1
|
Shimajiri T, Kawaguchi S, Suzuki T, Ishigaki Y. Direct evidence for a carbon-carbon one-electron σ-bond. Nature 2024; 634:347-351. [PMID: 39322667 DOI: 10.1038/s41586-024-07965-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Covalent bonds share electron pairs between two atoms and make up the skeletons of most organic compounds in single, double and triple bonds. In contrast, examples of one-electron bonds remain scarce, most probably due to their intrinsic weakness1-4. Although several pioneering studies have reported one-electron bonds between heteroatoms, direct evidence for one-electron bonds between carbon atoms remains elusive. Here we report the isolation of a compound with a one-electron σ-bond between carbon atoms by means of the one-electron oxidation of a hydrocarbon with an elongated C-C single bond5,6. The presence of the C•C one-electron σ-bond (2.921(3) Å at 100 K) was confirmed experimentally by single-crystal X-ray diffraction analysis and Raman spectroscopy, and theoretically by density functional theory calculations. The results of this paper unequivocally demonstrate the existence of a C•C one-electron σ-bond, which was postulated nearly a century ago7, and can thus be expected to pave the way for further development in different areas of chemistry by probing the boundary between bonded and non-bonded states.
Collapse
Affiliation(s)
- Takuya Shimajiri
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
- Creative Research Institution, Hokkaido University, Sapporo, Japan.
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Soki Kawaguchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
2
|
Masson-Makdissi J, Lalisse RF, Yuan M, Dherange BD, Gutierrez O, Levin MD. Evidence for Dearomatizing Spirocyclization and Dynamic Effects in the Quasi-stereospecific Nitrogen Deletion of Tetrahydroisoquinolines. J Am Chem Soc 2024; 146:17719-17727. [PMID: 38899979 DOI: 10.1021/jacs.4c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Selectivity in organic chemistry is generally presumed to arise from energy differences between competing selectivity-determining transition states. However, in cases where static density functional theory (DFT) fails to reproduce experimental product distributions, dynamic effects can be examined to understand the behavior of more complex reaction systems. Previously, we reported a method for nitrogen deletion of secondary amines which relies on the formation of isodiazene intermediates that subsequently extrude dinitrogen with concomitant C-C bond formation via a caged diradical. Herein, a detailed mechanistic analysis of the nitrogen deletion of 1-aryl-tetrahydroisoquinolines is presented, suggesting that in this system the previously determined diradical mechanism undergoes dynamically controlled partitioning to both the normal 1,5-coupling product and an unexpected spirocyclic dearomatized intermediate, which converges to the expected indane by an unusually facile 1,3-sigmatropic rearrangement. This mechanism is not reproduced by static DFT but is supported by quasi-classical molecular dynamics calculations and unifies several unusual observations in this system, including partial chirality transfer, nonstatistical isotopic scrambling at the ethylene bridge, the isolation of spirocyclic dearomatized species in a related heterocyclic series, and the observation that introduction of an 8-substituent dramatically improves enantiospecificity.
Collapse
Affiliation(s)
| | - Remy F Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Balu D Dherange
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Terent'ev AO, Borisov DA, Vil’ VA, Dembitsky VM. Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products. Beilstein J Org Chem 2014; 10:34-114. [PMID: 24454562 PMCID: PMC3896255 DOI: 10.3762/bjoc.10.6] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/16/2013] [Indexed: 12/16/2022] Open
Abstract
The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents.
Collapse
Key Words
- 1,2,4,5-tetraoxanes
- 1,2,4-trioxanes
- 1,2,4-trioxolanes
- 1,2-dioxanes
- 1,2-dioxenes
- 1,2-dioxolanes
- cyclic peroxides
- ozonides
Collapse
Affiliation(s)
- Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valery M Dembitsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
- Institute for Drug Research, P.O. Box 12065, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Kano Y, Tanaka F, Ohta E, Mizuno K, Ikeda H. DFT studies of unique stereoelectronic effects of substituents on divergent reaction pathways of methylenecyclobutanone radical cations. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.04.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Ikeda H, Hoshi Y, Namai H, Tanaka F, Goodman JL, Mizuno K. Evidence for Significant Through-Space and Through-Bond Electronic Coupling in the 1,4-Diphenylcyclohexane-1,4-diyl Radical Cation Gained by Absorption Spectroscopy and DFT Calculations. Chemistry 2007; 13:9207-15. [PMID: 17768760 DOI: 10.1002/chem.200700820] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Photoinduced single-electron-transfer promoted oxidation of 2,5-diphenyl-1,5-hexadiene by using N-methylquinolinium tetrafluoroborate/biphenyl co-sensitization takes place with the formation of an intense electronic absorption band at 476 nm, which is attributed to the 1,4-diphenylcyclohexane-1,4-diyl radical cation. The absorption maximum (lambda(ob)) of this transient occurs at a longer wavelength than is expected for either the cumyl radical or the cumyl cation components. Substitution at the para positions of the phenyl groups in this radical cation by CH(3)O, CH(3), F, Cl, and Br leads to an increasingly larger redshift of lambda(ob). A comparison of the rho value, which was obtained from a Hammett plot of the electronic transition energies of the radical cations versus sigma(+), with that for the cumyl cation shows that the substituent effects on the transition energies for the 1,4-diarylcyclohexane-1,4-diyl radical cations are approximately one half of the substituent effects on the transition energies of the cumyl cation. The observed substituent-induced redshifts of lambda(ob) and the reduced sensitivity of lambda(ob) to substituent changes are in accordance with the proposal that significant through-space and -bond electronic interactions exist between the cumyl radical and the cumyl cation moieties of the 1,4-diphenylcyclohexane-1,4-diyl radical cation. This proposal gains strong support from the results of density functional theory (DFT) calculations. Moreover, the results of time-dependent DFT calculations indicate that the absorption band at 476 nm for the 1,4-diphenylcyclohexane-1,4-diyl radical cation corresponds to a SOMO-3 --> SOMO transition.
Collapse
Affiliation(s)
- Hiroshi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
6
|
Ikeda H, Namai H, Hirano T. Spectroscopic and DFT studies of nonclassical and classical radical cations of 7-benzhydrylidenenorbornene analogues: contrasting molecular geometry and electronic structures originating from the different patterns of electronic coupling. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.08.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Significant solvent effects and unusual additions of p-chloranil in the photoinduced electron-transfer reaction of 2,2-dianisyl-4-isopropylidene-3,3-dimethylcyclobutanone. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.03.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Ikeda H, Namai H, Hirano T. Spectroscopic and DFT evidence for a nonclassical radical cation derived from 7-benzhydrylidenenorbornene. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.03.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Chemical capture of an unprecedented oxatetramethyleneethane radical cation with a through-space electronic coupling. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.02.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|