Wu S, Wong THF, Righi P, Melchiorre P. Photochemical Organocatalytic Synthesis of Thioethers from Aryl Chlorides and Alcohols.
J Am Chem Soc 2024;
146:2907-2912. [PMID:
38265336 DOI:
10.1021/jacs.3c13900]
[Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Thioethers, often found in pharmaceuticals and natural compounds, typically involve metal cross-coupling reactions, high temperatures, and the use of disagreeable thiols for their synthesis. Here we present a straightforward, thiol-free organocatalytic protocol that uses mild conditions to stitch together inexpensive alcohols and aryl chlorides, yielding a diverse array of aryl alkyl thioethers. Central to this approach was the discovery that tetramethylthiourea can serve as a simple sulfur source upon intercepting photochemically generated aryl radicals. To form radicals, we used a readily available indole thiolate organocatalyst that, when excited with 405 nm light, gained a strongly reducing power, enabling the activation of typically unreactive aryl chlorides via single-electron transfer. Radical trapping by the thiourea, followed by an alcohol attack via a polar path, resulted in the formation of thioether products.
Collapse