correlates of fear and anxiety, although the recent development of noninvasive investigation methods in humans, such as the various neuroimaging techniques, certainly opens new avenues of research in this field. Our current knowledge of the biological bases of fear and anxiety is already impressive, and further progress toward models or theories integrating contributions from the medical, biological, and psychological sciences can be expected.
Collapse
Affiliation(s)
- Thierry Steimer
- Clinical Psychopharmacology Unit, Geneva University Hospital, Chêne-Bourg, Switzerland
| |
Collapse
|
37
|
Bogdan R, Williamson DE, Hariri AR. Mineralocorticoid receptor Iso/Val (rs5522) genotype moderates the association between previous childhood emotional neglect and amygdala reactivity. Am J Psychiatry 2012; 169:515-22. [PMID: 22407082 PMCID: PMC4700829 DOI: 10.1176/appi.ajp.2011.11060855] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The amygdala is especially reactive to threatening stimuli, and the degree of reactivity predicts individual differences in the expression of depression and anxiety. Emerging research suggests that emotional neglect during childhood as well as hypercortisolemia may lead to heightened threat-related amygdala reactivity. This raises the possibility that genetic variation affecting hypothalamic-pituitary-adrenal (HPA) axis function contributes to individual differences in amygdala reactivity, both independently and as a function of childhood emotional neglect. METHOD This study assessed whether the mineralocorticoid receptor iso/val polymorphism (rs5522), a functional genetic variant affecting HPA axis function, influenced threat-related amygdala reactivity in 279 individuals in late childhood and early adolescence. The study also explored the extent to which any effects of the genotype on amygdala reactivity were contingent upon previous childhood emotional neglect. RESULTS Prior childhood emotional neglect and the val allele were associated with greater amygdala reactivity. Moreover, a significant genotype-by-emotional neglect interaction was observed whereby greater amygdala reactivity in val allele carriers was independent of previous childhood emotional neglect, while greater reactivity in iso homozygotes was revealed only in the context of a history of elevated emotional neglect. At relatively low levels of previous emotional neglect, val carriers had heightened amygdala reactivity relative to iso homozygotes. CONCLUSIONS These results suggest that relatively greater amygdala reactivity may represent a biological mechanism through which childhood adversity and functional genetic variation in HPA axis responsiveness to stress may mediate risk for psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, and Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA.
| | | | | |
Collapse
|
38
|
Bogdan R, Carré JM, Hariri AR. Toward a mechanistic understanding of how variability in neurobiology shapes individual differences in behavior. Curr Top Behav Neurosci 2012; 12:361-393. [PMID: 22437943 DOI: 10.1007/7854_2011_182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Research has begun to identify how variability in brain function contributes to individual differences in complex behavioral traits. Examining variability in molecular signaling pathways with emerging and established methodologies such as pharmacologic fMRI, multimodal PET/fMRI, and hormonal assays are beginning to provide a mechanistic understanding of how individual differences in brain function arise. Against this background, functional genetic polymorphisms are being utilized to understand the origins of variability in signaling pathways as well as to efficiently model how such emergent variability impacts behaviorally relevant brain function and health outcomes. This chapter provides an overview of a research strategy that integrates these complimentary levels of analysis; existing empirical data is used to illustrate the effectiveness of this approach in illuminating the mechanistic neurobiology of individual differences in complex behavioral traits. This chapter also discusses how such efforts can contribute to the identification of predictive risk markers that interact with unique environmental factors to precipitate psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Institute for Genome Sciences & Policy, Duke University, 417 Chapel Drive, Durham, NC, 27708, USA,
| | | | | |
Collapse
|
39
|
Abstract
Part of the cellular and physiological functions of BAG-1 (Bcl-2-associated athanogene 1) has been ascribed to the ability of this hsp70 (heat-shock protein 70) co-chaperone to regulate steroid receptor activity. BAG-1 has been reported to inhibit the GR (glucocorticoid receptor) and stimulate the androgen receptor, but to leave the activity of the MR (mineralocorticoid receptor) unchanged. Given the high homology between the MR and GR, this disparity in the actions of BAG-1 is surprising. In the present study, we analysed the effect of BAG-1 on the activity of the closely related PR (progesterone receptor). Similarly to the GR, the transcriptional activity of the PR is inhibited by the long and middle isoforms of BAG-1, BAG-1L and BAG-1M, but not by the short isoform, BAG-1S. We found this inhibition to require the hsp70-binding domain of BAG-1. To shed light on the mechanisms that could explain BAG-1's differential actions on steroid receptors, we tested the binding of BAG-1M to the PR. Mutational analyses of the PR and BAG-1M revealed that the mode of interaction and BAG-1M-mediated inhibition of the PR differs from the reported scenario for the GR. Surprisingly, we also found binding of BAG-1M to the MR. In addition, BAG-1M was able to inhibit the transcriptional activity of the MR. These data entail a reappraisal of the physiological actions of BAG-1M on steroid receptor activity.
Collapse
|
40
|
Relevance of stress and female sex hormones for emotion and cognition. Cell Mol Neurobiol 2011; 32:725-35. [PMID: 22113371 PMCID: PMC3377901 DOI: 10.1007/s10571-011-9774-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/14/2011] [Indexed: 01/16/2023]
Abstract
There are clear sex differences in incidence and onset of stress-related and other psychiatric disorders in humans. Yet, rodent models for psychiatric disorders are predominantly based on male animals. The strongest argument for not using female rodents is their estrous cycle and the fluctuating sex hormones per phase which multiplies the number of animals to be tested. Here, we will discuss studies focused on sex differences in emotionality and cognitive abilities in experimental conditions with and without stress. First, female sex hormones such as estrogens and progesterone affect emotions and cognition, contributing to sex differences in behavior. Second, females respond differently to stress than males which might be related to the phase of the estrous cycle. For example, female rats and mice express less anxiety than males in a novel environment. Proestrus females are less anxious than females in the other estrous phases. Third, males perform in spatial tasks superior to females. However, while stress impairs spatial memory in males, females improve their spatial abilities, depending on the task and kind of stressor. We conclude that the differences in emotion, cognition and responses to stress between males and females over the different phases of the estrous cycle should be used in animal models for stress-related psychiatric disorders.
Collapse
|
41
|
Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder. J Psychiatr Res 2011; 45:871-8. [PMID: 21195417 DOI: 10.1016/j.jpsychires.2010.12.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/05/2010] [Accepted: 12/07/2010] [Indexed: 12/15/2022]
Abstract
Appropriate signaling in the brain by the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) is critical in regulation of the hypothalamic-pituitary-adrenal (HPA) axis, emotional arousal and cognitive performance. To date, few data exist on MR (and GR) expression in the brain of patients suffering from major depressive disorder (MDD). With the help of quantitative PCR we assessed MR and GR mRNA expression, including the splice variants MRα and MRβ, in tissue samples from the hippocampus, amygdala, inferior frontal gyrus, cingulate gyrus and nucleus accumbens. Expression levels were compared between tissue samples from six MDD patients and six non-depressed subjects. Relative to total GR, total MR mRNA expression was higher in hippocampus and lower in the amygdala, inferior frontal gyrus and nucleus accumbens. Both MRα and MRβ could be detected in all brain regions that were analyzed, although MRβ expression was low. Significantly lower expression levels (30-50%) were detected for MR or GR in hippocampal, inferior frontal gyrus and cingulate gyrus tissue from MDD patients (p < .05), while no differences were found in the amygdala or nucleus accumbens. The data show that both MRα and MRβ mRNA are expressed throughout the human limbic brain with highest expressions in the hippocampus. A decreased expression of corticosteroid receptors in specific brain regions of MDD patients could underlie HPA hyperactivity, mood and cognitive disturbances often observed in patients suffering from stress-related psychopathologies.
Collapse
|
42
|
Latif SA, Shen M, Ge RS, Sottas CM, Hardy MP, Morris DJ. Role of 11β-OH-C(19) and C(21) steroids in the coupling of 11β-HSD1 and 17β-HSD3 in regulation of testosterone biosynthesis in rat Leydig cells. Steroids 2011; 76:682-9. [PMID: 21440566 DOI: 10.1016/j.steroids.2011.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 01/17/2023]
Abstract
Here we describe further experiments to support our hypothesis that bidirectional 11β-HSD1-dehydrogenase in Leydig cells is a NADP(H) regenerating system. In the absence of androstenedione (AD), substrate for 17β-HSD3, incubation of Leydig cells with corticosterone (B) or several C(19)- and C(21)-11β-OH-steroids, in the presence of [(3)H]-11-dehydro-corticosterone (A), stimulated 11β-HSD1-reductase activity. However, in presence of 30 μM AD, testosterone (Teso) synthesis is stimulated from 4 to 197 picomole/25,000 cells/30 min and concomitantly inhibited 11β-HSD1-reductase activity, due to competition for the common cofactor NADPH needed for both reactions. Testo production was further significantly increased (p<0.05) to 224-267 picomole/25,000 cells/30 min when 10 μM 11β-OH-steroids (in addition to 30 μM AD) were also included. Similar results were obtained in experiments conducted with lower concentrations of AD (5 μM), and B or A (500 nM). Incubations of 0.3-6.0 μM of corticosterone (plus or minus 30 μM AD) were then performed to test the effectiveness of 17β-HSD3 as a possible NADP(+) regenerating system. In the absence of AD, increasing amounts (3-44 pmol/25,000 cells/30 min) of 11-dehydro-corticosterone were produced with increasing concentrations of corticosterone in the medium. When 30 μM AD was included, the rate of 11-dehydro-corticosterone formation dramatically increased 1.3-5-fold producing 4-210 pmol/25,000 cells/30 min of 11-dehydro-corticosterone. We conclude that 11β-HSD1 is enzymatically coupled to 17β-HSD3, utilizing NADPH and NADP in intermeshed regeneration systems.
Collapse
Affiliation(s)
- Syed A Latif
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Brown University School of Medicine, 164, Summit Avenue, Providence, RI 02906, United States.
| | | | | | | | | | | |
Collapse
|
43
|
Expression of locus coeruleus mineralocorticoid receptor and glucocorticoid receptor in rats under single-prolonged stress. Neurol Sci 2011; 32:625-31. [DOI: 10.1007/s10072-011-0597-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
|
44
|
Rady A, Elsheshai A, Elkholy O, El Wafa HA. Psychogenetics of post-traumatic stress disorder: a short review. APPLICATION OF CLINICAL GENETICS 2010; 3:103-8. [PMID: 23776355 PMCID: PMC3681167 DOI: 10.2147/tacg.s13926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Post-traumatic stress disorder is a commonly overlooked psychiatric disorder due to the heterogeneity of symptoms that may simulate many other psychiatric disorders. Such heterogeneity of manifestations may be explained by the multifaceted nature of the different neurotransmitters, endocrinologic axis, and their genetic basis, that are implicated in the etiology. Although this disorder has been studied from many different perspectives, its etiology is still enigmatic. This minireview demonstrates, in brief, that different susceptibility genes are associated with post traumatic stress disorder.
Collapse
Affiliation(s)
- Ahmed Rady
- Department of Psychiatry, Alexandria University, Alexandria, Egypt
| | | | | | | |
Collapse
|
45
|
Wieczorek L, Maas JW, Muglia LM, Vogt SK, Muglia LJ. Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory. PLoS One 2010; 5:e13385. [PMID: 20976279 PMCID: PMC2954788 DOI: 10.1371/journal.pone.0013385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/19/2010] [Indexed: 12/02/2022] Open
Abstract
Background The Ca2+-stimulated adenylyl cyclases (ACs), AC1 and AC8, are key components of long-term memory processing. AC1 and AC8 double knockout mice (Adcy1−/−Adcy8−/−; DKO) display impaired fear memory processing; the mechanism of this impairment is largely unknown. Methodology/Principal Findings We hypothesize that the Ca2+-stimulated ACs modulate long-lasting transcriptional changes essential for fear memory consolidation and maintenance. Here, we report a genome-wide study of gene expression changes associated with conditioned fear (CF) memory in wild-type and DKO mice to identify AC-dependent gene regulatory changes that occur in the amygdala and hippocampus at baseline and different time points after CF learning. We observed an overall decrease in transcriptional changes in DKO mice across all time points, but most strikingly, at periods when memory consolidation and retention should be occurring. Further, we identified a shared set of transcription factor binding sites in genes upregulated in wild-type mice that were associated with downregulated genes in DKO mice. To prove the temporal and regional importance of AC activity on different stages of memory processing, the tetracycline-off system was used to produce mice with forebrain-specific inducible expression of AC8 on a DKO background. CF behavioral results reveal that adult restoration of AC8 activity in the forebrain is sufficient for intact learning, while cessation of this expression at any time point across learning causes memory deficits. Conclusions/Significance Overall, these studies demonstrate that the Ca2+-stimulated ACs contribute to the formation and maintenance of fear memory by a network of long-term transcriptional changes.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- Departments of Pediatrics and Developmental Biology, Washington University, Saint Louis, Missouri, United States of America
| | - James W. Maas
- Departments of Pediatrics and Developmental Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Lisa M. Muglia
- Departments of Pediatrics and Molecular Physiology and Biophysics, and Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sherri K. Vogt
- Departments of Pediatrics and Developmental Biology, Washington University, Saint Louis, Missouri, United States of America
| | - Louis J. Muglia
- Departments of Pediatrics and Molecular Physiology and Biophysics, and Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
46
|
Kino T, Jaffe H, Amin ND, Chakrabarti M, Zheng YL, Chrousos GP, Pant HC. Cyclin-dependent kinase 5 modulates the transcriptional activity of the mineralocorticoid receptor and regulates expression of brain-derived neurotrophic factor. Mol Endocrinol 2010; 24:941-52. [PMID: 20357208 DOI: 10.1210/me.2009-0395] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Glucocorticoids, major end effectors of the stress response, play an essential role in the homeostasis of the central nervous system (CNS) and contribute to memory consolidation and emotional control through their intracellular receptors, the glucocorticoid and mineralocorticoid receptors. Cyclin-dependent kinase 5 (CDK5), on the other hand, plays important roles in the morphogenesis and functions of the central nervous system, and its aberrant activation has been associated with development of neurodegenerative disorders. We previously reported that CDK5 phosphorylated the glucocorticoid receptor and modulated its transcriptional activity. Here we found that CDK5 also regulated mineralocorticoid receptor-induced transcriptional activity by phosphorylating multiple serine and threonine residues located in its N-terminal domain through physical interaction. Aldosterone and dexamethasone, respectively, increased and suppressed mRNA/protein expression of brain-derived neurotrophic factor (BDNF) in rat cortical neuronal cells, whereas the endogenous glucocorticoid corticosterone showed a biphasic effect. CDK5 enhanced the effect of aldosterone and dexamethasone on BDNF expression. Because this neurotrophic factor plays critical roles in neuronal viability, synaptic plasticity, consolidation of memory, and emotional changes, we suggest that aberrant activation of CDK5 might influence these functions through corticosteroid receptors/BDNF.
Collapse
Affiliation(s)
- Tomoshige Kino
- Unit on Molecular Hormone Action, Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
d'Audiffret AC, Frisbee SJ, Stapleton PA, Goodwill AG, Isingrini E, Frisbee JC. Depressive behavior and vascular dysfunction: a link between clinical depression and vascular disease? J Appl Physiol (1985) 2010; 108:1041-51. [PMID: 20167667 DOI: 10.1152/japplphysiol.01440.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
As chronic stress and depression have become recognized as significant risk factors for peripheral vascular disease in patients with no prior history of vasculopathy, we interrogated this relationship utilizing an established mouse model of chronic stress/depressive symptoms from behavioral research. Male mice were exposed to 8 wk of unpredictable chronic mild stress (UCMS; e.g., wet bedding, predator sound/smell, random disruption of light/dark cycle), with indexes of depressive behavior (coat status, grooming, and mobility) becoming exacerbated vs. controls. In vascular rings, constrictor (phenylephrine) and endothelium-independent dilator (sodium nitroprusside) responses were not different between groups, although endothelium-dependent dilation (methacholine) was attenuated with UCMS. Nitric oxide synthase (NOS) inhibition was without effect in UCMS but nearly abolished reactivity in controls, while cyclooxygenase inhibition blunted dilation in both. Combined blockade abolished reactivity in controls, although a significant dilation remained in UCMS that was abolished by catalase. Arterial NO production was attenuated by UCMS, although H2O2 production was increased. UCMS mice demonstrated an increased, although variable, insulin resistance and inflammation. However, while UCMS-induced vascular impairments were consistent, the predictive power of aggregate plasma levels of insulin, TNF-alpha, IL-1beta, and C-reactive peptide were limited. However, when separated into tertiles with regard to vascular outcomes, insulin resistance and hypertension were predictive of the most severe vascular impairments. Taken together, these data suggest that aggregate insulin resistance, inflammation, and hypertension in UCMS mice are not robust predictors of vascular dysfunction, suggesting that unidentified mechanisms may be superior predictors of poor vascular outcomes in this model.
Collapse
Affiliation(s)
- Alexandre C d'Audiffret
- Center for Cardiovascular and Respiratory Sciences, Department of Community Medicine, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rogalska J. Mineralocorticoid and glucocorticoid receptors in hippocampus: their impact on neurons survival and behavioral impairment after neonatal brain injury. VITAMINS AND HORMONES 2010; 82:391-419. [PMID: 20472149 DOI: 10.1016/s0083-6729(10)82020-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Glucocorticoids (GC) exert multiple effects within the central nervous system via mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) activation. MR expression is associated with a neuroprotective phenotype, whereas GR activation is implicated in the induction of an endangered neural phenotype and the opposite actions are most evident in hippocampus, where these receptors are predominantly present. Hippocampus has an overall inhibitory influence on the activity of the hypothalamic-pituitary-adrenal (HPA) axis and it has been suggested that efficient learning and adequate stress response depend on the appropriate functioning of the axis brought by coordinated activation of MR and GR in this region. There is a growing body of evidence that perinatal asphyxia causes irreversible damage to the brain leading to neurons loss in regions vulnerable to oxygen shortage especially in hippocampus. In the present review, some aspects of recently acquired insight in the role of GC receptors in promoting neuronal death and survival after hippocampal injury are discussed. Since the unbalance of MR and GR in hippocampus creates a condition of disturbed neuroendocrine regulation their potential impact on behavioral impairment will also be reviewed.
Collapse
Affiliation(s)
- Justyna Rogalska
- Department of Animal Physiology, Institute of General and Molecular Biology, N. Copernicus University, Torun, Poland
| |
Collapse
|
49
|
Ago Y, Takuma K, Matsuda T. [Depression and corticosteroid receptors]. Nihon Yakurigaku Zasshi 2009; 134:304-308. [PMID: 20009362 DOI: 10.1254/fpj.134.304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
50
|
Xiao-feng Z, Nai-qiang Q, Jing Z, Zi L, Yang Z. Di (n-butyl) Phthalate Inhibits Testosterone Synthesis Through a Glucocorticoid-Mediated Pathway in Rats. Int J Toxicol 2009; 28:448-56. [DOI: 10.1177/1091581809342596] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study focused on investigating whether the inhibitory effect of di (n-butyl) phthalate (DBP) on testosterone (T) biosynthesis was mediated by the glucocorticoid (GC) pathway in prepubertal male rats and T production after the exposure to DBP ceased. Prepubertal male rats were administered DBP in corn oil orally at 0, 250, 500, 1000, and 2000 mg/kg daily for 30 days. Serum T and GC were measured by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The responses, including glucocorticoid receptor (GR), type I 11β-hydroxysteroid dehydrogenase (11β-HSD1), and steroidogenesis acute regulatory protein (StAR) in the testes tissues, were determined by Western blotting and reverse transcriptase PCR. DBP exposure resulted in testicular toxicity, such as seminiferous tubule degeneration and a decrease in the number of spermatogenic cells. T was decreased and GC was increased in a DBP concentration-dependent manner in the exposure group. The expression of GR and 11β-HSD1 was significantly increased, with an associated decrease in expression of StAR. Neither the expression of the GR nor 11β-HSD1 and StAR were statistically significantly different in the postexposure group compared with the control. However, the weight and morphology of the testes did not recover in the postexposure group. These data suggest that DBP inhibits testosterone production through a GC-mediated pathway in prepubertal male rats, and after exposure to DBP ceases, testosterone biosynthesis returns.
Collapse
Affiliation(s)
- Zhang Xiao-feng
- From the Division of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China (ZX-f, QN-q, LZ, ZY); and Division of Occupational Health, Institute of Public Health Monitor, Heilongjiang Provincial Centre for Disease Control and Prevention, Harbin, Heilongjiang Province, China (ZJ)
| | - Qu Nai-qiang
- From the Division of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China (ZX-f, QN-q, LZ, ZY); and Division of Occupational Health, Institute of Public Health Monitor, Heilongjiang Provincial Centre for Disease Control and Prevention, Harbin, Heilongjiang Province, China (ZJ)
| | - Zheng Jing
- From the Division of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China (ZX-f, QN-q, LZ, ZY); and Division of Occupational Health, Institute of Public Health Monitor, Heilongjiang Provincial Centre for Disease Control and Prevention, Harbin, Heilongjiang Province, China (ZJ)
| | - Li Zi
- From the Division of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China (ZX-f, QN-q, LZ, ZY); and Division of Occupational Health, Institute of Public Health Monitor, Heilongjiang Provincial Centre for Disease Control and Prevention, Harbin, Heilongjiang Province, China (ZJ)
| | - Zhang Yang
- From the Division of Toxicology, College of Public Health, Harbin Medical University, Harbin, Heilongjiang Province, China (ZX-f, QN-q, LZ, ZY); and Division of Occupational Health, Institute of Public Health Monitor, Heilongjiang Provincial Centre for Disease Control and Prevention, Harbin, Heilongjiang Province, China (ZJ)
| |
Collapse
|