Lewin G, Maciuk A, Thoret S, Aubert G, Dubois J, Cresteil T. Semisynthesis of natural flavones inhibiting tubulin polymerization, from hesperidin.
JOURNAL OF NATURAL PRODUCTS 2010;
73:702-706. [PMID:
20356063 DOI:
10.1021/np100065v]
[Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Semisynthesis of 5,3'-dihydroxy-3,6,7,8,4'-pentamethoxyflavone (1), a natural flavone that binds with high affinity to tubulin, was performed from hesperidin, the very abundant Citrus flavanone, by a five-step sequence. The last step of the synthesis also gave rise to 5,3'-dihydroxy-3,6,7,4'-tetramethoxyflavone (= casticin or vitexicarpin) (10), 5,3'-dihydroxy-3,7,8,4'-tetramethoxyflavone (= gossypetin 3,7,8,4'-tetramethyl ether) (11), and, unexpectedly, 5,7,3'-trihydroxy-3,6,8,4'-tetramethoxyflavone (12) and 5,3'-dihydroxy-8-dimethylamino-3,6,7,4'-tetramethoxyflavone (= 8-dimethylaminocasticin) (13). Cytotoxicity and antitubulin activity of these five flavones, as well as 5,3'-dihydroxy-3,7,4'-trimethoxyflavone (= ayanin) (14) and intermediate 6,8-dibromo-ayanin (8), were evaluated. Comparison of the responses confirmed and clarified the influence of the A-ring substitution pattern on the biological activity.
Collapse