1
|
Domingues K, Lima FB, Linder AE, Melleu FF, Poli A, Spezia I, Suman PR, Theindl LC, Lino de Oliveira C. Sexually dimorphic responses of rats to fluoxetine in the forced swimming test are unrelated to the function of the serotonin transporter in the brain. Synapse 2019; 74:e22130. [PMID: 31449695 DOI: 10.1002/syn.22130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023]
Abstract
Due to the prevalence of depression in women, female rats may be a better models for antidepressant research than males. In male rats, fluoxetine inhibited the serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) which is reducing the immobility time in the repeated forced swimming test (rFST). The performance of female rats in this test is unknown. In this study, responses of male and female rats in the rFST under chronic treatment with fluoxetine and the function of SERT in their brains were examined. Wistar rats received oral fluoxetine (females: 0, 1, 2.5, or 5 mg kg-1 day-1 ; males: 0 or 2.5 mg kg-1 day-1 ; in sucrose 10%, 1.5 ml/rat) 1 hr before the test daily for 12 days over the course of the rFST. rFST consisted of a 15 min pretest followed by 5 min sessions of swimming at 1 (test), 7 (retest 1), and 14 (retest 2) days later. SERT functioning was assessed by ex vivo assays of the frontal cortex and hippocampus of rats. Fluoxetine reduced immobility time of males in the rFST while it failed to do so in females. In vitro treatment with fluoxetine inhibited the uptake of 5-HT of both sexes similarly, while in vivo chronic administration of fluoxetine failed to do so. In summary, rats responded to the chronic treatment with fluoxetine in a sexually dimorphic fashion during the rFST despite the functioning of SERT in their brains remaining equally unchanged. Hence, our data suggest that sexually dimorphic responses to fluoxetine in rFST may be unrelated to the function of SERT in rat brains.
Collapse
Affiliation(s)
- Karolina Domingues
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Fernanda Barbosa Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Aurea Elizabeth Linder
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Fernando Falkenburger Melleu
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Anicleto Poli
- Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Inaê Spezia
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Patrick Remus Suman
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Laís Cristina Theindl
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| | - Cilene Lino de Oliveira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil.,Programa de Pós-Graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina - UFSC, Florianópolis, Brazil
| |
Collapse
|
2
|
Repeated forced-swimming test in intact female rats: behaviour, oestrous cycle and enriched environment. Behav Pharmacol 2018; 29:509-518. [PMID: 29595539 DOI: 10.1097/fbp.0000000000000403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Psychopharmacology used animal models to study the effects of drugs on brain and behaviour. The repeated forced-swimming test (rFST), which is used to assess the gradual effects of antidepressants on rat behaviour, was standardized only in males. Because of the known sex differences in rats, experimental conditions standardized for males may not apply to female rats. Therefore, the present work aimed to standardize experimental and housing conditions for the rFST in female rats. Young or adult Wistar female rats were housed in standard or enriched environments for different experimental periods. As assessed in tested and nontested females, all rats had reached sexual maturity by the time behavioural testing occurred. The rFST consisted of a 15-min session of forced swimming (pretest), followed by 5-min sessions at 1 (test), 7 (retest 1) and 14 days (retest 2) later. The oestrous cycle was registered immediately before every behavioural session. All sessions were videotaped for further analysis. The immobility time of female rats remained similar over the different sessions of rFST independent of the age, the phase of the oestrous cycle or the housing conditions. These data indicate that rFST in female Wistar rats may be reproducible in different experimental conditions.
Collapse
|
3
|
Récamier-Carballo S, Estrada-Camarena E, Reyes R, Fernández-Guasti A. Synergistic effect of estradiol and fluoxetine in young adult and middle-aged female rats in two models of experimental depression. Behav Brain Res 2012; 233:351-8. [DOI: 10.1016/j.bbr.2012.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
|
4
|
Díaz-Morán S, Palència M, Mont-Cardona C, Cañete T, Blázquez G, Martínez-Membrives E, López-Aumatell R, Tobeña A, Fernández-Teruel A. Coping style and stress hormone responses in genetically heterogeneous rats: comparison with the Roman rat strains. Behav Brain Res 2011; 228:203-10. [PMID: 22178313 DOI: 10.1016/j.bbr.2011.12.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/27/2011] [Accepted: 12/02/2011] [Indexed: 01/22/2023]
Abstract
The purpose of the present study was to evaluate for the first time the stress-induced hypothalamus-pituitary-adrenal (HPA), adrenocorticotropic hormone (ACTH), corticosterone and prolactin responses of the National Institutes of Health genetically heterogeneous rat stock (N/Nih-HS rats) in comparison with responses of the relatively high and low stress-prone Roman Low- (RLA-I) and High-Avoidance (RHA-I) rat strains. The same rats were also compared (experiment 1) with respect to their levels of unconditioned anxiety (elevated zero-maze test), novelty-induced exploratory behavior, conditioned fear and two-way active avoidance acquisition. In experiment 2, naive rats from these three strains/stocks were evaluated for "depressive-like" behavior in the forced swimming test. N/Nih-HS and RLA-I rats showed significantly higher post-stress ACTH, corticosterone and prolactin levels than RHA-I rats. N/Nih-HS rats also presented the highest context-conditioned freezing responses, extremely poor two-way avoidance acquisition and very low novelty-induced exploratory behavior. Experiment 2 showed that, compared to RHA-I rats, N/Nih-HS and RLA-I rats displayed significantly less struggling (escape-directed) and increased immobility responses in the forced swimming test. Factor analysis of data from experiment 1 showed associations among behavioral and hormonal responses, with a first factor comprising high loadings of elevated zero-maze variables and lower loadings of conditioned fear, two-way avoidance acquisition and hormonal measures, while a second factor mainly grouped conditioned fear and two-way avoidance acquisition with novelty-induced exploration and post-stress prolactin. Thus, regarding their anxiety/fearfulness, passive coping style, "depressive-like" and stress-induced hormonal responses the N/Nih-HS rats resemble the phenotype profiles of the relatively high-anxious and stress-prone RLA-I rat strain.
Collapse
Affiliation(s)
- Sira Díaz-Morán
- Medical Psychology Unit, Department of Psychiatry & Forensic Medicine, Institute of Neurosciences, School of Medicine, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, Suthiphongchai T, Krishnamra N. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone 2008; 42:535-46. [PMID: 18166509 DOI: 10.1016/j.bone.2007.11.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 11/02/2007] [Accepted: 11/15/2007] [Indexed: 11/29/2022]
Abstract
Hyperprolactinemia leads to high bone turnover as a result of enhanced bone formation and resorption. Although its osteopenic effect has long been explained as hyperprolactinemia-induced hypogonadism, identified prolactin (PRL) receptors in osteoblasts suggested a possible direct action of PRL on bone. In the present study, we found that hyperprolactinemia induced by anterior pituitary transplantation (AP), with or without ovariectomy (Ovx), had no detectable effect on bone mineral density and content measured by dual-energy X-ray absorptiometry (DXA). However, histomorphometric studies revealed increases in the osteoblast and osteoclast surfaces in the AP rats, but a decrease in the osteoblast surface in the AP+Ovx rats. The resorptive activity was predominant since bone volume and trabecular number were decreased, and the trabecular separation was increased in both groups. Estrogen supplement (E2) fully reversed the effect of estrogen depletion in the Ovx but not in the AP+Ovx rats. In contrast to the typical Ovx rats, bone formation and resorption became uncoupled in the AP+Ovx rats. Therefore, hyperprolactinemia was likely to have some estrogen-independent and/or direct actions on bone turnover. Osteoblast-expressed PRL receptor transcripts and proteins shown in the present study confirmed our hypothesis. Furthermore, we demonstrated that the osteoblast-like cells, MG-63, directly exposed to PRL exhibited lower expression of alkaline phosphatase and osteocalcin mRNA, and a decrease in alkaline phosphatase activity. The ratios of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) proteins were increased, indicating an increase in the osteoclastic bone resorption. The present data thus demonstrated that hyperprolactinemia could act directly on bone to stimulate bone turnover, with more influence on bone resorption than formation. PRL enhanced bone resorption in part by increasing RANKL and decreasing OPG expressions by osteoblasts.
Collapse
|
7
|
Thongchote K, Charoenphandhu N, Krishnamra N. High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats. J Physiol Sci 2008; 58:39-45. [PMID: 18198010 DOI: 10.2170/physiolsci.rp015007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 01/12/2008] [Indexed: 11/05/2022]
Abstract
High physiological prolactin (PRL) stimulated intestinal calcium absorption and renal calcium uptake in mammals. Previous histomorphometric study revealed a significant increase in bone turnover in the trabecular part of the PRL-exposed long (cortical) bone; however, whole-bone densitometric analysis was unable to demonstrate such effect. We therefore studied differential changes in bone mineral density (BMD) and contents (BMC) of the femoral diaphysis and metaphysis in adult female rats exposed to high PRL induced by anterior pituitary (AP) transplantation. The estrogen-dependent effects of PRL on the femur were also investigated. We found that chronic exposure to PRL had no effect on BMD or BMC of the femoral diaphysis, which represented the cortical part of the long bone. It is interesting that 7 weeks after an AP transplantation, BMD and BMC of the femoral metaphysis were significantly decreased by 8% and 14%, respectively. Ovariectomy (Ovx) for 2, 5, and 7 weeks also decreased BMD and BMC in the femoral metaphysis, but not in the diaphysis. However, the AP transplantation plus Ovx (AP+Ovx) produced no additive effects. Nevertheless, 2.5 microg/kg 17beta-estradiol (E2) supplementation abolished the osteopenic effects of both Ovx and AP+Ovx on the femur. As for the L5-6 vertebrae, BMD and BMC were not affected by PRL exposure, but were significantly decreased by Ovx and AP+Ovx, and such decreases were completely prevented by E2 supplementation. It could be concluded that high physiological PRL induced a significant osteopenia in the trabecular part, i.e., the metaphysis, of the femora of adult female rats in an estrogen-dependent manner. Since PRL had no detectable effect on the vertebrae, the effects of PRL on bone appeared to be site-specific.
Collapse
Affiliation(s)
- Kanogwun Thongchote
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
8
|
Andrade S, Silveira SL, Gomez R, Barros HMT, Ribeiro MFM. Gender differences of acute and chronic administration of dehydroepiandrosterone in rats submitted to the forced swimming test. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31:613-21. [PMID: 17223242 DOI: 10.1016/j.pnpbp.2006.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 11/21/2006] [Accepted: 12/06/2006] [Indexed: 11/19/2022]
Abstract
Previous pre-clinical and clinical studies investigating the antidepressant potential of DHEA revealed conflicting results. In this study, the effects of exogenous DHEA on performance in the forced swimming test (FST) were examined in male and female Wistar rats in different phases of the estrous cycle. Furthermore, the effects of treatment and of the FST, on corticosterone and DHEA serum levels were investigated. Acute administration of DHEA (2 mg/kg) significantly increased freezing only in proestrus female rats. Similarly, the chronic administration of DHEA (2 mg/kg) increased freezing duration and decreased climbing behavior but only in females in diestrus II compared to those given vehicle. These results demonstrate that chronically administered DHEA induces a depressant-like effect, and this effect is sex dependent. There was no direct correlation between corticosterone levels or the corticosterone/DHEA ratio and the behaviors studied. After the FST, serum DHEA and corticosterone levels were increased, with females showing higher DHEA levels than males. Nevertheless, corticosterone levels were unaltered with chronic procedure; an effect that was independent of sex and treatment. These findings are relevant for research examining alternative treatment for depression and may elucidate the gender differences involved in stress-related diseases.
Collapse
Affiliation(s)
- S Andrade
- Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|