1
|
Abstract
The formation of oximes and hydrazones is employed in numerous scientific fields as a simple and versatile conjugation strategy. This imine-forming reaction is applied in fields as diverse as polymer chemistry, biomaterials and hydrogels, dynamic combinatorial chemistry, organic synthesis, and chemical biology. Here we outline chemical developments in this field, with special focus on the past ∼10 years of developments. Recent strategies for installing reactive carbonyl groups and α-nucleophiles into biomolecules are described. The basic chemical properties of reactants and products in this reaction are then reviewed, with an eye to understanding the reaction's mechanism and how reactant structure controls rates and equilibria in the process. Recent work that has uncovered structural features and new mechanisms for speeding the reaction, sometimes by orders of magnitude, is discussed. We describe recent studies that have identified especially fast reacting aldehyde/ketone substrates and structural effects that lead to rapid-reacting α-nucleophiles as well. Among the most effective new strategies has been the development of substituents near the reactive aldehyde group that either transfer protons at the transition state or trap the initially formed tetrahedral intermediates. In addition, the recent development of efficient nucleophilic catalysts for the reaction is outlined, improving greatly upon aniline, the classical catalyst for imine formation. A number of uses of such second- and third-generation catalysts in bioconjugation and in cellular applications are highlighted. While formation of hydrazone and oxime has been traditionally regarded as being limited by slow rates, developments in the past 5 years have resulted in completely overturning this limitation; indeed, the reaction is now one of the fastest and most versatile reactions available for conjugations of biomolecules and biomaterials.
Collapse
Affiliation(s)
- Dominik K Kölmel
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
2
|
Grajkowski A, Cieślak J, Beaucage SL. A High-Throughput Process for the Solid-Phase Purification of Synthetic DNA Sequences. CURRENT PROTOCOLS IN NUCLEIC ACID CHEMISTRY 2017; 69:10.17.1-10.17.30. [PMID: 28628204 PMCID: PMC5568675 DOI: 10.1002/cpnc.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An efficient process for the purification of synthetic phosphorothioate and native DNA sequences is presented. The process is based on the use of an aminopropylated silica gel support functionalized with aminooxyalkyl functions to enable capture of DNA sequences through an oximation reaction with the keto function of a linker conjugated to the 5'-terminus of DNA sequences. Deoxyribonucleoside phosphoramidites carrying this linker, as a 5'-hydroxyl protecting group, have been synthesized for incorporation into DNA sequences during the last coupling step of a standard solid-phase synthesis protocol executed on a controlled pore glass (CPG) support. Solid-phase capture of the nucleobase- and phosphate-deprotected DNA sequences released from the CPG support is demonstrated to proceed near quantitatively. Shorter than full-length DNA sequences are first washed away from the capture support; the solid-phase purified DNA sequences are then released from this support upon reaction with tetra-n-butylammonium fluoride in dry dimethylsulfoxide (DMSO) and precipitated in tetrahydrofuran (THF). The purity of solid-phase-purified DNA sequences exceeds 98%. The simulated high-throughput and scalability features of the solid-phase purification process are demonstrated without sacrificing purity of the DNA sequences. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrzej Grajkowski
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | - Jacek Cieślak
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
3
|
Grajkowski A, Cieslak J, Beaucage SL. Solid-Phase Purification of Synthetic DNA Sequences. J Org Chem 2016; 81:6165-75. [PMID: 27382974 DOI: 10.1021/acs.joc.6b01020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although high-throughput methods for solid-phase synthesis of DNA sequences are currently available for synthetic biology applications and technologies for large-scale production of nucleic acid-based drugs have been exploited for various therapeutic indications, little has been done to develop high-throughput procedures for the purification of synthetic nucleic acid sequences. An efficient process for purification of phosphorothioate and native DNA sequences is described herein. This process consists of functionalizing commercial aminopropylated silica gel with aminooxyalkyl functions to enable capture of DNA sequences carrying a 5'-siloxyl ether linker with a "keto" function through an oximation reaction. Deoxyribonucleoside phosphoramidites functionalized with the 5'-siloxyl ether linker were prepared in yields of 75-83% and incorporated last into the solid-phase assembly of DNA sequences. Capture of nucleobase- and phosphate-deprotected DNA sequences released from the synthesis support is demonstrated to proceed near quantitatively. After shorter than full-length DNA sequences were washed from the capture support, the purified DNA sequences were released from this support upon treatment with tetra-n-butylammonium fluoride in dry DMSO. The purity of released DNA sequences exceeds 98%. The scalability and high-throughput features of the purification process are demonstrated without sacrificing purity of the DNA sequences.
Collapse
Affiliation(s)
- Andrzej Grajkowski
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration , 10903 New Hampshire Avenue, Silver Spring, Maryland 20933, United States
| | - Jacek Cieslak
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration , 10903 New Hampshire Avenue, Silver Spring, Maryland 20933, United States
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Division of Biotechnology Review and Research IV, Center for Drug Evaluation and Research, Food and Drug Administration , 10903 New Hampshire Avenue, Silver Spring, Maryland 20933, United States
| |
Collapse
|
4
|
Cieślak J, Ausín C, Grajkowski A, Beaucage SL. Convenient and efficient approach to the permanent or reversible conjugation of RNA and DNA sequences with functional groups. ACTA ACUST UNITED AC 2012; Chapter 4:Unit4.52. [PMID: 22956458 DOI: 10.1002/0471142700.nc0452s50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The conversion of 3',5'-disilylated 2'-O-(methylthiomethyl)ribonucleosides to 2'-O-(phthalimidooxymethyl)ribonucleosides is achieved in yields of 66% to 94%. Desilylation and dephtalimidation of these ribonucleosides by treatment with NH(4)F in MeOH produce 2'-O-aminooxymethylated ribonucleosides, which are efficient in producing stable and yet reversible 2'-conjugates upon reaction with 1-pyrenecarboxaldehyde. Exposure of 2'-pyrenylated ribonucleosides to 0.5 M tetra-n-butylammonium fluoride (TBAF) in THF or DMSO results in the cleavage of their iminoether functions to give the native ribonucleosides along with an innocuous nitrile side product. Conversely, the reaction of 2'-O-(aminooxymethyl)uridine with 5-cholesten-3-one leads to a permanent uridine 2'-conjugate, which is left unreacted when treated with TBAF. The versatility and uniqueness of 2'-O-(aminooxymethyl)ribonucleosides is demonstrated by the single or double incorporation of a reversible pyrenylated uridine 2'-conjugate into an RNA sequence. Furthermore, the conjugation of 2'-O-(aminooxymethyl)ribonucleosides with various aldehydes, including those generated from their acetals, is also presented. The preparation of 5'-O-(aminooxymethyl)thymidine is also achieved, albeit in modest yields, from the conversion of 5'-O-methylthiomethyl-3'-O-(levulinyl)thymidine to 5'-O-phthalimidooxymethyl-3'-O-(levuliny)lthymidine followed by hydrazinolysis of both 5'-phthalimido and 3'-levulinyl groups. Pyrenylation of the 5'-O-(aminooxymethyl)deoxyribonucleoside also provides a reversible 5'-conjugate that is sensitive to TBAF, thereby further demonstrating the usefulness of 5'-O-(aminooxymethyl)deoxyribonucleosides for permanent or reversible modification of DNA sequences. Curr. Protoc. Nucleic Acid Chem. 50:4.52.1-4.52.36. © 2012 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Jacek Cieślak
- Food and Drug Administration, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
5
|
Cieślak J, Grajkowski A, Ausín C, Gapeev A, Beaucage SL. Permanent or reversible conjugation of 2'-O- or 5'-O-aminooxymethylated nucleosides with functional groups as a convenient and efficient approach to the modification of RNA and DNA sequences. Nucleic Acids Res 2012; 40:2312-29. [PMID: 22067450 PMCID: PMC3300013 DOI: 10.1093/nar/gkr896] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/14/2022] Open
Abstract
2'-O-Aminooxymethyl ribonucleosides are prepared from their 3',5'-disilylated 2'-O-phthalimidooxymethyl derivatives by treatment with NH(4)F in MeOH. The reaction of these novel ribonucleosides with 1-pyrenecarboxaldehyde results in the efficient formation of stable and yet reversible ribonucleoside 2'-conjugates in yields of 69-82%. Indeed, exposure of these conjugates to 0.5 M tetra-n-butylammonium fluoride (TBAF) in THF results in the cleavage of their iminoether functions to give the native ribonucleosides along with the innocuous nitrile side product. Conversely, the reaction of 5-cholesten-3-one or dansyl chloride with 2'-O-aminooxymethyl uridine provides permanent uridine 2'-conjugates, which are left essentially intact upon treatment with TBAF. Alternatively, 5'-O-aminooxymethyl thymidine is prepared by hydrazinolysis of its 3'-O-levulinyl-5'-O-phthalimidooxymethyl precursor. Pyrenylation of 5'-O-aminooxymethyl thymidine and the sensitivity of the 5'-conjugate to TBAF further exemplify the usefulness of this nucleoside for modifying DNA sequences either permanently or reversibly. Although the versatility and uniqueness of 2'-O-aminooxymethyl ribonucleosides in the preparation of modified RNA sequences is demonstrated by the single or double incorporation of a reversible pyrenylated uridine 2'-conjugate into an RNA sequence, the conjugation of 2'-O-aminooxymethyl ribonucleosides with aldehydes, including those generated from their acetals, provides reversible 2'-O-protected ribonucleosides for potential applications in the solid-phase synthesis of native RNA sequences. The synthesis of a chimeric polyuridylic acid is presented as an exemplary model.
Collapse
Affiliation(s)
- Jacek Cieślak
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Andrzej Grajkowski
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Cristina Ausín
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Alexei Gapeev
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Serge L. Beaucage
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892 and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
6
|
Zatsepin TS, Romanova EA, Oretskaya TS. Synthesis of 2'-O-alkylnucleosides. RUSSIAN CHEMICAL REVIEWS 2007. [DOI: 10.1070/rc2002v071n06abeh000714] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Li NS, Lu J, Piccirilli JA. Efficient Synthesis of Methyl 3,5-Di-O-benzyl-α-d-ribofuranoside and Application to the Synthesis of 2‘-C-β-Alkoxymethyluridines. Org Lett 2007; 9:3009-12. [PMID: 17629285 DOI: 10.1021/ol071075b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methyl 3,5-di-O-arylmethyl-alpha-D-ribofuranosides have been used extensively as synthons to construct 2'-C-branched ribonucleosides. Herein, we describe efficient access to methyl 3,5-di-O-arylmethyl-alpha-D-ribofuranosides (aryl: 2-ClC(6)H(4), 3-ClC(6)H(4), 4-ClC(6)H(4), 4-BrC(6)H(4), 2,4-Cl(2)C(6)H(3), Ph) in 72-82% yields from methyl D-ribofuranoside. We also demonstrate efficient access to the versatile precursor methyl 3,5-di-O-benzyl-alpha-D-ribofuranoside (3f) and the synthesis of 2'-C-beta-methoxymethyl- and 2'-C-beta-ethoxymethyluridine in six steps from 3f with overall yields of 18% and 32%, respectively.
Collapse
Affiliation(s)
- Nan-Sheng Li
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
8
|
Manoharan M, Kawasaki AM, Prakash TP, Fraser AS, Prhavc M, Inamati GB, Casper MD, Cook PD. Carbohydrate Modifications in Antisense Oligonucleotide Therapy: New Kids on the Block. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319908044838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Synthesis of 2′-O-[2-[(N,N-dialkylamino)oxy]ethyl]-modified oligonucleotides: hybridization affinity, resistance to nuclease, and protein binding characteristics. Tetrahedron 2003. [DOI: 10.1016/s0040-4020(03)01104-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Mohe NU, Padiya KJ, Salunkhe MM. An efficient oxidizing reagent for the synthesis of mixed backbone oligonucleotides via the H-phosphonate approach. Bioorg Med Chem 2003; 11:1419-31. [PMID: 12628668 DOI: 10.1016/s0968-0896(02)00615-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mixture of carbon tetrachloride, N-methyl morpholine (NMM), pyridine and water in acetonitrile has been exploited for the oxidation of dinucleoside H-phosphonate diesters to the corresponding phosphates. The system is found to be inert to the phosphoramidate (P-N) and the phosphorothioate (P-S) linkages and has successfully been applied to the solid phase synthesis of mixed-backbone oligonucleotides (MBOs).
Collapse
Affiliation(s)
- Nikhil U Mohe
- Department of Chemistry, The Institute of Science, 15-Madam Cama Road, 032, Mumbai-400, India
| | | | | |
Collapse
|
11
|
|
12
|
Prakash TP, Manoharan M, Kawasaki AM, Lesnik EA, Owens SR, Vasquez G. 2'-O-[2-[N,N-(dialkyl)aminooxy]ethyl]-modified antisense oligonucleotides. Org Lett 2000; 2:3995-8. [PMID: 11112626 DOI: 10.1021/ol006555g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[structure] Oligonucleotides with two novel modifications, 2'-O-¿2-[N, N-(dimethyl)aminooxy]ethyl¿ (2'-O-DMAOE) and 2'-O-¿2-[N, N-(diethyl)aminooxy]ethyl¿ (2'-O-DEAOE), have been synthesized. These modifications exhibit high binding affinity to target RNA (and not to DNA) and enhance the nuclease stability of oligonucleotides considerably with t(1/2) > 24 h as a phosphodiester.
Collapse
Affiliation(s)
- T P Prakash
- Department of Medicinal Chemistry, Isis Pharmaceuticals Inc., 2292 Faraday Avenue, Carlsbad, California 92008, USA
| | | | | | | | | | | |
Collapse
|
13
|
Maier MA, Guzaev AP, Manoharan M. Synthesis of chimeric oligonucleotides containing phosphodiester, phosphorothioate, and phosphoramidate linkages. Org Lett 2000; 2:1819-22. [PMID: 10891166 DOI: 10.1021/ol005842h] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] H-Phosphonate monomers of 2'-O-(2-methoxyethyl) ribonucleosides have been synthesized. Oxidation of oligonucleotide H-phosphonates has been optimized to allow the synthesis of oligonucleotides containing either 2'-deoxy or 2'-O-(2-methoxyethyl) ribonucleoside residues combined with three different phosphate modifications in the backbone, i.e., phosphodiester (PO), phosphorothioate (PS), and phosphoramidate (PN). Phosphodiester linkages were introduced by oxidation with a cocktail of 0.1 M Et(3)N in CCl(4)/Pyr/H(2)O (5:9:1) without affecting phosphorothioate or phosphoramidate linkages. For the synthesis of phosphoramidate-modified oligonucleotides, N(4)-acetyl deoxycytidine-3'-H-phosphonate monomers were used to avoid transamination during the oxidation step.
Collapse
Affiliation(s)
- M A Maier
- Department of Medicinal Chemistry, Isis Pharmaceuticals, 2292 Faraday Avenue, Carlsbad, California 92008, USA
| | | | | |
Collapse
|
14
|
Manoharan M. 2'-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:117-30. [PMID: 10807002 DOI: 10.1016/s0167-4781(99)00138-4] [Citation(s) in RCA: 260] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 2'-position of the carbohydrate moiety has proven to be a fertile position for oligonucleotide modifications for antisense technology. The 2'-modifications exhibit high binding affinity to target RNA, enhanced chemical stability and nuclease resistance and increased lipophilicity. All high binding affinity 2'-modifications have C3'-endo sugar pucker. In addition to gauche effects, charge effects are also important in determining the level of their nuclease resistance. Pharmacokinetic properties of oligonucleotides are altered by 2'-conjugates. For certain modifications (e.g., 2'-F), the configuration at the 2'-position, arabino vs. ribo, determines their ability to activate the enzyme RNase H.
Collapse
Affiliation(s)
- M Manoharan
- Department of Medicinal Chemistry, Isis Pharmaceuticals, Carlsbad, CA 92008, USA.
| |
Collapse
|
15
|
Pfundheller HM, Koshkin AA, Olsen CE, Wengel J. Evaluation of oligonucleotides containing two novel 2'-O-methyl modified nucleotide monomers: a 3'-C-allyl and a 2'-O,3'-C-linked bicyclic derivative. NUCLEOSIDES & NUCLEOTIDES 1999; 18:2017-30. [PMID: 10549150 DOI: 10.1080/07328319908044861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The two ribo-configured nucleosides 1-(3-C-allyl-2-O-methyl-beta-D-ribo-pentofuranosyl)thymine 3 and (1S,5R,6R,8R)-5-hydroxy-6-(hydroxymethyl)-1-methoxy-8-(thymin-1-yl )- 2,7-dioxabicyclo[3.3.0]octane 6 have been transformed into their corresponding phosphoramidites, 5 and 8 respectively, and used as building blocks for the synthesis of modified oligonucleotides. The oligonucleotides were shown to hybridize with decreased binding affinity towards complementary single stranded DNA and RNA.
Collapse
Affiliation(s)
- H M Pfundheller
- Department of Chemistry, University of Southern Denmark, Odense University, Denmark
| | | | | | | |
Collapse
|