1
|
Zubova E, Pokluda A, Dvořáková H, Krupička M, Cibulka R. Exploring the Reactivity of Flavins with Nucleophiles Using a Theoretical and Experimental Approach. Chempluschem 2024; 89:e202300547. [PMID: 38064649 DOI: 10.1002/cplu.202300547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Covalent adducts of flavin cofactors with nucleophiles play an important role in non-canonical function of flavoenzymes as well as in flavin-based catalysis. Herein, the interaction of flavin derivatives including substituted flavins (isoalloxazines), 1,10-ethylene-bridged flavinium salts, and non-substituted alloxazine and deazaflavin with selected nucleophiles was investigated using an experimental and computational approach. Triphenylphosphine or trimethylphosphine, 1-nitroethan-1-ide, and methoxide were selected as representatives of neutral soft, anionic soft, and hard nucleophiles, respectively. The interactions were investigated using UV/Vis and 1H NMR spectroscopy as well as by DFT calculations. The position of nucleophilic attack estimated using the calculated Gibbs free energy values was found to correspond with the experimental data, favouring the addition of phosphine and 1-nitroethan-1-ide into position N(5) and methoxide into position C(10a) of 1,10-ethylene-bridged flavinium salts. The calculated Gibbs free energy values were found to correlate with the experimental redox potentials of the flavin derivatives tested. These findings can be utilized as valuable tools for the design of artificial flavin-based catalytic systems or investigating the mechanism of flavoenzymes.
Collapse
Affiliation(s)
- Ekaterina Zubova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Hana Dvořáková
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| |
Collapse
|
2
|
Pokluda A, Zubova E, Chudoba J, Krupička M, Cibulka R. Catalytic artificial nitroalkane oxidases - a way towards organocatalytic umpolung. Org Biomol Chem 2023; 21:2768-2774. [PMID: 36919409 DOI: 10.1039/d3ob00101f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Nitroalkane oxidases (NAOs) are flavoenzymes that catalyse the oxidation of nitroalkanes to their corresponding carbonyl compounds while producing nitrite anions. Herein, we present an artificial catalytic system using flavins or ethylene-bridged flavinium salts that works via an NAO-like process. Under conditions optimised in terms of solvent, base, temperature and oxygen pressure, primary nitroalkanes were transformed to aldehydes. In our system, aldehydes immediately reacted with other nitroalkane molecules to form β-nitroalcohols. The reduced flavin catalyst was re-oxidised by oxygen. An alternative mechanism towards β-nitroalcohols via 5-(2-nitrobutyl)-1,5-dihydroflavin was suggested through quantum chemical calculations and by trapping and characterising this dihydroflavin intermediate. Interestingly, 5-(2-nitrobutyl)-1,5-dihydroflavin is an analogue of the flavin adenine dinucleotide adduct previously observed in an NAO X-ray structure. In both mechanistic pathways, flavin-5-iminium species is formed by nitroalkanide addition to flavin. This process represents flavin-based umpolung of an original donor to an acceptor.
Collapse
Affiliation(s)
- Adam Pokluda
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ekaterina Zubova
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Josef Chudoba
- Central Laboratories, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Radek Cibulka
- Department of Organic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
3
|
Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Flavin Nitroalkane Oxidase Mimics Compatibility with NOx/TEMPO Catalysis: Aerobic Oxidization of Alcohols, Diols, and Ethers. J Org Chem 2020; 85:9096-9105. [PMID: 32569467 DOI: 10.1021/acs.joc.0c01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biomimetic flavin organocatalysts oxidize nitromethane to formaldehyde and NOx-providing a relatively nontoxic, noncaustic, and inexpensive source for catalytic NO2 for aerobic TEMPO oxidations of alcohols, diols, and ethers. Alcohols were oxidized to aldehydes or ketones, cyclic ethers to esters, and terminal diols to lactones. In situ trapping of NOx and formaldehyde suggest an oxidative Nef process reminiscent of flavoprotein nitroalkane oxidase reactivity, which is achieved by relatively stable 1,10-bridged flavins. The metal-free flavin/NOx/TEMPO catalytic cycles are uniquely compatible, especially compared to other Nef and NOx-generating processes, and reveal selectivity over flavin-catalyzed sulfoxide formation. Aliphatic ethers were oxidized by this method, as demonstrated by the conversion of (-)-ambroxide to (+)-sclareolide.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Bikash Chouhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Thanh Thuy Vuong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
4
|
März M, Babor M, Cibulka R. Flavin Catalysis Employing an N(5)-Adduct: an Application in the Aerobic Organocatalytic Mitsunobu Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michal März
- Department of Organic Chemistry; University of Chemistry and Technology; 166 28 Prague 6 Prague, Technická 5 Czech Republic
| | - Martin Babor
- Department of Solid State Chemistry; University of Chemistry and Technology; Technická 5 166 28 Prague 6 Prague Czech Republic
| | - Radek Cibulka
- Department of Organic Chemistry; University of Chemistry and Technology; 166 28 Prague 6 Prague, Technická 5 Czech Republic
| |
Collapse
|
5
|
Lee J, Müller F, Visser AJWG. The Sensitized Bioluminescence Mechanism of Bacterial Luciferase. Photochem Photobiol 2018; 95:679-704. [PMID: 30485901 DOI: 10.1111/php.13063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/17/2018] [Indexed: 11/27/2022]
Abstract
After more than one-half century of investigations, the mechanism of bioluminescence from the FMNH2 assisted oxygen oxidation of an aliphatic aldehyde on bacterial luciferase continues to resist elucidation. There are many types of luciferase from species of bioluminescent bacteria originating from both marine and terrestrial habitats. The luciferases all have close sequence homology, and in vitro, a highly efficient light generation is obtained from these natural metabolites as substrates. Sufficient exothermicity equivalent to the energy of a blue photon is available in the chemical oxidation of the aldehyde to the corresponding carboxylic acid, and a luciferase-bound FMNH-OOH is a key player. A high energy species, the source of the exothermicity, is unknown except that it is not a luciferin cyclic peroxide, a dioxetanone, as identified in the pathway of the firefly and the marine bioluminescence systems. Besides these natural substrates, variable bioluminescence properties are found using other reactants such as flavin analogs or aldehydes, but results also depend on the luciferase type. Some rationalization of the mechanism has resulted from spatial structure determination, NMR of intermediates and dynamic optical spectroscopy. The overall light path appears to fall into the sensitized class of chemiluminescence mechanism, distinct from the dioxetanone types.
Collapse
Affiliation(s)
- John Lee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | | | - Antonie J W G Visser
- Laboratory of Biochemistry Microspectroscopy Centre, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Rovira AR, Tor Y. Synthesis of unique spirocyclic orthoester-type derivatives of isothiazolo[4,3-d]pyrimidine nucleosides. J Antibiot (Tokyo) 2017; 71:342-344. [PMID: 28743975 DOI: 10.1038/ja.2017.87] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/20/2023]
Abstract
A set of unique nucleoside analogs, containing 'spirocyclic orthoester-type' scaffolds, were synthesized from a common isothiazolo[4,3-d]pyrimidine-riboside precursor. The key reaction, using 1,2-di-heteroatomic nucleophiles (e.g., 1,2-ethandithiol) and BF3•OEt2, converts an exocyclic imine into the spirocyclic analogs. The novel structural scaffold is confirmed through the use of one- and two-dimensional 1H and 13C NMR experiments.
Collapse
Affiliation(s)
- Alexander R Rovira
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Terent'ev AO, Vil' VA, Gorlov ES, Rusina ON, Korlyukov AA, Nikishin GI, Adam W. Selective Oxidative Coupling of 3H-Pyrazol-3-ones, Isoxazol-5(2H)-ones, Pyrazolidine-3,5-diones, and Barbituric Acids with Malonyl Peroxides: An Effective C-O Functionalization. ChemistrySelect 2017. [DOI: 10.1002/slct.201700720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
- All-Russian Research Institute for Phytopathology; B. Vyazyomy Moscow Region 143050 Russian Federation
| | - Vera A. Vil'
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
- All-Russian Research Institute for Phytopathology; B. Vyazyomy Moscow Region 143050 Russian Federation
| | - Evgenii S. Gorlov
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
| | - Olga N. Rusina
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia; 9 Miusskaya square Moscow 125047 Russian Federation
| | - Alexander A. Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds; Russian Academy of Sciences; 28 Vavilova ul Moscow 119991 Russian Federation
- Pirogov Russian National Research Medical University; Ostrovitianov str. 1 Moscow 117997 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospekt 47 Moscow 119991 Russian Federation
| | - Waldemar Adam
- Institute of Organic Chemistry; University of Würzburg; Am Hubland, D- 97074 Würzburg Germany
- Department of Chemistry, Faculty of Natural Sciences; University of Puerto Rico; Rio Piedras Puerto Rico 00931 USA
| |
Collapse
|
8
|
Murray AT, Challinor JD, Gulácsy CE, Lujan C, Hatcher LE, Pudney CR, Raithby PR, John MP, Carbery DR. Modelling flavoenzymatic charge transfer events: development of catalytic indole deuteration strategies. Org Biomol Chem 2016; 14:3787-92. [PMID: 27005963 DOI: 10.1039/c6ob00361c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The formation and chemistry of flavin-indole charge transfer (CT) complexes has been studied using a model cationic flavin. The ability to form a CT complex is sensitive to indole structure as gauged by spectroscopic, kinetics and crystallographic studies. Single crystals of sufficient quality of a flavin-indole CT complex, suitable for X-ray diffraction, have been grown, allowing solid-state structural analysis. When CT complex formation is conducted in d4-methanol, an efficient and synthetically useful C-3 indole deuteration is observed.
Collapse
Affiliation(s)
| | | | | | - Cristina Lujan
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | | | - Paul R Raithby
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Matthew P John
- GlaxoSmithKline Research and Development, Gunnels Wood Road, Stevenage, UK
| | - David R Carbery
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
9
|
Poudel PP, Arimitsu K, Yamamoto K. Self-assembled ion-pair organocatalysis--asymmetric Baeyer-Villiger oxidation mediated by flavinium-cinchona alkaloid dimer. Chem Commun (Camb) 2016; 52:4163-6. [PMID: 26902149 DOI: 10.1039/c6cc00663a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ion-pair catalyst generated by assembly of a chiral flavinium and a cinchona alkaloid dimer for use in asymmetric Baeyer-Villiger oxidation is presented. Ion-pair formation is essential for enhancing the catalytic activity and stereoselectivity. The catalyst is applicable to structurally diverse 3-substituted cyclobutanones, providing good to excellent enantioselectivities (up to 98 : 2 e.r.). This study provides the first example of self-assembly of a flavin derivative and a base to form a chiral reaction site that enables a highly stereoselective reaction to occur.
Collapse
Affiliation(s)
- Pramod Prasad Poudel
- Department of Chemistry and Biochemistry, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA.
| | - Kenji Arimitsu
- Department of Chemistry and Biochemistry, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA.
| | - Kana Yamamoto
- Department of Chemistry and Biochemistry, University of Toledo, 2801 W. Bancroft St., Toledo, OH 43606, USA.
| |
Collapse
|
10
|
Zhu C, Li Q, Pu L, Tan Z, Guo K, Ying H, Ouyang P. Nonenzymatic and Metal-Free Organocatalysis for in Situ Regeneration of Oxidized Cofactors by Activation and Reduction of Molecular Oxygen. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01261] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chenjie Zhu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Qing Li
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Lingling Pu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Zhuotao Tan
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Kai Guo
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
| | - Hanjie Ying
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| | - Pingkai Ouyang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, China
- National Engineering Technique Research Center for Biotechnology, Nanjing, China
| |
Collapse
|
11
|
Hartman T, Šturala J, Cibulka R. Two-Phase Oxidations with Aqueous Hydrogen Peroxide Catalyzed by Amphiphilic Pyridinium and Diazinium Salts. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Murray AT, Dowley MJH, Pradaux-Caggiano F, Baldansuren A, Fielding AJ, Tuna F, Hendon CH, Walsh A, Lloyd-Jones GC, John MP, Carbery DR. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Murray AT, Dowley MJH, Pradaux-Caggiano F, Baldansuren A, Fielding AJ, Tuna F, Hendon CH, Walsh A, Lloyd-Jones GC, John MP, Carbery DR. Catalytic Amine Oxidation under Ambient Aerobic Conditions: Mimicry of Monoamine Oxidase B. Angew Chem Int Ed Engl 2015; 54:8997-9000. [PMID: 26087676 PMCID: PMC4524416 DOI: 10.1002/anie.201503654] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 11/10/2022]
Abstract
The flavoenzyme monoamine oxidase (MAO) regulates mammalian behavioral patterns by modulating neurotransmitters such as adrenaline and serotonin. The mechanistic basis which underpins this enzyme is far from agreed upon. Reported herein is that the combination of a synthetic flavin and alloxan generates a catalyst system which facilitates biomimetic amine oxidation. Mechanistic and electron paramagnetic (EPR) spectroscopic data supports the conclusion that the reaction proceeds through a radical manifold. This data provides the first example of a biorelevant synthetic model for monoamine oxidase B activity.
Collapse
Affiliation(s)
| | - Myles J H Dowley
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK)
| | | | - Amgalanbaatar Baldansuren
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | - Alistair J Fielding
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | - Floriana Tuna
- EPSRC National EPR Facility, Photon Science Institute, School of Chemistry, University of Manchester, Oxford Road, Manchester (UK)
| | | | - Aron Walsh
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK)
| | - Guy C Lloyd-Jones
- School of Chemistry, Joseph Black Building, West Mains Road, Edinburgh EH9 3 JJ (UK)
| | - Matthew P John
- GlaxoSmithKline Research and Development, Gunnels Wood Road, Stevenage (UK)
| | - David R Carbery
- Department of Chemistry, University of Bath, Claverton Down, Bath (UK).
| |
Collapse
|
14
|
Cibulka R. Artificial Flavin Systems for Chemoselective and Stereoselective Oxidations. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403275] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Abstract
(1)H-, (11)B-, (13)C-, (15)N-, (17)O-, (19)F-, and (31)P-NMR chemical shifts of flavocoenzymes and derivatives of it, as well as of alloxazines and isoalloxazinium salts, from NMR experiments performed under various experimental conditions (e.g., dependence of the chemical shifts on temperature, concentration, solvent polarity, and pH) are reported. Also solid-state (13)C- and (15)N-NMR experiments are described revealing the anisotropic values of corresponding chemical shifts. These data, in combination with a number of coupling constants, led to a detailed description of the electronic structure of oxidized and reduced flavins. The data also demonstrate that the structure of oxidized flavin can assume a configuration deviating from coplanarity, depending on substitutions in the isoalloxazine ring, while that of reduced flavin exhibits several configurations, from almost planar to quite bended. The complexes formed between oxidized flavin and metal ions or organic molecules revealed three coordination sites with metal ions (depending on the chemical nature of the ion), and specific interactions between the pyrimidine moiety of flavin and organic molecules, mimicking specific interactions between apoflavoproteins and their coenzymes. Most NMR studies on flavoproteins were performed using (13)C- and (15)N-substituted coenzymes, either specifically enriched in the pterin moiety of flavin or uniformly labeled flavins. The chemical shifts of free flavins are used as a guide in the interpretation of the chemical shifts observed in flavoproteins. Although the hydrogen-bonding pattern in oxidized and reduced flavoproteins varies considerably, no correlation is obvious between these patterns and the corresponding redox potentials. In all reduced flavoproteins the N(1)H group of the flavocoenzyme is deprotonated, an exception is thioredoxin reductase. Three-dimensional structures of only a few flavoproteins, mostly belonging to the family of flavodoxins, have been solved. Also the kinetics of unfolding and refolding of flavodoxins has been investigated by NMR techniques. In addition, (31)P-NMR data of all so far studied flavoproteins and some (19)F-NMR spectra are discussed.
Collapse
Affiliation(s)
- Franz Müller
- , Wylstrasse 13, CH-6052, Hergiswil, Switzerland,
| |
Collapse
|
16
|
|
17
|
Murray AT, Matton P, Fairhurst NWG, John MP, Carbery DR. Biomimetic Flavin-Catalyzed Aldehyde Oxidation. Org Lett 2012; 14:3656-9. [DOI: 10.1021/ol301496m] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexander T. Murray
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom, and GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Pascal Matton
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom, and GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Nathan W. G. Fairhurst
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom, and GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Matthew P. John
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom, and GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - David R. Carbery
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom, and GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
18
|
Ménová P, Eigner V, Čejka J, Dvořáková H, Šanda M, Cibulka R. Synthesis and structural studies of flavin and alloxazine adducts with O-nucleophiles. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Marsh BJ, Heath EL, Carbery DR. Organocatalytic diimide reduction of enamides in water. Chem Commun (Camb) 2011; 47:280-2. [DOI: 10.1039/c0cc02272a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Žurek J, Cibulka R, Dvořáková H, Svoboda J. N1,N10-Ethylene-bridged flavinium salts derived from l-valinol: synthesis and catalytic activity in H2O2 oxidations. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2009.12.096] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
The Interplay between Redox and Recognition Processes: Models and Devices. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2002. [DOI: 10.1016/s0065-3160(02)37005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Li WS, Zhang N, Sayre LM. N1,N10-Ethylene-bridged high-potential flavins: synthesis, characterization, and reactivity. Tetrahedron 2001. [DOI: 10.1016/s0040-4020(01)00313-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|