1
|
Parida SP, Das T, Ahemad MA, Pati T, Mohapatra S, Nayak S. Recent advances on synthesis of C-glycosides. Carbohydr Res 2023; 530:108856. [PMID: 37315353 DOI: 10.1016/j.carres.2023.108856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
In recent years, C-glycosides have emerged as significant building blocks for many naturally occurring alkaloids and pharmaceutically active drug molecules. Therefore, significant efforts have been devoted to the construction of structurally important C-glycosidic linkages in carbohydrate compounds. Herein, we have summarized the recent developments of diverse synthesis of C-glycoside core between the time period from 2019 to 2022 focusing on different catalytic strategies, such as (i) transition-metal, and (ii) metal-free catalytic approaches. Further, the transition metal catalyzed C-glycosylations have been categorized into four sub classes: (a) metal based C-H activation, (b) cross-coupling reaction, (c) glycosyl radical intermediate-based process, and (d) Others.
Collapse
Affiliation(s)
| | - Tapaswini Das
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India
| | | | - Tapaswini Pati
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India
| | | | - Sabita Nayak
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
2
|
Zhang Z, Xu Z, Liu X, Luo S, Li T. Stereoselective Synthesis of β- C-Glycosides of 3-Deoxy-d- manno-oct-2-ulosonic Acid (Kdo) via SmI 2-Mediated Reformatsky Reactions. Org Lett 2021; 23:6090-6093. [PMID: 34296882 DOI: 10.1021/acs.orglett.1c02158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient and simple approach for stereoselective synthesis of β-Kdo C-glycosides was described, which relies on easily available peracetylated anomeric acetate or anomeric 2-pyridyl sulfide to couple with carbonyl compounds via SmI2-mediated Reformatsky reactions. The utility of this methodology is exemplified by the streamlined synthesis of a practical β-Kdo C-glycoside with an anomeric aminopropyl linker to conjugate with other biomolecules for further biological studies.
Collapse
Affiliation(s)
- Zhumin Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingbang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shiwei Luo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| |
Collapse
|
3
|
Affiliation(s)
- You Yang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Biao Yu
- State
Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
4
|
Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L. C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. Chem Rev 2017; 117:1687-1764. [PMID: 28121130 DOI: 10.1021/acs.chemrev.6b00475] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.
Collapse
Affiliation(s)
- Éva Bokor
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - David Goyard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Marietta Tóth
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| |
Collapse
|
5
|
Feng Y, Dong J, Xu F, Liu A, Wang L, Zhang Q, Chai Y. Efficient Large Scale Syntheses of 3-Deoxy-d-manno-2-octulosonic acid (Kdo) and Its Derivatives. Org Lett 2015; 17:2388-91. [DOI: 10.1021/acs.orglett.5b00901] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingle Feng
- School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, P. R. China
| | - Jie Dong
- School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, P. R. China
| | - Fangyuan Xu
- School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, P. R. China
| | - Aiyun Liu
- School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, P. R. China
| | - Li Wang
- School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, P. R. China
| | - Qi Zhang
- School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, P. R. China
| | - Yonghai Chai
- School of Chemistry and Chemical
Engineering, Shaanxi Normal University, Xi’an, Shaanxi 710119, P. R. China
| |
Collapse
|
6
|
Lodowska J, Wolny D, Węglarz L. The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) as a characteristic component of bacterial endotoxin — a review of its biosynthesis, function, and placement in the lipopolysaccharide core. Can J Microbiol 2013; 59:645-55. [DOI: 10.1139/cjm-2013-0490] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The sugar 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a characteristic component of bacterial lipopolysaccharide (LPS, endotoxin). It connects the carbohydrate part of LPS with C6 of glucosamine or 2,3-diaminoglucose of lipid A by acid-labile α-ketosidic linkage. The number of Kdo units present in LPS, the way they are connected, and the occurrence of other substituents (P, PEtn, PPEtn, Gal, or β-l-Ara4N) account for structural diversity of the inner core region of endotoxin. In a majority of cases, Kdo is crucial to the viability and growth of bacterial cells. In this paper, the biosynthesis of Kdo and the mechanism of its incorporation into the LPS structure, as well as the location of this unique component in the endotoxin core structures, have been described.
Collapse
Affiliation(s)
- Jolanta Lodowska
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 Street, 41-200 Sosnowiec, Poland
| | - Daniel Wolny
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 St., 41-200 Sosnowiec, Poland
| | - Ludmiła Węglarz
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Silesia, Narcyzow 1 Street, 41-200 Sosnowiec, Poland
| |
Collapse
|
7
|
Camci-Unal G, Mizanur RM, Chai Y, Pohl NLB. Synthesis of a 3-deoxy-d-manno-octulosonic acid (KDO) building block from d-glucose via fermentation. Org Biomol Chem 2012; 10:5856-60. [DOI: 10.1039/c2ob25168j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Ichiyanagi T, Sakamoto N, Ochi K, Yamasaki R. A Chemical Synthesis of 3-Deoxy-D-manno-2-octulosonic Acid from D-mannose. J Carbohydr Chem 2009. [DOI: 10.1080/07328300802650303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Hekking KFW, Moelands MAH, van Delft FL, Rutjes FPJT. An In-Depth Study on Ring-Closing Metathesis of Carbohydrate-Derived α-Alkoxyacrylates: Efficient Syntheses of DAH, KDO, and 2-Deoxy-β-KDO. J Org Chem 2006; 71:6444-50. [PMID: 16901129 DOI: 10.1021/jo060913x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel, efficient synthetic pathways to DAH, KDO, and 2-deoxy-beta-KDO are described. Ring-closing metathesis (RCM) of highly functionalized alpha-alkoxyacrylate fragments resulted in a series of synthetically versatile oxygen heterocyclic intermediates. Further functionalization of the resulting enol ether double bond and subsequent deprotection provided the natural products in high overall yields, starting from commercially available protected sugars.
Collapse
Affiliation(s)
- Koen F W Hekking
- Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Banwell MG, Hungerford NL, Jolliffe KA. Synthesis of the Sialic Acid (−)-KDN and Certain Epimers from (−)-3-Dehydroshikimic Acid or (−)-Quinic Acid. Org Lett 2004; 6:2737-40. [PMID: 15281757 DOI: 10.1021/ol049048y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
(-)-3-Dehydroshikimic acid (3-DHS, 4), a C(7)-building block now available in large quantity from corn syrup, has been converted into the sialic acid (-)-KDN (3) as well as its C-7- and C-8-epimers. (-)-Quinic acid can be used for the same purpose. [structure: see text]
Collapse
Affiliation(s)
- Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia
| | | | | |
Collapse
|
11
|
Concise synthesis of 3-deoxy-d-manno-oct-2-ulosonic acid (KDO) as a protected form based on a new transformation of α,β-unsaturated ester to α-oxocarboxylic acid ester via diol cyclic sulfite. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Hekking KF, van Delft FL, Rutjes FP. Ring-closing metathesis of α-ester-substituted enol ethers: application to the shortest synthesis of KDO. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)00819-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Li LS, Wu YL. Synthesis of 3-deoxy-2-ulosonic acid KDO and 4-epi-KDN, a highly efficient approach of 3-C homologation by propargylation and oxidation. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)01129-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Barco A, Bassetti L, Benetti S, Bertolasi V, De Risi C, Marchetti P, Pollini GP. 4-[(4-Methylphenyl)sulfonyl]-1-(triphenylphosphoranylidene)-2-butanone as a convenient precursor for a new formal synthesis of KDO. Tetrahedron 2002. [DOI: 10.1016/s0040-4020(02)00998-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Alkylidenecarbene insertion at anomeric CH bonds. Synthesis of 3-deoxy-d-arabino-2-heptulosonic acid (DAH) and 3-deoxy-d-manno-2-octulosonic acid (KDO). Tetrahedron Lett 2002. [DOI: 10.1016/s0040-4039(02)01078-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Kim N, Park IS. Purification of saponin compounds in Bupleurum falcatum by solvent partitioning and preparative LC. Biosci Biotechnol Biochem 2001; 65:1648-51. [PMID: 11515551 DOI: 10.1271/bbb.65.1648] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Saponin compounds (saikosaponin c, a, and d) in Bupleurum falcatum were partially purified by solvent partitioning of the herbal extract using diethyl ether, distilled water, n-butanol, and acetone. After separation of the saponins by preparative LC, the purity of each saikosaponin was more than 94%. The identities of purified individual saikosaponins were confirmed by TLC, analytical LC, and fast-atom bombardment mass spectrometry.
Collapse
Affiliation(s)
- N Kim
- Korea Food Research Institute, Songnam-si, Kyonggi-do, Republic of Korea.
| | | |
Collapse
|