1
|
Couvé S, Ishchenko AA, Fedorova OS, Ramanculov EM, Laval J, Saparbaev M. Direct DNA Lesion Reversal and Excision Repair in Escherichia coli. EcoSal Plus 2013; 5. [PMID: 26442931 DOI: 10.1128/ecosalplus.7.2.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Indexed: 06/05/2023]
Abstract
Cellular DNA is constantly challenged by various endogenous and exogenous genotoxic factors that inevitably lead to DNA damage: structural and chemical modifications of primary DNA sequence. These DNA lesions are either cytotoxic, because they block DNA replication and transcription, or mutagenic due to the miscoding nature of the DNA modifications, or both, and are believed to contribute to cell lethality and mutagenesis. Studies on DNA repair in Escherichia coli spearheaded formulation of principal strategies to counteract DNA damage and mutagenesis, such as: direct lesion reversal, DNA excision repair, mismatch and recombinational repair and genotoxic stress signalling pathways. These DNA repair pathways are universal among cellular organisms. Mechanistic principles used for each repair strategies are fundamentally different. Direct lesion reversal removes DNA damage without need for excision and de novo DNA synthesis, whereas DNA excision repair that includes pathways such as base excision, nucleotide excision, alternative excision and mismatch repair, proceeds through phosphodiester bond breakage, de novo DNA synthesis and ligation. Cell signalling systems, such as adaptive and oxidative stress responses, although not DNA repair pathways per se, are nevertheless essential to counteract DNA damage and mutagenesis. The present review focuses on the nature of DNA damage, direct lesion reversal, DNA excision repair pathways and adaptive and oxidative stress responses in E. coli.
Collapse
|
2
|
Recent advances in cyclonucleosides: C-cyclonucleosides and spore photoproducts in damaged DNA. Molecules 2012; 17:11630-54. [PMID: 23023688 PMCID: PMC6268316 DOI: 10.3390/molecules171011630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 12/04/2022] Open
Abstract
Cyclonucleosides which are fixed in a specific conformation around the glycosyl bond by a carbon and heteroatom chain constitute a unique category of nucleoside derivatives. Because they are structural analogs, cyclonucleosides and oligodeoxynucleotides containing them would be useful tools for investigating the biological functions and conformations of DNA, RNA as well as their steric interactions with proteins. C-Cyclonucleosides bridged by a carbon chain between the base and sugar moieties are the most attractive from the synthetic points of view as well as for use as biological tools. In this review, recent progress of the synthesis of C-cyclonucleosides is surveyed. Among the C-cyclonucleosides, 5′,8-C-cyclodeoxyadenosine is one of the well-known derivatives of which the first practical synthesis was reported over 30 years ago. Recently, 5′,8-C-cyclodeoxyadenosine has attracted considerable interest as a biomarker, since its formation in oxidatively-damaged DNA is considered to be related to various diseases and aging. Another important analogue of cyclonucleosides is a unique thymidine phosphate dimer, a so-called spore photoproduct, which has been found in photo-damaged DNA. Recent advances in the synthesis, mechanism-studies, and stereochemical preference of repairing enzymes related to 5′,8-C-cyclodeoxyadenosine and spore photoproducts are also reviewed.
Collapse
|
3
|
Nguyen NH, Len C, Castanet AS, Mortier J. Selectivity in C-alkylation of dianions of protected 6-methyluridine. Beilstein J Org Chem 2011; 7:1228-33. [PMID: 21977207 PMCID: PMC3182432 DOI: 10.3762/bjoc.7.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 06/16/2011] [Indexed: 11/23/2022] Open
Abstract
A regioselective synthesis of 6-ω-alkenyluridines 3, precursors of potent antiviral and antitumor cyclonucleosides 5, is described. While ω-alkenyl halides do not alkylate 6-lithiouridine, compounds 3 were prepared in a regioselective manner by sequential treatment of 6-methyluridine 2 with LTMP or LDA (4 equiv) in THF at -30 °C followed by alkylation with ω-alkenyl bromides.
Collapse
Affiliation(s)
- Ngoc Hoa Nguyen
- Université du Maine and CNRS, Unité de chimie organique moléculaire et macromoléculaire (UMR 6011), Faculté des sciences, avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France
| | | | | | | |
Collapse
|
4
|
Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 2010; 22:1747-60. [PMID: 19757819 DOI: 10.1021/tx900242k] [Citation(s) in RCA: 363] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The sequence of heterocyclic bases on the interior of the DNA double helix constitutes the genetic code that drives the operation of all living organisms. With this said, it is not surprising that chemical modification of cellular DNA can have profound biological consequences. Therefore, the organic chemistry of DNA damage is fundamentally important to diverse fields including medicinal chemistry, toxicology, and biotechnology. This review is designed to provide a brief overview of the common types of chemical reactions that lead to DNA damage under physiological conditions.
Collapse
Affiliation(s)
- Kent S Gates
- Departments of Chemistry and Biochemistry, University of Missouri-Columbia, 125 Chemistry Building, Columbia, Missouri 65211.
| |
Collapse
|
5
|
Zhang F, Simpkins NS, Blake AJ. New approaches for the synthesis of erythrinan alkaloids. Org Biomol Chem 2009; 7:1963-79. [DOI: 10.1039/b900189a] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
8,5'-Cyclopurine-2'-deoxynucleosides in DNA: mechanisms of formation, measurement, repair and biological effects. DNA Repair (Amst) 2008; 7:1413-25. [PMID: 18603018 DOI: 10.1016/j.dnarep.2008.06.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 06/06/2008] [Accepted: 06/09/2008] [Indexed: 01/19/2023]
Abstract
8,5'-Cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine (cdG) are among the major lesions formed in DNA by hydroxyl radical attack on 2'-deoxyadenosine and 2'-deoxyguanosine, respectively, followed by intramolecular cyclization between C5' and C8. Mechanisms of formation of these unique tandem lesions were elucidated. The 8,5'-cyclization causes an unusual puckering of the sugar moiety giving rise to significant distortion in the DNA double helix. Methodologies were developed for the measurement of these lesions in DNA by mass spectrometry coupled either with gas chromatography or high performance liquid chromatography. Both techniques allowed identification and quantification of both R- and S-diastereomers of cdA and cdG in DNA in vitro and in vivo. Because of the 8,5'-covalent bond between the sugar and base moieties in the same nucleoside, cdA and cdG are repaired by nucleotide excision repair rather than by base excision repair. Thus, these lesions may play a role in diseases with defective nucleotide excision repair. Their biological effects include blocking DNA polymerases, inhibition of gene expression, transcriptional mutagenesis among others. Accumulation of cdA and cdG was observed in tissues in vivo in connection to disease and environmental conditions, suggesting an important role for these lesions in disease processes including carcinogenesis and neuronal death.
Collapse
|
7
|
Qu GR, Ren B, Niu HY, Mao ZJ, Guo HM. A Novel One-Step Method for the Synthesis of C-5-Substituted O6,5‘-Cyclopyrimidine Nucleoside Analogues in Ammonia Water. J Org Chem 2008; 73:2450-3. [DOI: 10.1021/jo7026245] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gui-Rong Qu
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Bo Ren
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hong-Ying Niu
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Zhi-Jie Mao
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hai-Ming Guo
- College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| |
Collapse
|
8
|
Iwai S. Chemical synthesis of oligonucleotides containing damaged bases for biological studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 25:561-82. [PMID: 16838846 DOI: 10.1080/15257770600685826] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since nucleic acids are organic molecules, even DNA, which carries genetic information, is subjected to various chemical reactions in cells. Alterations of the chemical structure of DNA, which are referred to as DNA damage or DNA lesions, induce mutations in the DNA sequences, which lead to carcinogenesis and cell death, unless they are restored by the repair systems in each organism. Formerly, DNA from bacteria and bacteriophages and DNA fragments treated with UV or gamma radiation, alkylating or crosslinking agents, and other carcinogens were used as damaged DNA for biochemical studies. With these materials, however, it is difficult to understand the detailed mechanisms of mutagenesis and DNA repair. Recent progress in the chemical synthesis of oligonucleotides has enabled us to incorporate a specific lesion at a defined position within any sequence context. This method is especially important for studies on mutagenesis and translesion synthesis, which require highly pure templates, and for the structural biology of repair enzymes, which necessitates large amounts of substrate DNA as well as modified substrate analogs. In this review, the various phosphoramidite building blocks for the synthesis of lesion-containing oligodeoxyribonucleotides are described, and some examples of their applications to molecular and structural biology are presented.
Collapse
Affiliation(s)
- Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
9
|
Ali SM, Ahmad MU, Koslosky P, Kasireddy K, Murali Krishna U, Ahmad I. Synthesis of short and long chain cardiolipins. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.04.071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Xerri B, Morell C, Grand A, Cadet J, Cimino P, Barone V. Radiation-induced formation of DNA intrastrand crosslinks between thymine and adenine bases: a theoretical approach. Org Biomol Chem 2006; 4:3986-92. [PMID: 17047880 DOI: 10.1039/b609134b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of local geometric and stereo-electronic effects in tuning the radiation-induced formation of intrastrand crosslinks between adenine and thymine has been analyzed by a computational approach rooted in density functional theory. Our study points out that together with steric accessibility, stereo-electronic effects play a major role in determining the reaction mechanism and the observed predominance of the thymine-adenine lesion over the opposite sequence isomer.
Collapse
Affiliation(s)
- Bertrand Xerri
- Laboratoire Lésions des Acides Nucléiques, SCIB-UMR no. 3 (CEA/UJF) Département de Recherche Fondamentale sur la Matière Condensée, CEA/Grenoble, 17 Avenue des Martyrs, 38054, Grenoble cedex 9, France
| | | | | | | | | | | |
Collapse
|
11
|
Navacchia ML, Manetto A, Montevecchi PC, Chatgilialoglu C. Radical Cyclization Approach to Cyclonucleosides. European J Org Chem 2005. [DOI: 10.1002/ejoc.200500398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Cadet J, Douki T, Gasparutto D, Ravanat JL. Radiation-induced damage to cellular DNA: measurement and biological role. Radiat Phys Chem Oxf Engl 1993 2005. [DOI: 10.1016/j.radphyschem.2003.12.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Muller E, Gasparutto D, Castaing B, Favier A, Cadet J. Recognition of cyclonucleoside lesions by the Lactococcus lactis FPG protein. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:1563-5. [PMID: 14565466 DOI: 10.1081/ncn-120023034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Several purine and pyrimidine cyclonucleosides were found to be not recognized by several Escherichia coli and yeast DNA N-glycosylases. Interestingly, a non covalent complex was observed between the Lactoccocus lactis formamidopyrimidine-DNA glycosylases (Fpg-Ll) and the cyclonucleosides. This may provide new information on the mechanism involved in the activity of the latter enzyme.
Collapse
Affiliation(s)
- Evelyne Muller
- Laboratoire des Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique and UMR 5046, DRFMC-CEA/Grenoble, Grenoble, France
| | | | | | | | | |
Collapse
|
14
|
Asymmetric synthesis of the erythrinan alkaloid system using a chiral lithium amide base desymmetrisation as the key step. Tetrahedron Lett 2003. [DOI: 10.1016/j.tetlet.2003.08.078] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Negrón G, Calderón G, Vázquez F, Lomas L, Cárdenas J, Márquez C, Gaviño R. 1,3-DIPOLAR CYCLOADDITION REACTIONS OF 3′,5′-BIS-O-SILYL THYMIDINES. SYNTHESIS OF NOVEL AZABICYCLIC COMPOUNDS. SYNTHETIC COMMUN 2002. [DOI: 10.1081/scc-120004847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Muller E, Gasparutto D, Lebrun C, Cadet J. Site-Specific Insertion of the (5R*) and (5S*) Diastereoisomers of 1-[2-Deoxy-β-D-erythro-pentofuranosyl]-5-hydroxyhydantoin into Oligodeoxyribonucleotides. European J Org Chem 2001. [DOI: 10.1002/1099-0690(200106)2001:11<2091::aid-ejoc2091>3.0.co;2-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|