1
|
Fischer A, Del Rivero J, Wang K, Nölting S, Jimenez C. Systemic therapy for patients with metastatic pheochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2025; 39:101977. [PMID: 39880697 DOI: 10.1016/j.beem.2025.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Pheochromocytomas and paragangliomas are rare neuroendocrine tumors derived from the paraganglia. These tumors frequently secrete excessive amounts of catecholamines leading to cardiovascular and gastrointestinal complications. While all pheochromocytomas and paragangliomas possess the potential for metastasis, actual metastatic occurrences are observed in approximately one third of cases. The metastases primarily affect the lymph nodes, skeletal system, liver, and lungs. Furthermore, patients often experience a reduced overall survival rate attributed to factors such as tumor size, disease advancement, and excessive catecholamine secretion. For several decades, treatment options for patients diagnosed with metastatic pheochromocytomas and paragangliomas have primarily included combination chemotherapy with cyclophosphamide, vincristine, and dacarbazine, along with Iodine-131-metaiodobenzylguanidine. However, significant advancements in scientific research over the past 25 years have enabled a comprehensive characterization of these tumors from biochemical, molecular, and diagnostic standpoints, resulting in the identification of new therapeutic alternatives for affected patients. In the last decade, we have witnessed the introduction of innovative systemic therapies specifically designed for those with metastatic pheochromocytomas and paragangliomas. In this review, we aim to present findings on the efficacy, safety, and overall activity from prospective clinical trials involving radiopharmaceuticals and tyrosine kinase inhibitors, and we will also outline the prospective advantages of additional novel therapies currently under evaluation.
Collapse
Affiliation(s)
- Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich CH-8091, Switzerland
| | | | - Katharina Wang
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich CH-8091, Switzerland; Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and HormonalDisorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Jimenez C, Baudrand R, Uslar T, Bulzico D. Perspective review: lessons from successful clinical trials and real-world studies of systemic therapy for metastatic pheochromocytomas and paragangliomas. Ther Adv Med Oncol 2024; 16:17588359241301359. [PMID: 39574494 PMCID: PMC11580098 DOI: 10.1177/17588359241301359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are orphan tumors with the potential to spread to distant organs such as the lymph nodes, the skeleton, the lungs, and the liver. These metastatic tumors exhibit high rates of morbidity and mortality due to their frequently large tumor burden, the progression of the disease, and the excessive secretion of catecholamines that lead to cardiovascular disease and gastrointestinal dysmotility. Several molecular drivers responsible for the development of PPGLs have been described over the last 30 years. Although therapeutic options are limited, substantial progress has been made in the recognition of effective systemic therapies for these tumors. Successful clinical trials with radiopharmaceuticals such as high-specific-activity meta-iodobenzylguanidine and tyrosine kinase inhibitors such as cabozantinib and sunitinib have been recently published. This review will discuss the results of these studies and their impact on current clinical practices. In addition, this review will provide valuable information on how to design clinical trials to treat patients with metastatic PPGLs with novel medications.
Collapse
Affiliation(s)
- Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1461, Houston, TX 77030, USA
| | - Rene Baudrand
- Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Thomas Uslar
- Department of Endocrinology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Daniel Bulzico
- Department of Nuclear Medicine and Endocrine Oncology, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Pacak K, Taieb D, Lin FI, Jha A. Approach to the Patient: Concept and Application of Targeted Radiotherapy in the Paraganglioma Patient. J Clin Endocrinol Metab 2024; 109:2366-2388. [PMID: 38652045 PMCID: PMC11319006 DOI: 10.1210/clinem/dgae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Paragangliomas can metastasize, posing potential challenges both in symptomatic management and disease control. Systemic targeted radiotherapies using 131I-MIBG and 177Lu-DOTATATE are a mainstay in the treatment of metastatic paragangliomas. This clinical scenario and discussion aim to enhance physicians' knowledge of the stepwise approach to treat these patients with paraganglioma-targeted radiotherapies. It comprehensively discusses current approaches to selecting paraganglioma patients for targeted radiotherapies and how to choose between the two radiotherapies based on specific patient and tumor characteristics, when either therapy is feasible, or one is superior to another. The safety, efficacy, toxicity profiles, and optimization of these radiotherapies are also discussed, along with other therapeutic options including radiotherapies, available for patients besides these two therapies. Perspectives in radiotherapies of paraganglioma patients are outlined since they hold promising approaches in the near future that can improve patient outcomes.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| | - David Taieb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, 13385 Marseille, France
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| |
Collapse
|
4
|
Taïeb D, Nölting S, Perrier ND, Fassnacht M, Carrasquillo JA, Grossman AB, Clifton-Bligh R, Wanna GB, Schwam ZG, Amar L, Bourdeau I, Casey RT, Crona J, Deal CL, Del Rivero J, Duh QY, Eisenhofer G, Fojo T, Ghayee HK, Gimenez-Roqueplo AP, Gill AJ, Hicks R, Imperiale A, Jha A, Kerstens MN, de Krijger RR, Lacroix A, Lazurova I, Lin FI, Lussey-Lepoutre C, Maher ER, Mete O, Naruse M, Nilubol N, Robledo M, Sebag F, Shah NS, Tanabe A, Thompson GB, Timmers HJLM, Widimsky J, Young WJ, Meuter L, Lenders JWM, Pacak K. Management of phaeochromocytoma and paraganglioma in patients with germline SDHB pathogenic variants: an international expert Consensus statement. Nat Rev Endocrinol 2024; 20:168-184. [PMID: 38097671 DOI: 10.1038/s41574-023-00926-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Adult and paediatric patients with pathogenic variants in the gene encoding succinate dehydrogenase (SDH) subunit B (SDHB) often have locally aggressive, recurrent or metastatic phaeochromocytomas and paragangliomas (PPGLs). Furthermore, SDHB PPGLs have the highest rates of disease-specific morbidity and mortality compared with other hereditary PPGLs. PPGLs with SDHB pathogenic variants are often less differentiated and do not produce substantial amounts of catecholamines (in some patients, they produce only dopamine) compared with other hereditary subtypes, which enables these tumours to grow subclinically for a long time. In addition, SDHB pathogenic variants support tumour growth through high levels of the oncometabolite succinate and other mechanisms related to cancer initiation and progression. As a result, pseudohypoxia and upregulation of genes related to the hypoxia signalling pathway occur, promoting the growth, migration, invasiveness and metastasis of cancer cells. These factors, along with a high rate of metastasis, support early surgical intervention and total resection of PPGLs, regardless of the tumour size. The treatment of metastases is challenging and relies on either local or systemic therapies, or sometimes both. This Consensus statement should help guide clinicians in the diagnosis and management of patients with SDHB PPGLs.
Collapse
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, Marseille, France
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nancy D Perrier
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Radiology Department, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford, UK
- NET Unit, Royal Free Hospital, London, UK
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital and Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
| | - George B Wanna
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary G Schwam
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurence Amar
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Hypertension Unit, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Isabelle Bourdeau
- Division of Endocrinology, Department of Medicine and Research Center, Centre hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | - Ruth T Casey
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cheri L Deal
- Research Center, CHU Sainte-Justine and Dept. of Paediatrics, University of Montreal, Montreal, Québec, Canada
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Quan-Yang Duh
- Department of Surgery, UCSF-Mount Zion, San Francisco, CA, USA
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the TU Dresden, Dresden, Germany
| | - Tito Fojo
- Columbia University Irving Medical Center, New York City, NY, USA
- James J. Peters VA Medical Center, New York City, NY, USA
| | - Hans K Ghayee
- Division of Endocrinology & Metabolism, Department of Medicine, University of Florida, Gainesville, FL, USA
- Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Anne-Paule Gimenez-Roqueplo
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Department of Oncogenetics and Cancer Genomic Medicine, AP-HP, Hôpital européen Georges Pompidou, Paris, France
| | - Antony J Gill
- University of Sydney, Sydney NSW Australia, Cancer Diagnosis and Pathology Group Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- NSW Health Pathology Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Rodney Hicks
- Department of Medicine, St Vincent's Hospital Medical School, Melbourne, Victoria, Australia
| | - Alessio Imperiale
- Department of Nuclear Medicine and Molecular Imaging - Institut de Cancérologie de Strasbourg Europe (ICANS), IPHC, UMR 7178, CNRS, University of Strasbourg, Strasbourg, France
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michiel N Kerstens
- Department of Endocrinology, University Medical Center Groningen, Groningen, Netherlands
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
- Princess Máxima Center for paediatric oncology, Utrecht, Netherlands
| | - André Lacroix
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Canada
| | - Ivica Lazurova
- Department of Internal Medicine 1, University Hospital, P.J. Šafárik University, Košice, Slovakia
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charlotte Lussey-Lepoutre
- Université Paris Cité, Inserm, PARCC, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
- Sorbonne University, Department of Nuclear Medicine, Pitié-Salpêtrière, Paris, France
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ozgur Mete
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mitsuhide Naruse
- Clinical Research Institute of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center and Endocrine Center, Kyoto, Japan
- Clinical Research Center, Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Frédéric Sebag
- Department of Endocrine Surgery, Aix-Marseille University, Conception Hospital, Marseille, France
| | - Nalini S Shah
- Department of Endocrinology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Akiyo Tanabe
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine, Tokyo, Japan
| | - Geoffrey B Thompson
- Division of Endocrine Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jiri Widimsky
- Third Department of Medicine, Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - William J Young
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Leah Meuter
- Stanford University School of Medicine, Department of Physician Assistant Studies, Stanford, CA, USA
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Perez K, Jacene H, Hornick JL, Ma C, Vaz N, Brais LK, Alexander H, Baddoo W, Astone K, Esplin ED, Garcia J, Halperin DM, Kulke MH, Chan JA. SDHx mutations and temozolomide in malignant pheochromocytoma and paraganglioma. Endocr Relat Cancer 2022; 29:533-544. [PMID: 35731023 DOI: 10.1530/erc-21-0392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022]
Abstract
Malignant pheochromocytomas (PHEOs)/paragangliomas (PGLs) are rare tumors for which clinical outcomes remain poorly defined and therapeutic options are limited. Approximately 27% carry pathogenic germline succinate dehydrogenase (SDHx) mutations; the presence of such mutations has been correlated with response to temozolomide (TMZ). We aimed to investigate the association between germline mutations in SDHx and response to TMZ. We retrospectively identified patients with metastatic malignant PHEO/PGLs treated with TMZ- based chemotherapy at Dana-Farber Cancer Institute between 2003 and 2020. The correlation between response by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 and PET Response Criteria in Solid Tumors (PERCIST) and the presence of SDHx mutations in the germline and tumor was evaluated. Nineteen patients received TMZ. Seventeen underwent germline assessment: 9 (53%) carried a pathogenic SDHx germline mutation. Fifteen patients were evaluable for response by RECIST 1.1: 6 (40%) partial response, 4 (27%) stable disease, and 5 (33%) progressive disease. Overall median progression-free survival was 2.2 years. Three-year overall survival (OS) was 58%. Median PFS was 1.3 years and 5.5 years for carriers and non-carriers, respectively and OS was 1.5 years and not estimable for carriers and non-carriers, respectively. The response by PERCIST criteria in nine patients correlated with the RECIST 1.1 assessment. Our series represents one of the largest analyses of patients with malignant PHEOs/PGLs treated with TMZ who have available germline data. The incidence of pathogenic germline SDHx mutations was similar to what has been previously published, though our analysis suggests that there may be a limited association between response to TMZ and pathogenic germline SDHx mutations.
Collapse
Affiliation(s)
- Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Heather Jacene
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jason L Hornick
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Chao Ma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nuno Vaz
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Holly Alexander
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - William Baddoo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kristina Astone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - John Garcia
- Invitae Corporation, San Francisco, California, USA
| | - Daniel M Halperin
- Department of Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew H Kulke
- Section of Hematology and Oncology, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Jennifer A Chan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Zhang X, Wakabayashi H, Kayano D, Inaki A, Kinuya S. I-131 metaiodobenzylguanidine therapy is a significant treatment option for pheochromocytoma and paraganglioma. Nuklearmedizin 2022; 61:231-239. [PMID: 35668668 DOI: 10.1055/a-1759-2050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIM Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours of chromaffin cells. Several modalities are currently available to treat patients with PPGL. These treatment modalities include surgery, chemotherapy, molecular targeted therapy and radiopharmaceuticals. METHODS I-131 metaiodobenzylguanidine (mIBG), a classic radiopharmaceutical, can be taken up through specific receptors and sited into many, but not all, PPGL cells. RESULTS Many studies have investigated the efficacy and toxicity of I-131 mIBG therapy. These studies reported significant results in terms of objective, hormonal and symptomatic responses as well as tolerable toxicities in patients. CONCLUSION This article reviews the reported experiences of patients who underwent I-131 mIBG therapy for PPGL with a focus on functions and deficiencies of the therapy.
Collapse
Affiliation(s)
- Xue Zhang
- Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | | | - Daiki Kayano
- Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Anri Inaki
- Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Seigo Kinuya
- Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
7
|
Inaki A, Shiga T, Tsushima Y, Jinguji M, Wakabayashi H, Kayano D, Akatani N, Yamase T, Kunita Y, Watanabe S, Hiromasa T, Mori H, Hirata K, Watanabe S, Higuchi T, Tomonaga H, Kinuya S. An open-label, single-arm, multi-center, phase II clinical trial of single-dose [ 131I]meta-iodobenzylguanidine therapy for patients with refractory pheochromocytoma and paraganglioma. Ann Nucl Med 2022; 36:267-278. [PMID: 34870794 PMCID: PMC8897386 DOI: 10.1007/s12149-021-01699-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In this phase II study, we aimed to investigate the efficacy and safety of single-dose [131I]meta-iodobenzylguanidine (131I-mIBG) therapy in patients with refractory pheochromocytoma and paraganglioma (PPGL). PATIENTS AND METHODS This study was designed as an open-label, single-arm, multi-center, phase II clinical trial. The enrolled patients were administered 7.4 GBq of 131I-mIBG. Its efficacy was evaluated 12 and 24 weeks later, and its safety was monitored continuously until the end of the study. We evaluated the biochemical response rate as the primary endpoint using the one-sided exact binomial test based on the null hypothesis (≤ 5%). RESULTS Seventeen patients were enrolled in this study, of which 16 were treated. The biochemical response rate (≥ 50% decrease in urinary catecholamines) was 23.5% (90% confidence interval: 8.5-46.1%, p = 0.009). The radiographic response rates, determined with CT/MRI according to the response evaluation criteria in solid tumors (RECIST) version 1.1 and 123I-mIBG scintigraphy were 5.9% (0.3%-25.0%) and 29.4% (12.4%-52.2%), respectively. The most frequent non-hematologic treatment-emergent adverse events (TEAEs) were gastrointestinal symptoms including nausea, appetite loss, and constipation, which were, together, observed in 15 of 16 patients. Hematologic TEAEs up to grade 3 were observed in 14 of 16 patients. No grade 4 or higher TEAEs were observed. All patients had experienced at least one TEAE, but no fatal or irreversible TEAEs were observed. CONCLUSION A single dose 131I-mIBG therapy was well tolerated by patients with PPGL, and statistically significantly reduced catecholamine levels compared to the threshold response rate, which may lead to an improved prognosis for these patients.
Collapse
Affiliation(s)
- Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tohru Shiga
- Department of Clinical Research and Trial, Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, 1-banchi Hikarigaoka, Fukushima, Fukushima 960-1295 Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 Japan
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544 Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Norihito Akatani
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Takafumi Yamase
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Yuji Kunita
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Satoru Watanabe
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Hiroshi Mori
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, 5-chome Kita-14-jou, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Shiro Watanabe
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, 5-chome Kita-14-jou, Kita-ku, Sapporo, Hokkaido 060-8648 Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 Japan
| | - Hiroyasu Tomonaga
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8641 Japan
| |
Collapse
|
8
|
Burak Z. Radionuclide Therapy in Neuroectodermal Tumors. RADIONUCLIDE THERAPY 2022:199-222. [DOI: 10.1007/978-3-030-97220-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Prado-Wohlwend S, del Olmo-García MI, Bello-Arques P, Merino-Torres JF. Response to targeted radionuclide therapy with [ 131I]MIBG AND [ 177Lu]Lu-DOTA-TATE according to adrenal vs. extra-adrenal primary location in metastatic paragangliomas and pheochromocytomas: A systematic review. Front Endocrinol (Lausanne) 2022; 13:957172. [PMID: 36339441 PMCID: PMC9630737 DOI: 10.3389/fendo.2022.957172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Targeted radionuclide therapy (TRT) with [131I]MIBG and [177Lu]Lu-DOTA-TATE is an alternative treatment to the classic schemes in slow progressive metastatic/inoperable paraganglioma (PGL) and pheochromocytoma (PHEO). There is no consensus on which treatment to administer and/or the best sequence in patients who are candidates for both therapies. To clarify these questions, this systematic review assesses the prognostic value of [131I]MIBG and [177Lu]Lu-DOTA-TATE (PRRT-Lu) treatments in terms of progression-free survival (PFS) both globally and considering the primary location. METHODS This review was developed according to the PRISMA Statement with 27 final studies (608 patients). Patient characteristics, treatment procedure, and follow-up criteria were evaluated. In addition, a Bayesian linear regression model weighted according to its sample size and an alternative model, which also included an interaction between the treatment and the proportion of PHEOs, were carried out, adjusted by a Student's t distribution. RESULTS In linear regression models, [131I]MIBG overall PFS was, on average, 10 months lower when compared with PRRT-Lu. When considering the interaction between treatment responses and the proportion of PHEOs, PRRT-Lu showed remarkably better results in adrenal location. The PFS of PRRT-Lu was longer when the ratio of PHEOs increased, with a decrease in [131I]MIBG PFS by 1.9 months for each 10% increase in the proportion of PHEOs in the sample. CONCLUSION Methodology, procedure, and PFS from the different studies are quite heterogeneous. PRRT-Lu showed better results globally and specifically in PHEOs. This fact opens the window to prospective trials comparing or sequencing [131I]MIBG and PRRT-Lu.
Collapse
Affiliation(s)
- Stefan Prado-Wohlwend
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, Valencia, Spain
- *Correspondence: Stefan Prado-Wohlwend,
| | | | - Pilar Bello-Arques
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Juan Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Polytechnic Hospital La Fe, Valencia, Spain
- Medicine Department, Universitat de València, Valencia, Spain
| |
Collapse
|
10
|
Carrasquillo JA, Chen CC, Jha A, Pacak K, Pryma DA, Lin FI. Systemic Radiopharmaceutical Therapy of Pheochromocytoma and Paraganglioma. J Nucl Med 2021; 62:1192-1199. [PMID: 34475242 PMCID: PMC8882896 DOI: 10.2967/jnumed.120.259697] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
Whereas benign pheochromocytomas and paragangliomas are often successfully cured by surgical resection, treatment of metastatic disease can be challenging in terms of both disease control and symptom control. Fortunately, several options are available, including chemotherapy, radiation therapy, and surgical debulking. Radiolabeled metaiodobenzylguanidine (MIBG) and somatostatin receptor imaging have laid the groundwork for use of these radiopharmaceuticals as theranostic agents. 131I-MIBG therapy of neuroendocrine tumors has a long history, and the recent approval of high-specific-activity 131I-MIBG for metastatic or inoperable pheochromocytoma or paraganglioma by the U.S. Food and Drug Administration has resulted in general availability of, and renewed interest in, this treatment. Although reports of peptide receptor radionuclide therapy of pheochromocytoma and paraganglioma with 90Y- or 177Lu-DOTA conjugated somatostatin analogs have appeared in the literature, the approval of 177Lu-DOTATATE in the United States and Europe, together with National Comprehensive Cancer Network guidelines suggesting its use in patients with metastatic or inoperable pheochromocytoma and paraganglioma, has resulted in renewed interest. These agents have shown evidence of efficacy as palliative treatments in patients with metastatic or inoperable pheochromocytoma or paraganglioma. In this continuing medical education article, we discuss the therapy of pheochromocytoma and paraganglioma with 131I-MIBG and 90Y- or 177Lu-DOTA-somatostatin analogs.
Collapse
Affiliation(s)
- Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York;
- Molecular Imaging Branch, National Cancer Institute, Bethesda, Maryland
| | - Clara C Chen
- Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; and
| | - Karel Pacak
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; and
| | - Daniel A Pryma
- Department of Radiology, Hospital of University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
11
|
Krokker L, Szabó B, Németh K, Tóháti R, Sarkadi B, Mészáros K, Patócs A, Butz H. Three Dimensional Cell Culturing for Modeling Adrenal and Pituitary Tumors. Pathol Oncol Res 2021; 27:640676. [PMID: 34257605 PMCID: PMC8262162 DOI: 10.3389/pore.2021.640676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/01/2021] [Indexed: 12/16/2022]
Abstract
In vitro monolayer conditions are not able to reproduce the complexity of solid tumors, still, there is scarce information about the 3D cell culture models of endocrine tumor types. Therefore, our aim was to develop in vitro 3D tumor models by different methodologies for adrenocortical carcinoma (H295R), pituitary neuroendocrine tumor (RC-4B/C and GH3) and pheochromocytoma (PC-12). Various methodologies were tested. Cell biological assays (cell viability, proliferation and live cell ratio) and steroid hormone production by HPLC-MS/MS method were applied to monitor cellular well-being. Cells in hanging drops and embedded in matrigel formed multicellular aggregates but they were difficult to handle and propagate for further experiments. The most widely used methods: ultra-low attachment plate (ULA) and spheroid inducing media (SFDM) were not the most viable 3D model of RC-4B/C and GH3 cells that would be suitable for further experiments. Combining spheroid generation with matrigel scaffold H295R 3D models were viable for 7 days, RC-4B/C and GH3 3D models for 7–10 days. ULA and SFDM 3D models of PC-12 cells could be used for further experiments up to 4 days. Higher steroid production in 3D models compared to conventional monolayer culture was detected. Endocrine tumor cells require extracellular matrix as scaffold for viable 3D models that can be one reason behind the lack of the usage of endocrine 3D cultures. Our models help understanding the pathogenesis of endocrine tumors and revealing potential biomarkers and therapeutic targets. They could also serve as an excellent platform for preclinical drug test screening.
Collapse
Affiliation(s)
- Lilla Krokker
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Borbála Szabó
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Kinga Németh
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Rebeka Tóháti
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Balázs Sarkadi
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Katalin Mészáros
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
12
|
Fishbein L, Del Rivero J, Else T, Howe JR, Asa SL, Cohen DL, Dahia PLM, Fraker DL, Goodman KA, Hope TA, Kunz PL, Perez K, Perrier ND, Pryma DA, Ryder M, Sasson AR, Soulen MC, Jimenez C. The North American Neuroendocrine Tumor Society Consensus Guidelines for Surveillance and Management of Metastatic and/or Unresectable Pheochromocytoma and Paraganglioma. Pancreas 2021; 50:469-493. [PMID: 33939658 DOI: 10.1097/mpa.0000000000001792] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT This manuscript is the result of the North American Neuroendocrine Tumor Society consensus conference on the medical management and surveillance of metastatic and unresectable pheochromocytoma and paraganglioma held on October 2 and 3, 2019. The panelists consisted of endocrinologists, medical oncologists, surgeons, radiologists/nuclear medicine physicians, nephrologists, pathologists, and radiation oncologists. The panelists performed a literature review on a series of questions regarding the medical management of metastatic and unresectable pheochromocytoma and paraganglioma as well as questions regarding surveillance after resection. The panelists voted on controversial topics, and final recommendations were sent to all panel members for final approval.
Collapse
Affiliation(s)
- Lauren Fishbein
- From the Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Tobias Else
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - James R Howe
- Division of Surgical Oncology and Endocrine Surgery, Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center and University Health Network, Toronto, Case Western Reserve University, Cleveland, OH
| | - Debbie L Cohen
- Renal Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Patricia L M Dahia
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX
| | - Douglas L Fraker
- Division of Endocrine and Oncologic Surgery, Department of Surgery, University of Pennsylvania and Abramson Cancer Center, Philadelphia, PA
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Pamela L Kunz
- Division of Oncology, Department of Medicine, Yale School of Medicine, New Haven, CT
| | - Kimberly Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nancy D Perrier
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel A Pryma
- Department of Radiology and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mabel Ryder
- Endocrine Oncology Tumor Group, Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | - Aaron R Sasson
- Division of Surgical Oncology, Department of Surgery, Stony Brook University Medical Center, Stony Brook, NY
| | - Michael C Soulen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
13
|
AYDOĞAN ÜNSAL Y, ÖZ GÜL Ö, CANDER S, ERSOY C, AYDEMİR E, ATEŞ C, ÜNSAL O, ERTÜRK E. Retrospective Evaluation of The Cases with Malignant Pheochromocytoma: A Single Center Experience. TURKISH JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.46310/tjim.876517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Barnabas R, Jaiswal SK, Memon SS, Sarathi V, Malhotra G, Verma P, Patil VA, Lila AR, Shah NS, Bandgar TR. Low-Dose, Low-Specific Activity 131I-metaiodobenzyl Guanidine Therapy in Metastatic Pheochromocytoma/Sympathetic Paraganglioma: Single-Center Experience from Western India. Indian J Endocrinol Metab 2021; 25:148-159. [PMID: 34660244 PMCID: PMC8477742 DOI: 10.4103/ijem.ijem_52_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 07/08/2021] [Indexed: 01/23/2023] Open
Abstract
INTRODUCTION Radionuclide therapy is a promising treatment modality in metastatic pheochromocytoma/paraganglioma (PPGL). There is scarce data on 131I-metaiodobenzyl guanidine (131I-MIBG) therapy from the Indian subcontinent. Hence, we aim to study the safety and effectiveness of low-dose, low-specific activity (LSA) 131I-MIBG therapy in patients with symptomatic, metastatic PPGL. METHODS Clinical, hormonal, and radiological response parameters and side effects of LSA 131I-MIBG therapy in patients with symptomatic, metastatic PPGL were retrospectively reviewed. World health organizations' (WHO) symptomatic, hormonal, and tumor response, and response evaluation criteria in solid tumors (RECIST1.1) criteria were used to assess the response. RESULTS Seventeen (PCC: 11, sympathetic PGL: 06) patients (15 with disease progression) received low-dose LSA 131I-MIBG therapy. Complete remission (CR), partial remission (PR), stable disease (SD), and progressive disease (PD) were 18% (3/17), 24% (4/17), 18% (3/17), and 41% (7/17), respectively, for WHO symptomatic response; 20% (2/10), 10% (1/10), 30% (3/10), and 40% (4/10), respectively, for WHO hormonal response; and 19% (3/16), 6% (1/16), 31% (5/16), and 44% (7/16), respectively for tumor response based on RECIST1.1. All patients with symptomatic PD and 50% (2/4) with hormonal PD had progression as per RECIST1.1 criteria. Side effects included thrombocytopenia, acute myeloid leukemia, mucoepidermoid carcinoma, and azoospermia in 6% (1/17) each. CONCLUSIONS Our study reaffirms the modest efficacy and safety of low-dose, LSA 131I-MIBG therapy in patients with symptomatic, metastatic PPGL. Symptomatic, but not hormonal, progression after 131I-MIBG therapy correlates well with tumor progression and should be further evaluated with imaging. In resource-limited settings, anatomic imaging alone may be used to assess tumor response to 131I-MIBG therapy.
Collapse
Affiliation(s)
- Rohit Barnabas
- Department of Endocrinology, Seth G.S Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Sanjeet Kumar Jaiswal
- Department of Endocrinology, Seth G.S Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Saba Samad Memon
- Department of Endocrinology, Seth G.S Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Vijaya Sarathi
- Department of Endocrinology, Vydehi Institute of Medical Sciences and Research Center, Bengaluru, Karnataka, India
| | - Gaurav Malhotra
- Department of Nuclear Medicine, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Priyanka Verma
- Department of Nuclear Medicine, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Virendra A. Patil
- Department of Endocrinology, Seth G.S Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Anurag R. Lila
- Department of Endocrinology, Seth G.S Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Nalini S. Shah
- Department of Endocrinology, Seth G.S Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Tushar R. Bandgar
- Department of Endocrinology, Seth G.S Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
15
|
Jungels C, Karfis I. 131I-metaiodobenzylguanidine and peptide receptor radionuclide therapy in pheochromocytoma and paraganglioma. Curr Opin Oncol 2021; 33:33-39. [PMID: 33093336 DOI: 10.1097/cco.0000000000000691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Pheochromocytomas and paragangliomas are rare tumors arising, respectively, from the adrenal medulla and extra-adrenal sympathetic or parasympathetic paraganglia. The main therapeutic objectives in case of metastatic disease are the reduction of tumor burden and the control of symptoms resulting from excessive catecholamine secretion. Treatment choices constitute not only a wait and see attitude, locoregional approaches, chemotherapy regiments but also radiopharmaceutical agents, and they should be discussed in a specialized multidisciplinary board. This review will briefly discuss the radiopharmaceutical modalities in patients with pheochromocytomas and paragangliomas (I-MIBG and PRRT). RECENT FINDINGS I-MIBG (Azedra) has received FDA approval for patients with iobenguane-scan-positive, unresectable, locally advanced or metastatic pheochromocytomas and paragangliomas who require systemic anticancer therapy, whereas peptide receptor radionuclide therapy using radiolabelled somatostatin analogues is currently performed in compassionate use, with very promising results. No prospective head-to-head comparison between the modalities has been conducted to date. SUMMARY Promising results have been reported for both radiopharmaceutical agents, mostly in the setting of retrospective series. No prospective head-to-head comparison between the modalities is yet available.
Collapse
Affiliation(s)
| | - Ioannis Karfis
- Department of Nuclear Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
16
|
Yoshinaga K, Abe T, Okamoto S, Uchiyama Y, Manabe O, Ito YM, Tamura N, Ito N, Yoshioka N, Washino K, Shinohara N, Tamaki N, Shiga T. Effects of Repeated 131I- Meta-Iodobenzylguanidine Radiotherapy on Tumor Size and Tumor Metabolic Activity in Patients with Metastatic Neuroendocrine Tumors. J Nucl Med 2020; 62:685-694. [PMID: 33067337 DOI: 10.2967/jnumed.120.250803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
131I-meta-iodobenzylguanidine (131I-MIBG) radiotherapy has shown some survival benefits in metastatic neuroendocrine tumors (NETs). European Association of Nuclear Medicine clinical guidelines for 131I-MIBG radiotherapy suggest a repeated treatment protocol, although none currently exists. The existing single-high-dose 131I-MIBG radiotherapy (444 MBq/kg) has been shown to have some benefits for patients with metastatic NETs. However, this protocol increases adverse effects and requires alternative therapeutic approaches. Therefore, the aim of this study was to evaluate the effects of repeated 131I-MIBG therapy on tumor size and tumor metabolic response in patients with metastatic NETs. Methods: Eleven patients with metastatic NETs (aged 49.2 ± 16.3 y) prospectively received repeated 5,550-MBq doses of 131I-MIBG therapy at 6-mo intervals. In total, 31 treatments were performed. The mean number of treatments was 2.8 ± 0.4, and the cumulative 131I-MIBG dose was 15,640.9 ± 2,245.1 MBq (286.01 MBq/kg). Tumor response was observed by CT and 18F-FDG PET or by 18F-FDG PET/CT before and 3-6 mo after the final 131I-MIBG treatment. Results: On the basis of the CT findings with RECIST, 3 patients showed a partial response and 6 patients showed stable disease. The remaining 2 patients showed progressive disease. Although there were 2 progressive-disease patients, analysis of all patients showed no increase in summed length diameter (median, 228.7 mm [interquartile range (IQR), 37.0-336.0 mm] to 171.0 mm [IQR, 38.0-270.0 mm]; P = 0.563). In tumor region-based analysis with partial-response and stable-disease patients (n = 9), 131I-MIBG therapy significantly reduced tumor diameter (79 lesions; median, 16 mm [IQR, 12-22 mm] to 11 mm [IQR, 6-16 mm]; P < 0.001). Among 5 patients with hypertension, there was a strong trend toward systolic blood pressure reduction (P = 0.058), and diastolic blood pressure was significantly reduced (P = 0.006). Conclusion: Eighty-two percent of metastatic NET patients effectively achieved inhibition of disease progression, with reduced tumor size and reduced metabolic activity, through repeated 131I-MIBG therapy. Therefore, this relatively short-term repeated 131I-MIBG treatment may have potential as one option in the therapeutic protocol for metastatic NETs. Larger prospective studies with control groups are warranted.
Collapse
Affiliation(s)
- Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Takashige Abe
- Department of Urological Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shozo Okamoto
- Department of Diagnostic Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan .,Department of Radiology, Obihiro Kosei Hospital, Obihiro, Japan
| | - Yuko Uchiyama
- Department of Diagnostic Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Manabe
- Department of Diagnostic Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichi M Ito
- Research Center for Medical and Health Data Science, Institute of Statistical Mathematics, Tokyo, Japan; and
| | - Naomi Tamura
- Research Center for Medical and Health Data Science, Institute of Statistical Mathematics, Tokyo, Japan; and
| | - Natsue Ito
- Diagnostic and Therapeutic Nuclear Medicine, Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Naho Yoshioka
- Diagnostic and Therapeutic Nuclear Medicine, Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Komei Washino
- Diagnostic and Therapeutic Nuclear Medicine, Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Nobuo Shinohara
- Department of Urological Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural Medical University, Kyoto, Japan
| | - Tohru Shiga
- Department of Diagnostic Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Although the majority of pheochromocytoma and paraganglioma are benign, 15-17% develop metastatic disease, being present at the initial diagnosis in about 11-31% of cases. The natural course of metastasized disease is highly heterogeneous, with an overall 5-year survival rate varying between 40% and 85%. For individual patients, overall survival, progression-free survival, and clinical outcome are difficult to predict. Management of metastasized pheochromocytoma and paraganglioma is challenging. Currently available therapeutic options are surgical debulking, treatment with radiopharmaceuticals (I-MIBG, Y and Lu-DOTATATE), chemotherapy and targeted therapy. RECENT FINDINGS The pathogenesis of pheochromocytoma and paraganglioma (PPGL) is largely driven by genomic alterations in PPGL susceptibility genes related to three different clusters: altered pseudo-hypoxic signaling (cluster-1), altered MAP-kinase signaling (cluster-2) and altered Wnt signaling (cluster-3). Novel targeted therapies (tyrosine kinase inhibitors) and potential future therapeutic options, guided by improved knowledge about the oncogenic cluster 1-3 signaling pathways, will be discussed. SUMMARY Treatment of metastasized pheochromocytoma and paraganglioma remains challenging. Profiling of gene expression and methylation can serve as a powerful tool for characterizing disease clusters and for guiding targeted therapy to improve selectivity and efficacy. Current knowledge of signatures involved in molecular signaling, metabolism, and resistance mechanisms of PPGLs suggests that therapeutic regimens can be optimized to each molecular subtype.
Collapse
|
18
|
del Olmo-García MI, Muros MA, López-de-la-Torre M, Agudelo M, Bello P, Soriano JM, Merino-Torres JF. Prevention and Management of Hormonal Crisis during Theragnosis with LU-DOTA-TATE in Neuroendocrine Tumors. A Systematic Review and Approach Proposal. J Clin Med 2020; 9:E2203. [PMID: 32664679 PMCID: PMC7408760 DOI: 10.3390/jcm9072203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroendocrine tumors (NETs) frequently overexpress somatostatin receptors (SSTR) on their cell surface. The first-line pharmacological treatment for inoperable metastatic functioning well-differentiated NETs are somatostatin analogs. On second line, Lu-DOTA-TATE (177Lu-DOTA0 Tyr 3 octreotate) has shown stabilization of the disease and an increase in progression free survival, as well as effectiveness in controlling symptoms and increasing quality of life. The management of functional NETs before and during LU-DOTA-TATE treatment is specially challenging, as several complications such as severe carcinoid and catecholamine crisis have been described. The aim of this review is to establish practical guidance for the management and prevention of the most common hormonal crises during radionuclide treatment with Lu-DOTA-TATE: carcinoid syndrome (CS) and catecholamine hypersecretion, as well as to provide a brief commentary on other infrequent metabolic complications. To establish a practical approach, a systematic review was performed. This systematic review was developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and conducted using MEDLINE (accessed from PubMed), Google Scholar and ClinicalTrials.gov. Literature searches found 449 citations, and finally nine were considered for this systematic review.
Collapse
Affiliation(s)
| | - Maria Angustias Muros
- Nuclear Medicine Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Martín López-de-la-Torre
- Endocrinology and Nutrition Department, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - Marc Agudelo
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (M.A.); (P.B.)
| | - Pilar Bello
- Nuclear Medicine Department, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (M.A.); (P.B.)
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Valencia, Spain;
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| | - Juan-Francisco Merino-Torres
- Endocrinology and Nutrition Department, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain;
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| |
Collapse
|
19
|
Jimenez C, Erwin W, Chasen B. Targeted Radionuclide Therapy for Patients with Metastatic Pheochromocytoma and Paraganglioma: From Low-Specific-Activity to High-Specific-Activity Iodine-131 Metaiodobenzylguanidine. Cancers (Basel) 2019; 11:cancers11071018. [PMID: 31330766 PMCID: PMC6678905 DOI: 10.3390/cancers11071018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Low-specific-activity iodine-131–radiolabeled metaiodobenzylguanidine (I-131-MIBG) was introduced last century as a potential systemic therapy for patients with malignant pheochromocytomas and paragangliomas. Collective information derived from mainly retrospective studies has suggested that 30–40% of patients with these tumors benefit from this treatment. A low index of radioactivity, lack of therapeutic standardization, and toxicity associated with intermediate to high activities (absorbed radiation doses) has prevented the implementation of I-131-MIBG’s in clinical practice. High-specific-activity, carrier-free I-131-MIBG has been developed over the past two decades as a novel therapy for patients with metastatic pheochromocytomas and paragangliomas that express the norepinephrine transporter. This drug allows for a high level of radioactivity, and as yet is not associated with cardiovascular toxicity. In a pivotal phase two clinical trial, more than 90% of patients achieved partial responses and disease stabilization with the improvement of hypertension. Furthermore, many patients exhibited long-term persistent antineoplastic effects. Currently, the high-specific-activity I-131-MIBG is the only approved therapy in the US for patients with metastatic pheochromocytomas and paragangliomas. This review will discuss the historical development of high-specific-activity I-131-MIBG, its benefits and adverse events, and future directions for clinical practice applicability and trial development.
Collapse
Affiliation(s)
- Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1461, Houston, TX 77030, USA.
| | - William Erwin
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1461, Houston, TX 77030, USA
| | - Beth Chasen
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
20
|
A phase I clinical trial for [ 131I]meta-iodobenzylguanidine therapy in patients with refractory pheochromocytoma and paraganglioma. Sci Rep 2019; 9:7625. [PMID: 31110198 PMCID: PMC6527850 DOI: 10.1038/s41598-019-43880-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/03/2019] [Indexed: 12/13/2022] Open
Abstract
Refractory pheochromocytoma and paraganglioma (PPGL) have a poor prognosis and the treatment strategy remains to be established. This multi-institutional phase I study was performed to determine the safety, dose-limiting toxicity (DLT), and efficacy of [131I]-meta-iodobenzylguanidine (131I-mIBG) therapy for refractory PPGLs. Twenty patients with refractory PPGL were enrolled in this study. We administered fixed doses of 131I-mIBG to all patients, delivering a second and third course of 131I-mIBG to eight and three patients, respectively. During the 20 weeks after 131I-mIBG injection, the authors surveyed the adverse events in accordance with the Common Terminology Criteria for Adverse Events. All patients experienced adverse events and adverse reactions, but none experienced a grade 4 adverse event. Twelve weeks after 131I-mIBG injection, examinations for the evaluation of therapeutic effects was performed in accordance with the Response Evaluation Criteria in Solid Tumours (RECIST). The best overall response rates (based on RECIST categories) were 10% (complete response), 65% (stable disease), 15% (progressive disease), and 10% (not all evaluated). The efficacy and safety of 131I-mIBG therapy was shown in patients with refractory PPGL, and DLT was observed in neither single nor repeated 131I-mIBG therapy, indicating a tolerability for 131I-mIBG therapy.
Collapse
|
21
|
Pheochromocytomas and Paragangliomas: From Genetic Diversity to Targeted Therapies. Cancers (Basel) 2019; 11:cancers11040436. [PMID: 30925729 PMCID: PMC6521122 DOI: 10.3390/cancers11040436] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Pheochromocytoma and paraganglioma (PCPGs) are rare neuroendocrine tumors that arise from the chromaffin tissue of adrenal medulla and sympathetic ganglia. Although metastatic PCPGs account for only 10% of clinical cases, morbidity and mortality are high because of the uncontrollable mass effect and catecholamine level generated by these tumors. Despite our expanding knowledge of PCPG genetics, the clinical options to effectively suppress PCPG progression remain limited. Several recent translational studies revealed that PCPGs with different molecular subtypes exhibit distinctive oncogenic pathways and spectrum of therapy resistance. This suggests that therapeutics can be adjusted based on the signature molecular and metabolic pathways of PCPGs. In this review, we summarized the latest findings on PCPG genetics, novel therapeutic targets, and perspectives for future personalized medicine.
Collapse
|
22
|
Yadav MP, Ballal S, Bal C. Concomitant 177Lu-DOTATATE and capecitabine therapy in malignant paragangliomas. EJNMMI Res 2019; 9:13. [PMID: 30725219 PMCID: PMC6365580 DOI: 10.1186/s13550-019-0484-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of concomitant peptide receptor radionuclide therapy (PRRT) and capecitabine therapy has shown benefit in gastroenteropancreatic neuroendocrine tumors. However, data reporting its role in paraganglioma (PGL) patients is lacking. The aim of this study was to evaluate the role of combined capecitabine and 177Lu-DOTATATE in malignant PGL patients. METHODS In this retrospective, single-institutional, single-arm, observational study, data of consecutive advanced stage PGL patients treated with concomitant 177Lu-DOTATATE-capecitabine therapy, between July 2009 and March 2017, were collected and analyzed. RESULTS Twenty-five PGL patients received an average dose of 22.86 ± 9.54 (14.43-50) GBq 177Lu-DOTATATE and 1250 mg/m2 capecitabine from days 0 to 14, commencing on the morning of PRRT. The median overall survival (OS) was not attained in this patient cohort; however, the median PFS was 32 months. Morphological response according to RECIST 1.1 criteria was achieved in 28% (7/25) patients. Biochemical response with > 50% reduction in chromogranin A levels was observed in 28% of the patients. CONCLUSIONS Our data confirm that 177Lu-DOTATATE-capecitabine therapy is effective in achieving an objective response in 28% and symptomatic response in 43% patients. In comparison to published PRRT monotherapy outcomes in PGL, we did not observe any great advantage of concomitant therapy; however, it could be due to under-powered study. We recommend a large randomized trial to prove or disprove the utility of capecitabine as a radiosensitizer for PRRT in PGL patients.
Collapse
Affiliation(s)
- Madhav Prasad Yadav
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
23
|
Inaki A, Yoshimura K, Murayama T, Imai Y, Kuribayashi Y, Higuchi T, Jinguji M, Shiga T, Kinuya S. A phase I clinical trial for [ 131I]meta-iodobenzylguanidine therapy in patients with refractory pheochromocytoma and paraganglioma: a study protocol. THE JOURNAL OF MEDICAL INVESTIGATION 2018; 64:205-209. [PMID: 28954983 DOI: 10.2152/jmi.64.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Objective Pheochromocytoma and paraganglioma (PPGLs) are rare neuroendocrine tumors derived from the adrenal medulla or extra-adrenal paraganglioma from extra-adrenal chromaffin tissue. Although malignant PPGLs has miserable prognosis, the treatment strategy remains to be established. An internal radiation therapy using [131I]meta-iodobenzylguanidine (131I-mIBG) called MIBG therapy has been attempted as one of the systemic treatment of malignant PPGLs. The aim of this study is therefore to evaluate the safety and the efficacy of MIBG therapy for refractory PPGLs. Methods Patients with refractory PPGLs will be enrolled in this study. The total number of patients for registration is 20. The patients receive a fixed dose of 7,400 MBq of 131I-mIBG. Adverse events are surveyed during 20 weeks after 131I-mIBG injection and all severe adverse events will be documented and reported in detail in accordance with the Common Terminology Criteria for Adverse Events (CTCAE). Examination and imaging diagnosis are performed in 12 weeks after 131I-mIBG injection for the evaluation of therapeutic effect in accordance with the Response Evaluation in Solid Tumours (RECIST). Conclusion The current study is the first multi-institutional prospective study of MIBG therapy and thereby will play a significant role in improving the patients' prognosis of refractory PPGLs. J. Med. Invest. 64: 205-209, August, 2017.
Collapse
Affiliation(s)
- Anri Inaki
- Department of Nuclear Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Kenichi Yoshimura
- Department of Biostatistics, Innovative Clinical Research Center, Kanazawa University Hospital
| | | | - Yasuhito Imai
- Department of Data Center, Innovative Clinical Research Center, Kanazawa University Hospital
| | - Yoshikazu Kuribayashi
- Department of Monitoring and Auditing in Clinical Trials, Innovative Clinical Research Center, Kanazawa University Hospital
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Tohru Shiga
- Department of Nuclear Medicine, Hokkaido University
| | - Seigo Kinuya
- Department of Nuclear Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
24
|
Kayano D, Kinuya S. Current Consensus on I-131 MIBG Therapy. Nucl Med Mol Imaging 2018; 52:254-265. [PMID: 30100938 DOI: 10.1007/s13139-018-0523-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Metaiodobenzylguanidine (MIBG) is structurally similar to the neurotransmitter norepinephrine and specifically targets neuroendocrine cells including some neuroendocrine tumors. Iodine-131 (I-131)-labeled MIBG (I-131 MIBG) therapy for neuroendocrine tumors has been performed for more than a quarter-century. The indications of I-131 MIBG therapy include treatment-resistant neuroblastoma (NB), unresectable or metastatic pheochromocytoma (PC) and paraganglioma (PG), unresectable or metastatic carcinoid tumors, and unresectable or metastatic medullary thyroid cancer (MTC). I-131 MIBG therapy is one of the considerable effective treatments in patients with advanced NB, PC, and PG. On the other hand, I-131 MIBG therapy is an alternative method after more effective novel therapies are used such as radiolabeled somatostatin analogs and tyrosine kinase inhibitors in patients with advanced carcinoid tumors and MTC. No-carrier-aided (NCA) I-131 MIBG has more favorable potential compared to the conventional I-131 MIBG. Astatine-211-labeled meta-astatobenzylguanidine (At-211 MABG) has massive potential in patients with neuroendocrine tumors. Further studies about the therapeutic protocols of I-131 MIBG including NCA I-131 MIBG in the clinical setting and At-211 MABG in both the preclinical and clinical settings are needed.
Collapse
Affiliation(s)
- Daiki Kayano
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan.,2Department of Nuclear Medicine, Fukushima Medical University Hospital, 1 Hikariga-oka, Fukushima, 960-1295 Japan
| | - Seigo Kinuya
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
25
|
Andrade MDO, Cunha VSD, Oliveira DCD, Moraes OLD, Lofrano-Porto A. What determines mortality in malignant pheochromocytoma? – Report of a case with eighteen-year survival and review of the literature. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:264-269. [PMID: 29768630 PMCID: PMC10118982 DOI: 10.20945/2359-3997000000033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/19/2018] [Indexed: 11/23/2022]
Abstract
Pheochromocytoma (PCC) is a tumor derived from adrenomedullary chromaffin cells. Prognosis of malignant PCC is generally poor due to local recurrence or metastasis. We aim to report a case of malignant PCC with 18-year survival and discuss which factors may be related to mortality and long-term survival in malignant pheochromocytoma. The patient, a 45-year-old man, reported sustained arterial hypertension with paroxysmal episodes of tachycardia, associated with head and neck burning sensation, and hand and foot tremors. Diagnosis of PCC was established biochemically and a tumor with infiltration of renal parenchyma was resected. No genetic mutation or copy number variations were identified in SDHB, SDHD, SDHC, MAX and VHL. Over 18 years, tumor progression was managed with 131I-MIBG (iodine-metaiodobenzylguanidine) and 177Lutetium-octreotate therapy. Currently, the patient is asymptomatic and presents sustained stable disease, despite the presence of lung, para-aortic lymph nodes and femoral metastases. Adequate response to treatment with control of tumor progression, absence of significant cardiovascular events and other neoplasms, and lack of mutations in the main predisposing genes reported so far may be factors possibly associated with the prolonged survival in this case. Early diagnosis and life-long follow-up in patients with malignant pheochromocytoma are known to be crucial in improving survival.
Collapse
|
26
|
[A CASE OF MALIGNANT PARAGANGLIOMA OF THE URINARY BLADDER TREATED WITH CYCLOPHOSPHAMIDE, VINCRISTINE, AND DACARBAZINE CHEMOTHERAPY AND METAIODOBENZYLGUANIDINE THERAPY]. Nihon Hinyokika Gakkai Zasshi 2018; 109:106-110. [PMID: 31006739 DOI: 10.5980/jpnjurol.109.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 34-year-old man, diagnosed with paraganglioma of the urinary bladder, was referred to our hospital. Computed tomography showed a bladder tumor measuring 64 mm along with right obturator lymphadenopathy. Abnormal uptake was observed on 123I-MIBG scintigraphy. The tumor was, therefore, diagnosed as malignant paraganglioma. We performed cystectomy, pelvic lymph node dissection, and neobladder reconstruction. Pathological examination revealed a malignant paraganglioma of the urinary bladder with right obturator lymph node metastasis. Postoperatively, both the uptake on 123I-MIBG scintigraphy and catecholamine levels in blood and urine normalized. However, 22 months later, positoron emission tomography-computed tomography showed the presence of 2 recurrent tumors in the pelvis. The patient underwent 9 courses of cyclophosphamide, vincristine, and dacarbazine chemotherapy and MIBG radiotherapy twice, following which the tumor size decreased by 35% and catecholamine levels normalized once again. At about 2 years of follow-up, the patient was found to be free of recurrence.
Collapse
|
27
|
Pandit-Taskar N, Modak S. Norepinephrine Transporter as a Target for Imaging and Therapy. J Nucl Med 2017; 58:39S-53S. [PMID: 28864611 DOI: 10.2967/jnumed.116.186833] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
The norepinephrine transporter (NET) is essential for norepinephrine uptake at the synaptic terminals and adrenal chromaffin cells. In neuroendocrine tumors, NET can be targeted for imaging as well as therapy. One of the most widely used theranostic agents targeting NET is metaiodobenzylguanidine (MIBG), a guanethidine analog of norepinephrine. 123I/131I-MIBG theranostics have been applied in the clinical evaluation and management of neuroendocrine tumors, especially in neuroblastoma, paraganglioma, and pheochromocytoma. 123I-MIBG imaging is a mainstay in the evaluation of neuroblastoma, and 131I-MIBG has been used for the treatment of relapsed high-risk neuroblastoma for several years, however, the outcome remains suboptimal. 131I-MIBG has essentially been only palliative in paraganglioma/pheochromocytoma patients. Various techniques of improving therapeutic outcomes, such as dosimetric estimations, high-dose therapies, multiple fractionated administration and combination therapy with radiation sensitizers, chemotherapy, and other radionuclide therapies, are being evaluated. PET tracers targeting NET appear promising and may be more convenient options for the imaging and assessment after treatment. Here, we present an overview of NET as a target for theranostics; review its current role in some neuroendocrine tumors, such as neuroblastoma, paraganglioma/pheochromocytoma, and carcinoids; and discuss approaches to improving targeting and theranostic outcomes.
Collapse
Affiliation(s)
| | - Shakeel Modak
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
28
|
Galac S, Korpershoek E. Pheochromocytomas and paragangliomas in humans and dogs. Vet Comp Oncol 2017; 15:1158-1170. [DOI: 10.1111/vco.12291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/04/2016] [Accepted: 10/22/2016] [Indexed: 12/18/2022]
Affiliation(s)
- S. Galac
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - E. Korpershoek
- Department of Pathology, Erasmus Medical Center Cancer Institute; University Medical Center Rotterdam; Rotterdam The Netherlands
| |
Collapse
|
29
|
Carrasquillo JA, Pandit-Taskar N, Chen CC. I-131 Metaiodobenzylguanidine Therapy of Pheochromocytoma and Paraganglioma. Semin Nucl Med 2016; 46:203-14. [PMID: 27067501 DOI: 10.1053/j.semnuclmed.2016.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pheochromocytomas and paragangliomas are rare tumors arising from chromaffin cells. Available therapeutic modalities consist of chemotherapy, tyrosine kinase inhibitors, and I-131 metaiodobenzylguanidine (MIBG). I-131 MIBG is taken up via specific receptors and localizes into many but not all pheochromocytomas and paragangliomas. Because these tumors are rare, most therapy studies are retrospective presentations of clinical experience. Numerous retrospective studies and a few prospective studies have shown favorable responses in this disease, including symptomatic, biochemical, and objective responses. In this report, we review the experience of using I-131 MIBG therapy for targeting pheochromocytoma and paragangliomas.
Collapse
Affiliation(s)
- Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering, New York, NY; Department of Radiology, Weill Cornell Medical Center, New York, NY.
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering, New York, NY; Department of Radiology, Weill Cornell Medical Center, New York, NY
| | - Clara C Chen
- Nuclear Medicine, Department of Radiology & Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD
| |
Collapse
|
30
|
Pinato DJ, Black JRM, Ramaswami R, Tan TM, Adjogatse D, Sharma R. Peptide receptor radionuclide therapy for metastatic paragangliomas. Med Oncol 2016; 33:47. [DOI: 10.1007/s12032-016-0737-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
|
31
|
Rutherford MA, Rankin AJ, Yates TM, Mark PB, Perry CG, Reed NS, Freel EM. Management of metastatic phaeochromocytoma and paraganglioma: use of iodine-131-meta-iodobenzylguanidine therapy in a tertiary referral centre. QJM 2015; 108:361-8. [PMID: 25267727 DOI: 10.1093/qjmed/hcu208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Phaeochromocytoma (phaeo) and paraganglioma (PGL) are rare conditions, which are malignant in up to 30%. Optimal treatment is controversial, but in patients with metastatic iodine-131-meta-iodobenzylguanidine ((123)I-MIBG) avid tumours, we offer (131)I-MIBG therapy. We summarize response rates, survival and safety in a cohort of such patients treated with (131)I-MIBG in our centre from 1986 to 2012. DESIGN/METHODS Retrospective analysis of the case notes of patients with metastatic phaeo/PGL who received (131)I-MIBG was undertaken; patients underwent clinical, biochemical and radiological evaluation within 6 months of each course of (131)I-MIBG therapy. RESULTS Twenty-two patients (9 males) were identified, 12 with metastatic PGL and 10 with phaeo. Overall median follow-up time after first dose of (131)I-MIBG was 53 months. In total, 68 doses of (131)I-MIBG were administered; average dose was 9967 MBq (269.4 mCi). After the first dose, >50% of patients demonstrated disease stability or partial response; progressive disease was seen in 9%. A subset of patients underwent repeated treatment with the majority demonstrating partial response or stable disease. No life-threatening adverse events were reported, but three patients developed hypothyroidism and two developed ovarian failure after repeated dosing. Five-year survival after original diagnosis was 68% and median (+inter quartile range) survival from date of diagnosis was 17 years (7.6-26.4) with no difference in survival according to diagnosis (P < 0.1). CONCLUSIONS (131)I-MIBG is well tolerated and associates with disease stabilization or improvement in the majority of patients with metastatic phaeo/PGL. However, stronger conclusions on treatment effectiveness are limited by lack of a directly comparable 'control group' as well as an alternative 'gold standard' treatment.
Collapse
Affiliation(s)
- M A Rutherford
- From the Department of Endocrinology, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK and Beatson West of Scotland Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - A J Rankin
- From the Department of Endocrinology, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK and Beatson West of Scotland Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - T M Yates
- From the Department of Endocrinology, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK and Beatson West of Scotland Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - P B Mark
- From the Department of Endocrinology, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK and Beatson West of Scotland Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - C G Perry
- From the Department of Endocrinology, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK and Beatson West of Scotland Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - N S Reed
- From the Department of Endocrinology, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK and Beatson West of Scotland Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK
| | - E M Freel
- From the Department of Endocrinology, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK and Beatson West of Scotland Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK From the Department of Endocrinology, Western Infirmary, Dumbarton Road, Glasgow G11 6NT, UK, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK and Beatson West of Scotland Oncology Centre, Gartnavel General Hospital, 1053 Great Western Road, Glasgow G12 0YN, UK
| |
Collapse
|
32
|
Makis W, McCann K, McEwan AJB. The Challenges of Treating Paraganglioma Patients with (177)Lu-DOTATATE PRRT: Catecholamine Crises, Tumor Lysis Syndrome and the Need for Modification of Treatment Protocols. Nucl Med Mol Imaging 2015; 49:223-30. [PMID: 26279696 DOI: 10.1007/s13139-015-0332-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A high percentage of paragangliomas express somatostatin receptors that can be utilized for targeted radioisotope therapy. The aim of this study was to describe and discuss the challenges of treating these tumors with (177)Lu-[DOTA(0),Tyr(3)]octreotate (DOTATATE) radioisotope therapy using established protocols. METHODS AND RESULTS Three paraganglioma patients were treated with 4-5 cycles of (177)Lu-DOTATATE and were evaluated for side effects and response to therapy. Two of the three patients developed severe adverse reactions following their first (177)Lu-DOTATATE treatment. One patient developed a catecholamine crisis and tumor lysis syndrome within hours of treatment, requiring intensive care unit (ICU) support, and another developed a catecholamine crisis 3 days after treatment, requiring hospitalization. The treatment protocols at our institution were subsequently modified by increasing the radioisotope infusion time from 15 to 30 min, as recommended in the literature, to 2-4 h and by reducing the administered dose of (177)Lu-DOTATATE. Subsequent (177)Lu-DOTATATE treatments utilizing the modified protocols were well tolerated, and response to therapy was achieved in all three patients, resulting in significantly improved quality of life. CONCLUSION (177)Lu-DOTATATE is an exciting new therapeutic option in the management of paragangliomas; however, current treatment protocols described in the literature may need to be modified by lengthening the infusion time and/or lowering the initial treatment dose to prevent or reduce the severity of adverse reactions.
Collapse
Affiliation(s)
- William Makis
- Department of Diagnostic Imaging, Cross Cancer Institute, 11560 University Ave NW, Edmonton, Alberta T6G 1Z2 Canada
| | - Karey McCann
- Department of Diagnostic Imaging, Cross Cancer Institute, 11560 University Ave NW, Edmonton, Alberta T6G 1Z2 Canada
| | - Alexander J B McEwan
- Department of Diagnostic Imaging, Cross Cancer Institute, 11560 University Ave NW, Edmonton, Alberta T6G 1Z2 Canada
| |
Collapse
|
33
|
Kinuya S, Yoshinaga K, Higuchi T, Jinguji M, Kurihara H, Kawamoto H. Draft guidelines regarding appropriate use of (131)I-MIBG radiotherapy for neuroendocrine tumors : Guideline Drafting Committee for Radiotherapy with (131)I-MIBG, Committee for Nuclear Oncology and Immunology, The Japanese Society of Nuclear Medicine. Ann Nucl Med 2015; 29:543-52. [PMID: 25773397 DOI: 10.1007/s12149-015-0960-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/22/2015] [Indexed: 11/26/2022]
Abstract
Since the 1980s when clinical therapeutic trials were initiated, (131)I-MIBG radiotherapy has been used in foreign countries for unresectable neuroendocrine tumors including malignant pheochromocytomas and neuroblastomas. In Japan, (131)I-MIBG radiotherapy has not been approved by the Ministry of Health, Labour and Welfare; however, personally imported (131)I-MIBG is now available for therapeutic purposes in a limited number of institutions. These updated draft guidelines aim to provide useful information concerning (131)I-MIBG radiotherapy, to help prevent side effects and protect physicians, nurses, other health care professionals, patients and their families from radiation exposure. The committee has also provided appendices on topics such as practical guidance for attending physicians, patient management, and referring physicians.
Collapse
Affiliation(s)
- Seigo Kinuya
- Department of Nuclear Medicine, Faculty of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Baudin E, Habra MA, Deschamps F, Cote G, Dumont F, Cabanillas M, Arfi-Roufe J, Berdelou A, Moon B, Al Ghuzlan A, Patel S, Leboulleux S, Jimenez C. Therapy of endocrine disease: treatment of malignant pheochromocytoma and paraganglioma. Eur J Endocrinol 2014; 171:R111-22. [PMID: 24891137 DOI: 10.1530/eje-14-0113] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metastatic pheochromocytomas and paragangliomas (MPPs) present clinicians with three major challenges: scarcity, complexity of characterization, and heterogeneous behavior and prognosis. As with the treatment for all neuroendocrine tumors, the control of hormonal symptoms and tumor growth is the main therapeutic objective in MPP patients. A significant number of MPP patients still die from uncontrolled hormone secretion. In addition, the management of MPPs remains palliative. Steps forward include proper characterization of MPP patients at large cancer referral centers with multidisciplinary teams; improved strategies to stratify patients prognostically; and implementation of trials within national and international networks. Progress in the molecular characterization and staging of MPPs constitutes the basis for significant treatment breakthroughs.
Collapse
Affiliation(s)
- Eric Baudin
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Mouhammed Amir Habra
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Frederic Deschamps
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Gilbert Cote
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Frederic Dumont
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Maria Cabanillas
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - J Arfi-Roufe
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - A Berdelou
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Bryan Moon
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Abir Al Ghuzlan
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Shreyaskumar Patel
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Sophie Leboulleux
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| | - Camilo Jimenez
- Département de Médecine Nucléaire et de Cancérologie EndocrinienneRadiologie Interventionnelle, Chirurgie, Imagerie, Institut Gustave Roussy, Université Paris Sud, 114 Rue Edouard Vaillant 94805 villejuif Cedex, Paris, France andDepartment of Endocrine Neoplasia and Hormone DisordersUnit 1461, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, Texas 77030, USA
| |
Collapse
|
36
|
Hayashi T, Mete O. Head and neck paragangliomas: what does the pathologist need to know? ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.mpdhp.2014.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
van Hulsteijn LT, Niemeijer ND, Dekkers OM, Corssmit EPM. (131)I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf) 2014; 80:487-501. [PMID: 24118038 DOI: 10.1111/cen.12341] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/14/2013] [Accepted: 02/23/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND (131)I-MIBG therapy can be used for palliative treatment of malignant paraganglioma and phaeochromocytoma. The main objective of this study was to perform a systematic review and meta-analysis assessing the effect of (131)I-MIBG therapy on tumour volume in patients with malignant paraganglioma/phaeochromocytoma. METHODS A literature search was performed in December 2012 to identify potentially relevant studies. Main outcomes were the pooled proportions of complete response, partial response and stable disease after radionuclide therapy. A meta-analysis was performed with an exact likelihood approach using a logistic regression with a random effect at the study level. Pooled proportions with 95% confidence intervals (CI) were reported. RESULTS Seventeen studies concerning a total of 243 patients with malignant paraganglioma/phaeochromocytoma were treated with (131)I-MIBG therapy. The mean follow-up ranged from 24 to 62 months. A meta-analysis of the effect of (131)I-MIBG therapy on tumour volume showed pooled proportions of complete response, partial response and stable disease of, respectively, 0·03 (95% CI: 0·06-0·15), 0·27 (95% CI: 0·19-0·37) and 0·52 (95% CI: 0·41-0·62) and for hormonal response 0·11 (95% CI: 0·05-0·22), 0·40 (95% CI: 0·28-0·53) and 0·21 (95% CI: 0·10-0·40), respectively. Separate analyses resulted in better results in hormonal response for patients with paraganglioma than for patients with phaeochromocytoma. CONCLUSIONS Data on the effects of (131)I-MIBG therapy on malignant paraganglioma/phaeochromocytoma suggest that stable disease concerning tumour volume and a partial hormonal response can be achieved in over 50% and 40% of patients, respectively, treated with (131)I-MIBG therapy. It cannot be ruled out that stable disease reflects not only the effect of MIBG therapy, but also (partly) the natural course of the disease.
Collapse
Affiliation(s)
- L T van Hulsteijn
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
38
|
Hodin R, Lubitz C, Phitayakorn R, Stephen A. Diagnosis and management of pheochromocytoma. Curr Probl Surg 2014; 51:151-87. [DOI: 10.1067/j.cpsurg.2013.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 12/27/2013] [Indexed: 12/21/2022]
|
39
|
Otoukesh S, Cooper CJ, Lou W, Mojtahedzadeh M, Nasrazadani A, Wampler M, Nahleh Z. Combination chemotherapy regimen in a patient with metastatic malignant pheochromocytoma and neurofibromatosis type 1. AMERICAN JOURNAL OF CASE REPORTS 2014; 15:123-7. [PMID: 24711885 PMCID: PMC3976214 DOI: 10.12659/ajcr.890181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/03/2013] [Indexed: 12/05/2022]
Abstract
Patient: Female, 55 Final Diagnosis: Metastatic malignant pheochromocytoma Symptoms: Chest pain • tachycardia • tachypnea Medication: — Clinical Procedure: — Specialty: Oncology
Collapse
Affiliation(s)
- Salman Otoukesh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Chad J Cooper
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Wynee Lou
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Mona Mojtahedzadeh
- Department of Neuroscience Research Center, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Azadeh Nasrazadani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Mallory Wampler
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| | - Zenia Nahleh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, U.S.A
| |
Collapse
|
40
|
Fahey F, Zukotynski K, Capala J, Knight N. Targeted radionuclide therapy: proceedings of a joint workshop hosted by the National Cancer Institute and the Society of Nuclear Medicine and Molecular Imaging. J Nucl Med 2014; 55:337-48. [PMID: 24396032 DOI: 10.2967/jnumed.113.135178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Frederic Fahey
- Boston Children's Hospital, Boston, Massachusetts, and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
41
|
Yoshinaga K, Oriuchi N, Wakabayashi H, Tomiyama Y, Jinguji M, Higuchi T, Kayano D, Fukuoka M, Inaki A, Toratani A, Okamoto S, Shiga T, Ito YM, Nakajo M, Nakajo M, Kinuya S. Effects and safety of ¹³¹I-metaiodobenzylguanidine (MIBG) radiotherapy in malignant neuroendocrine tumors: results from a multicenter observational registry. Endocr J 2014; 61:1171-80. [PMID: 25214026 DOI: 10.1507/endocrj.ej14-0211] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Effective treatments for malignant neuroendocrine tumors are under development. While iodine-131 metaiodobenzylguanidine (¹³¹I-MIBG) radiotherapy has been used in the treatment of malignant neuroendocrine tumors, there are few studies evaluating its therapeutic effects and safety in a multicenter cohort. In the current study, we sought to evaluate the effects and safety of ¹³¹I-MIBG therapy for conditions including malignant pheochromocytoma and paraganglioma within a multicenter cohort. Forty-eight malignant neuroendocrine tumors (37 pheochromocytoma and 11 paraganglioma) from four centers underwent clinical ¹³¹I-MIBG radiotherapy. The tumor responses were observed before and 3 to 6 months after the ¹³¹I-MIBG radiotherapy in accordance with RECIST criteria. We also evaluated the data for any adverse effects. The four centers performed a total of 87 ¹³¹I-MIBG treatments on 48 patients between January 2000 and March 2009. Of the treatments, 65 were evaluable using RECIST criteria. One partial response (PR), 40 stable disease (SD), and 9 progressive disease (PD) in malignant pheochromocytoma were observed after each treatment. Fourteen SD and one PD-were observed in paraganglioma. Patients with normal hypertension (systolic blood pressure (BP) > 130 mmHg) showed significantly reduced systolic BP after the initial follow-up (n=10, 138.1±8.2 to 129.5±13.5 mmHg, P=0.03). In adult neuroendocrine tumors with a treatment-basis analysis, there were side effects following 41 treatments (47.1%) and most of them (90.2%) were minor. In this multicenter registry, PR or SD was achieved in 84.6% of the treatment occasions in adult neuroendocrine tumors through ¹³¹I-MIBG radiotherapy. This indicated that most of the ¹³¹I-MIBG radiotherapy was performed safely without significant side effects.
Collapse
Affiliation(s)
- Keiichiro Yoshinaga
- Department of Molecular Imaging, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ezziddin S, Sabet A, Logvinski T, Alkawaldeh K, Yong-Hing CJ, Ahmadzadehfar H, Grünwald F, Biersack HJ. Long-term outcome and toxicity after dose-intensified treatment with 131I-MIBG for advanced metastatic carcinoid tumors. J Nucl Med 2013; 54:2032-8. [PMID: 24101685 DOI: 10.2967/jnumed.112.119313] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Reported experience with systemic (131)I-metaiodobenzylguanidine ((131)I-MIBG) therapy of neuroendocrine tumors comprises different dosing schemes. The aim of this study was to assess the long-term outcome and toxicity of treatment with 11.1 GBq (300 mCi) of (131)I-MIBG per cycle. METHODS We performed a retrospective review of 31 patients with advanced metastatic neuroendocrine tumors (20 with carcinoid tumors and 11 with other tumors) treated with (131)I-MIBG. Treatment outcome was analyzed for patients with carcinoid tumors (the most common tumors in this study), and toxicity was analyzed for the entire patient cohort (n = 31). Treatment comprised 11.1 GBq (300 mCi) per course and minimum intervals of 3 mo. The radiographic response was classified according to modified Response Evaluation Criteria in Solid Tumors. Toxicity was determined according to Common Terminology Criteria for Adverse Events (version 3.0) for all laboratory data at regular follow-up visits and during outpatient care, including complete blood counts and hepatic and renal function tests. Survival analysis was performed with the Kaplan-Meier curve method (log rank test; P < 0.05). RESULTS The radiographic responses in patients with carcinoid tumors comprised a minor response in 2 patients (10%), stable disease in 16 patients (80%; median time to progression, 34 mo), and progressive disease in 2 patients (10%). The symptomatic responses in patients with functioning carcinoid tumors comprised complete resolution in 3 of the 11 evaluable symptomatic patients (27%), partial resolution in 6 patients (55%), and no significant change in 11 patients. The median overall survival in patients with carcinoid tumors was 47 mo (95% confidence interval, 32-62), and the median progression-free survival was 34 mo (95% confidence interval, 13-55). Relevant treatment toxicities were confined to transient myelosuppression of grade 3 or 4 in 15.3% (leukopenia) and 7.6% (thrombocytopenia) of applied cycles and a suspected late adverse event (3% of patients), myelodysplastic syndrome, after a cumulative administered activity of 66.6 GBq. The most frequent nonhematologic side effect was mild nausea (grade 1 or 2), which was observed in 28% of administered cycles. No hepatic or renal toxicities were noted. CONCLUSION Dose-intensified treatment with (131)I-MIBG at a fixed dose of 11.1 GBq (300 mCi) per cycle is safe and offers effective palliation of symptoms and disease stabilization in patients with advanced carcinoid tumors. The favorable survival and limited toxicity suggest that high cycle activities are suitable and that this modality may be used for targeted carcinoid treatment--either as an alternative or as an adjunct to other existing therapeutic options.
Collapse
Affiliation(s)
- Samer Ezziddin
- Department of Nuclear Medicine, University Hospital, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sze WCC, Grossman AB, Goddard I, Amendra D, Shieh SCC, Plowman PN, Drake WM, Akker SA, Druce MR. Sequelae and survivorship in patients treated with (131)I-MIBG therapy. Br J Cancer 2013; 109:565-72. [PMID: 23860527 PMCID: PMC3738119 DOI: 10.1038/bjc.2013.365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 06/14/2013] [Accepted: 06/22/2013] [Indexed: 12/15/2022] Open
Abstract
Background: 131I-meta-iodobenzylguanidine (131I-MIBG) has been in therapeutic use since 1980s. Newer treatment modalities are emerging for neuroendocrine tumours (NETs) and chromaffin cell tumours (CCTs), but many of these do not yet have adequate long-term follow-up to determine their longer term efficacy and sequelae. Methods: Fifty-eight patients with metastatic NETs and CCTs who had received 131I-MIBG therapy between 2000 and 2011 were analysed. Survival and any long-term haematological or renal sequelae were investigated. Results: In the NET group, the overall median survival and median survival following the diagnosis of metastatic disease was 124 months. The median survival following the commencement of 131I-MIBG was 66 months. For the CCT group, median survival had not been reached. The 5-year survival from diagnosis and following the diagnosis of metastatic disease was 67% and 67.5% for NETs and CCTs, respectively. The 5-year survival following the commencement of 131I-MIBG therapy was 68%. Thirty-two patients had long-term haematological sequelae: 5 of these 32 patients developed haematological malignancies. Two patients developed a mild deterioration in renal function. Conclusion: Long follow up of 131I-MIBG therapy reveals a noteable rate of bone marrow toxicities and malignancy and long term review of all patients receiving radionuclide therapies is recommended.
Collapse
Affiliation(s)
- W C C Sze
- Department of Endocrinology, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Feng N, Li X, Gao HD, Liu ZL, Shi LJ, Liu WZ. Urinary bladder malignant paraganglioma with vertebral metastasis: a case report with literature review. CHINESE JOURNAL OF CANCER 2013; 32:624-8. [PMID: 23668927 PMCID: PMC3845547 DOI: 10.5732/cjc.012.10317] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Paraganglioma is a rare neuroendocrine neoplasm observed in patients of all ages, with an estimated incidence of 3/1,000,000 population. It has long been recognized that some cases are familial. The majority of these tumors are benign, and the only absolute criterion for malignancy is the presence of metastases at sites where chromaffin tissue is not usually found. Some tumors show gross local invasion and recurrence, which may indeed kill the patient, but this does not necessarily associate with metastatic potential. Here, we report a case of vertebral metastatic paraganglioma that occurred 19 months after the patient had undergone partial cystectomy for urinary bladder paraganglioma. We believe this to be a rarely reported bone metastasis of paraganglioma arising originally within the urinary bladder. In this report, we also provide a summary of the general characteristics of this disease, together with progress in diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Ning Feng
- Department of General Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning 116001, P. R. China.
| | | | | | | | | | | |
Collapse
|
45
|
Lowery AJ, Walsh S, McDermott EW, Prichard RS. Molecular and therapeutic advances in the diagnosis and management of malignant pheochromocytomas and paragangliomas. Oncologist 2013; 18:391-407. [PMID: 23576482 DOI: 10.1634/theoncologist.2012-0410] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare catecholamine-secreting tumors derived from chromaffin cells originating in the neural crest. These tumors represent a significant diagnostic and therapeutic challenge because the diagnosis of malignancy is frequently made in retrospect by the development of metastatic or recurrent disease. Complete surgical resection offers the only potential for cure; however, recurrence can occur even after apparently successful resection of the primary tumor. The prognosis for malignant disease is poor because traditional treatment modalities have been limited. The last decade has witnessed exciting discoveries in the study of PCCs and PGLs; advances in molecular genetics have uncovered hereditary and germline mutations of at least 10 genes that contribute to the development of these tumors, and increasing knowledge of genotype-phenotype interactions has facilitated more accurate determination of malignant potential. Elucidating the molecular mechanisms responsible for malignant transformation in these tumors has opened avenues of investigation into targeted therapeutics that show promising results. There have also been significant advances in functional and radiological imaging and in the surgical approach to adrenalectomy, which remains the mainstay of treatment for PCC. In this review, we discuss the currently available diagnostic and therapeutic options for patients with malignant PCCs and PGLs and detail the molecular rationale and clinical evidence for novel and emerging diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Aoife J Lowery
- Department of Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | | | | | | |
Collapse
|
46
|
Strosberg JR. Update on the Management of Unusual Neuroendocrine Tumors: Pheochromocytoma and Paraganglioma, Medullary Thyroid Cancer and Adrenocortical Carcinoma. Semin Oncol 2013; 40:120-33. [DOI: 10.1053/j.seminoncol.2012.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
47
|
¹¹¹In-DTPA⁰-octreotide (Octreoscan), ¹³¹I-MIBG and other agents for radionuclide therapy of NETs. Eur J Nucl Med Mol Imaging 2012; 39 Suppl 1:S113-25. [PMID: 22388626 DOI: 10.1007/s00259-011-2013-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This paper is a critical review of the literature on NET radionuclide therapy with (111)In-DTPA(0)-octreotide (Octreoscan) and (131)I-MIBG, focusing on efficacy and toxicity. Some potential future applications and new candidate therapeutic agents are also mentioned. Octreoscan has been a pioneering agent for somatostatin receptor radionuclide therapy. It has achieved symptomatic responses and disease stabilization, but it is now outperformed by the corresponding β-emitter agents (177)Lu-DOTATATE and (90)Y-DOTATOC. (131)I-MIBG is the radionuclide therapy of choice for inoperable or metastatic phaeochromocytomas/paragangliomas, which avidly concentrate this tracer via the noradrenaline transporter. Symptomatic, biochemical and tumour morphological response rates of 50-89%, 45-74% and 27-47%, respectively, have been reported. (131)I-MIBG is a second-line radiopharmaceutical for treatment of enterochromaffin carcinoids, mainly offering the benefit of amelioration of hormone-induced symptoms. High specific activity, non-carrier-added (131)I-MIBG and meta-astato((211)At)-benzylguanidine (MABG) are tracers with potential for enhanced therapeutic efficacy, yet their integration into clinical practice awaits further exploration. Amongst other promising agents, radiolabelled exendin analogues show potential for imaging and possibly therapy of insulinomas, while preclinical studies are currently evaluating DOTA peptides targeting the CCK-2/gastrin receptors that are overexpressed by medullary thyroid carcinoma cells.
Collapse
|
48
|
Carrasquillo JA, Pandit-Taskar N, Chen CC. Radionuclide therapy of adrenal tumors. J Surg Oncol 2012; 106:632-42. [DOI: 10.1002/jso.23196] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/22/2012] [Indexed: 12/13/2022]
|
49
|
Ezziddin S, Sabet A, Ko YD, Xun S, Matthies A, Biersack HJ. Repeated Radionuclide therapy in metastatic paraganglioma leading to the highest reported cumulative activity of 131I-MIBG. Radiat Oncol 2012; 7:8. [PMID: 22277577 PMCID: PMC3277473 DOI: 10.1186/1748-717x-7-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/25/2012] [Indexed: 11/17/2022] Open
Abstract
131I-MIBG therapy for neuroendocrine tumours may be dose limited. The common range of applied cumulative activities is 10-40 GBq. We report the uneventful cumulative administration of 111 GBq (= 3 Ci) 131I-MIBG in a patient with metastatic paraganglioma. Ten courses of 131I-MIBG therapy were given within six years, accomplishing symptomatic, hormonal and tumour responses with no serious adverse effects. Chemotherapy with cisplatin/vinblastine/dacarbazine was the final treatment modality with temporary control of disease, but eventually the patient died of progression. The observed cumulative activity of 131I-MIBG represents the highest value reported to our knowledge, and even though 12.6 GBq of 90Y-DOTATOC were added intermediately, no associated relevant bone marrow, hepatic or other toxicity were observed. In an individual attempt to palliate metastatic disease high cumulative activity alone should not preclude the patient from repeat treatment.
Collapse
Affiliation(s)
- Samer Ezziddin
- Department of Nuclear Medicine, University Hospital, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Malignant pheochromocytomas and paragangliomas: a diagnostic challenge. Langenbecks Arch Surg 2011; 397:155-77. [PMID: 22124609 DOI: 10.1007/s00423-011-0880-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Malignant pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare disorders arising from the adrenal gland, from the glomera along parasympathetic nerves or from paraganglia along the sympathetic trunk. According to the WHO classification, malignancy of PCCs and PGLs is defined by the presence of metastases at non-chromaffin sites distant from that of the primary tumor and not by local invasion. The overall prognosis of metastasized PCCs/PGLs is poor. Surgery offers currently the only change of cure. Preferably, the discrimination between malignant and benign PCCs/PGLs should be made preoperatively. METHODS This review summarizes our current knowledge on how benign and malignant tumors can be distinguished. CONCLUSION Due to the rarity of malignant PCCs/PGLs and the obvious difficulties in distinguishing benign and malignant PCCs/PGLs, any patient with a PCC/PGL should be treated in a specialized center where a multidisciplinary setting with specialized teams consisting of radiologists, endocrinologist, oncologists, pathologists and surgeons is available. This would also facilitate future studies to address the existing diagnostic and/or therapeutic obstacles.
Collapse
|